

Twists Expansion of Γ_1

• According to OPE, at $Q^2 \gg \Lambda_{\rm QCD}^2$,

$$\Gamma_1(Q^2) = \sum_{\tau=2,4,\dots} \frac{\mu_{\tau}(Q^2)}{Q^{\tau-2}}$$

• Leading twist μ_2

$$\mu_2(Q^2) = C_{NS}(Q^2) \left(-\frac{1}{12}a_3 + \frac{1}{36}a_8 \right) + C_S(Q^2) \frac{1}{9} \Delta \Sigma$$
$$a_3 \equiv g_A = \Delta u - \Delta d, \quad a_8 = \Delta u + \Delta d - 2\Delta s$$
$$\Delta \Sigma = \Delta u + \Delta d + \Delta s$$

• Wilson coefficients from pQCD

$$C_{NS}(Q^2) = 1 - \left(\frac{\alpha_S}{\pi}\right) - 3.58 \left(\frac{\alpha_S}{\pi}\right)^2 - 20.22 \left(\frac{\alpha_S}{\pi}\right)^2$$
$$C_S(Q^2) = 1 - 0.33 \left(\frac{\alpha_S}{\pi}\right) - 0.55 \left(\frac{\alpha_S}{\pi}\right)^2 - 4.45 \left(\frac{\alpha_S}{\pi}\right)^2$$

Higher Twist Component

• Subtracting $\mu_2^n(Q^2)$,

$$\Delta\Gamma_1(Q^2) \equiv \Gamma_1(Q^2) - \mu_2(Q^2) = \frac{\mu_4(Q^2)}{Q^2} + \mathcal{O}\left(\frac{1}{Q^2}\right)$$

• $\mathcal{O}(1/Q^2)$ term

$$\mu_4(Q^2) = \frac{1}{9}M^2 \left(a_2(Q^2) + 4d_2(Q^2) + 4f_2(Q^2) \right)$$

• a_2 and d_2 from spin structure functions

$$a_2(Q^2) = 2\int_0^1 x^2 g_1(x, Q^2) dx$$

$$d_2(Q^2) = 3\int_0^1 x^2 \bar{g}_2(x, Q^2) dx$$

$$= \int_0^1 x^2 \left(2g_1(x, Q^2) + 3g_2(x, Q^2)\right) dx$$

Higher Twist Effect of $g_2(x, Q^2)$

$$d_2(Q^2) = \int_0^1 x^2 \left[2g_1(x, Q^2) + 3g_2(x, Q^2) \right] dx$$

→ At high Q^2 , d_2 measures induced color field by target spin $d_2 = \frac{1}{8}(\chi_E + 2\chi_B)$

→ At low Q^2 , d_2 is related to spin polarizabilities

$$d_2(Q^2) = \frac{Q^6}{16M^2\alpha_{\rm em}} \left[3\delta_{LT}(Q^2) - \gamma_0(Q^2) \right]$$

→ Intermediate Q^2 : transition between partonic and hadronic scales

- \rightarrow Necessary to study higher twist effect from g_1 structure function
- → At $Q^2 = 5 \text{ GeV}^2$, SLAC E155x shows large, positive d_2 but with big error bar.

Probing Inside the Proton

• For a target with *non-zero* spin - form factors for *charge* and *magnetization*

$$\frac{d\sigma}{d\Omega_{\text{lab}}} = \left(\frac{\alpha^2 \cos^2 \frac{\theta}{2}}{4E^2 \sin^4 \frac{\theta}{2}}\right) \left(\frac{E'}{E}\right) \left[(G_E^p)^2 + \frac{\tau}{\varepsilon} (G_M^p)^2\right] \left(\frac{1}{1+\tau}\right)$$
$$\tau \equiv \frac{Q^2}{4M^2}, \quad \frac{1}{\varepsilon} = 1 + 2(1+\tau) \tan^2 \frac{\theta}{2}$$

 G_E^p distribution of charge inside the proton

 G_M^p distribution of magnetization inside the proton

Cross Section for Quasi-Elastic Scattering

$$\frac{d^2\sigma}{d\Omega d\omega} = \sigma_{\text{Mott}} \left[\frac{Q^4}{q^4} R_L(q,\omega) + \frac{Q^2}{2q^2} \frac{1}{\varepsilon} R_T(q,\omega) \right]$$

- $R_L(q,\omega), R_T(q,\omega)$: Response functions
- Analogy of G_E^p and G_M^p of the free proton
- $R_L(q,\omega)$ characterizes charge interaction in the nucleus.
- Coulomb Sum

$$S_L(q) = \int_{\omega_{
m el}^+}^{\infty} d\omega rac{R_L(q,\omega)}{Z \tilde{G_E}^2(Q^2)}$$

 $\tilde{G_E}^2(Q^2) = \left([G_E^p(Q^2)]^2 + (N/Z) [G_E^n(Q^2)]^2 \right) \frac{1 + Q^2/4M^2}{1 + Q^2/2M^2}$

Coulomb Sum Rule

- By definition, $S_L(q) = 1$ for the free proton
- Saturation of the Coulomb Sum $S_L(q) \rightarrow 1$ at sufficiently large q
- Deviation of the Coulomb Sum Rule
 - at small q Nucleon-nucleon long-range correlations and Pauli blocking
 - at large q Short range correlations and modification of the free nucleon electromagnetic properties inside the nuclear medium
- Nuclear density dependence (⁴He to 208 Pb)
- Related to chiral symmetry restoration in dense nuclear medium

Measurements

- For the past twenty years, a large experimental program at Bates, Saclay and SLAC
- Limited kinematic coverage in q and ω due to machine limitations

- Early data shows significant quenching of the CSR.
- With the addition of forward angle data, Bates claims no significant quenching.
- Saclay new analysis claims that quenching persists.

Saclay(France) vs. MIT(US)

Coulomb Corrections

- \rightarrow Due to high Z of the nucleus
 - electrons are *accelerated* while entering into the nucleus
 - electrons are *decelerated* while leaving the nucleus
- → As a result, when we send electron beam of energy E and detect outgoing electron of energy E'
 - Inside the nucleus, electron beam will have energy $E+\Delta E$
 - Just after the scattering, outgoing electron had an energy $E + \Delta E'$
- \rightarrow Several ways to account for this effect
 - Full calculation using *Distorted Wave Born Approximation*
 - Approximate way with *Effective Momentum Approximation*
- → Experimental cross check with positron (e^+) beam

Data & EMA at Forward Angle

P. Guèye et al., Physical Review C 60 044308 (1999)

Data & EMA at Backward Angle

P. Guèye et al., Physical Review C 60 044308 (1999)

Data & LEMA at Forward Angle

P. Guèye et al., Physical Review C 60 044308 (1999)

Data & LEMA at Backward Angle

P. Guèye et al., Physical Review C 60 044308 (1999)