Classical E\&M Quiz 02

May 8, 2006

1. Let us assume an infinite solenoid of radius R which has N turns of wire per unit length with current I. For simplicity, the axis of the solenoid is along the z-axis and let us use the cylindrical coordinate system. You are going to calculate magnetic field inside and outside of the solenoid. You may assume that $\mathbf{B}=0$ at $\rho=\infty$. You are not allowed to use Biot and Savart Law. You may use the following steps, if necessary.
(a) Obtain z and θ dependence of the magnetic field.
(b) Obtain B_{ρ} inside and outside of the solenoid.
(c) Obtain B_{θ} inside and outside of the solenoid.
(d) Obtain B_{z} outside of the solenoid.
(e) Obtain B_{z} inside of the solenoid.

For magnetostatics, the magnetic field satisfies the following two Maxwell equations,

$$
\nabla \cdot \mathbf{B}=0 \quad \nabla \times \mathbf{B}=\mu_{0} \mathbf{J}
$$

The second relation can be written in integral form,

$$
\oint_{C} \mathbf{B} \cdot d \mathbf{l}=\mu_{0} I
$$

2. Using the method of contour integration, let us evaluate the following integral.

$$
I=\int_{0}^{\infty} \frac{d x}{1+x^{2}}
$$

It is easy to show that the function $1 /\left(1+z^{2}\right)$ is analytic (differentiable) and single-valued on complex plane. For a regular (analytic and single-valued) complex function, we can use Cauchy's integral formula for a closed contour in z-plane.

$$
\int_{C} f(z) d z=2 \pi i \sum \text { residues }
$$

Since our function $f(z)=1 /\left(1+z^{2}\right)$ has simple poles, the residue can be found as

$$
a_{-1}=\left[\left(z-z_{0}\right) f(z)\right]_{z=z_{0}}
$$

You can use the following contour in z-plane. Make sure to show that the contribution from the upper semi-circle is zero.

3. What happens if you use lower semicircle as return contour in the previous problem?

