Jefferson Lab polarized electron source

P. Adderley, <u>M. Baylac</u>, J. Clark, A. Day, J. Grames, J. Hansknecht, M. Poelker, M. Stutzman

SRF September 25 , 2002

Thomas Jefferson National Accelerator Facility

Plan

- Basics of polarized photoemission
- Experimental setup:

photocathodes

guns

lasers

beam quality controls

- Laser for GO experiment
- New generation of gun
- Conclusions & outlook

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

efferson C

Polarized electron sources

Polarized electron beam to probe nuclear structure

 \Rightarrow development of polarized e- sources

- First e- source on an accelerator: PEGGY, at SLAC (1978)
- Semiconductor sources introduced in 1975 via optical pumping of GaAs
- Introduction of strained GaAs to reach higher beam polarization in early 90's (SLAC)
- Nowadays, many accelerator facilities use strained GaAs sources: SLAC, MAMI, ELSA, CEBAF

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

lerson C

Photoemission from GaAs

Photoemission from strained GaAs

Split degeneracy of $P_{3/2}$

& optical pumping between $P_{3/2}$ and $S_{1/2}$

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

efferson Pal

NEA Activation

- Electrons, pumped to the conduction band, must be emitted in vaccum
- Reduce surface e affinity
 - $\Rightarrow E_{conduction} > E_{vacuum}$
- using alkali (Cs) and oxidant (NF3)

Electrons emitted in vacuum
 & accelerated by some
 voltage

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

lefferson G

Polarized source requirements

• High QE and P_e photocathode

• Gun

Load and support photocathode

Accommodate NEA activation of photocathode & optical port

Hold high voltage

Have good vacuum

• Light source

ellerson G

- Polarization (>99%)
- Beam quality controls (intensity, position)

Fhomas Jefferson National Accelerator Facility

Strained layer GaAs photocathode

Bandwidth Semiconductor (formerly SPIRE)

- MOCVD-grown epitaxial spin-polarizer wafer
- Lattice mismatch

 \Rightarrow split degeneracy of $P_{3/2}$

0.1
$$\mu$$
mStrained GaAs250 μ m $GaAs_{1-x}P_{x}$
 $x=0.29$ 250 μ m $GaAs_{1-x}P_{x}$
 $0600 μ m p -type GaAs
substrate$

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

llerson (

QE & polarization

Quantum Efficiency

0.2 % at 840 nm yields 1 μ A/mW 1.0 % at 780 nm yields 6 μ A/mW

Polarization

lerson C

P_e~ 75 % at 840 nm P_e~ 35 % at 780 nm

With laser polarization >99.5%, flipped at 30 Hz

Thomas Jefferson National Accelerator Facility

Photocathode preparation

- 3" wafer cleaved (15.5 mm)
- Reduce active area: anodization

ie: kill QE by anodizing in an electrolytic bath of weak phosphoric acid beyond a ~ 5 mm disk

- Mount sample on stalk
- Clean surface by a short exposure to atomic Hydrogen

Fhomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

ellerson C

JLab polarized gun design

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

lefferson g

JLab polarized guns

No load-lock system

 \Rightarrow bake after each wafer loading (3 days)

Two identical guns

switch within < 1 hour

• Excellent vacuum (Ion Pumps + NEG pumps)

4 000 liter/s pumping speed $\Rightarrow 5.10^{-12}$ Torr

excellent lifetime

 \Rightarrow Little downtime due to photocathode exchange

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

ellerson C

Lifetime (1/e)

Thomas Jefferson National Accelerator Facility

Two identical polarized guns

Thomas Jefferson National Accelerator Facility

Light source requirements

Must satisfy 3 users simultaneously Reliable system, remotely controlled

whathowLight sourceLaserControl light intensityAttenuatorPolarizing lightPockels cellCombining 3 beamsBeam splitter, dichroic mirrorSteering beamsMovable lensTransportMirrors

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

efferson S

Laser options

Diode

easy, low maintenance, reliable low noise ~ 0.1% @ 30Hz low power < 100 mW wavelength fixed DC light => leakage

Ti:Sap

high power ~500 mW wavelength adjustable higher maintenance homebuilt lasers were noisy (1%) now have low noise: 0.2% @ 30Hz

Diode lasers provide either high polarization (840 nm) or high current (780 nm)

Ti:Sap lasers provide both high polarization and high current

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

ollerson C

Dynamic laser configuration

 $\begin{array}{l} \textbf{3 experimental halls} \\ \Rightarrow \textbf{3 lasers} \end{array}$

Each laser mode-locked at 499 MHz (or 31 MHz for GO)

Each laser to meet each hall specific needs: intensity polarization beam quality

efferson G

Beam quality controls

Users ask for increasingly better beam quality:

As beam helicity is reversed, beam parameters (intensity, position) do not change

 \Rightarrow feedback systems to minimize those helicity correlations

Parity violation (PV) experiments measure $A_{exp} \sim 10^{-6}$ (1 ppm)

⇒ extreme constraints on helicity correlated beam parameters charge asymmetry ~ ppm position differences ~ nm

Independent control knobs for each hall

Level of control depends on the experiment

Fhomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

llerson C

How we manage helicity correlations for PX

- Charge asymmetry Pockels cell PC circular light correction PTTA Rotatable 1/2-plate (correction) RWP Seed laser power modulation (correction) TACO Overall systematics
 - Insertable I/2-plate (systematic reversal) $\lambda/2$

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

ellerson C

Devices common to all lasers

Days

Thomas Jefferson National Accelerator Facility

Some charge asymmetry results

Experiments	Charge asymmetry (ppm) per physics run
Hall B	w/o TACO < 2000 w/ TACO < 500
GEn	TACO < 1000
GEp	< 1000
GDH	RWP 300 to 1000
g2n	RWP < 50

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

lefferson of

Independent parity devices

Installed upstream of the location where the 3 lasers are combined

Intensity modulation

Position modulation

lerson C

Thomas Jefferson National Accelerator Facility

Independent intensity control : IA

Stable slope ~200 ppm/V Tests : $A_i \sim 3\pm 3$ ppm within 15 min.

Thomas Jefferson National Accelerator Facility

- Low voltage PC + λ/10
 Low insertion loss
- Compact footprint

GO experiment

• Time structure

31.2 MHz versus standard 499 MHz (16th subharmonic)

Modest average current, but high peak current

40 uA @ 31.2 MHz = transporting 640 uA @ 499 MHz *ie*: 8.10⁶ e⁻/bunch

\Rightarrow beam optics issues

- Parity quality beam
- Two other halls running simultaneously

\Rightarrow mode-locked Ti:Sap Laser

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

ellerson C

Ti:Sap Laser for GO

Homebuilt Ti:Sap diode seeded AOM

pulse width too large

Commercial Ti:Sap laser bought (TimeBandwith Product)

> FWHM ~ 70 ps phase noise < 1 ps

Installed early September, used since then for tests

40 μA to hall C & parity quality beam !

Thomas Jefferson National Accelerator Facility

Load lock design goals

- Installation of cathode from air to HV in less than 8 hours
- Load-lock chamber at ground potential, no moving parts at HV
- Horizontal compatible with tunnel configuration (15° bend)
- Maintain all good features of current horizontal guns Electrode material Electrostatic optics Excellent vacuum, pumping conductance

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

ellerson C

Best Technology Load Lock Polarized Electron Gun

3 Chambers:

- High Voltage Chamber.....
- Preparation Chamber.
- Load/Heat/Hydrogen Chamber

and 2 manipulators

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

lerson C

BTLLPEG under test

- Installed in testcave in same configuration as production beamline
- Instrumented beamline (viewers, BPM, harp scanner)
- Plans for Wien filter, Mott Polarimeter

• Goal reached to load, Hydrogen clean, activate and bring to HV chamber within 8 hours with good QE

• Ready for beam

efferson G

Thomas Jefferson National Accelerator Facility

Conclusions

Polarized source for production:

Two operational guns

high polarization (70-80%) high lifetime (300-600 C) high current (100 μA)

Independent controls of beam quality for each hall

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

llerson C

Outlook (1)

✓ 2002-2003 : high profile year for parity violation experiments at JLab (HAPPEx 2, GO)

Ti:Sap

ellerson C

commercial GO laser appears to be good a 499 MHz model ordered for HAPPEx 2, etc...

 Helicity correlations controlled at parity level independent knobs validated for halls A & C

This coming period will help us prepare the future of PV

Thomas Jefferson National Accelerator Facility

Outlook (2)

• Test lab studies on Vertical gun to deliver $P_e > 80\%$

reliable and powerful Ti:Sap would help

Load lock gun studies to improve lifetime

Qweak experiment asks for 200 μA in 2006 high $P_{\!e}$ and parity quality beam

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

ellerson G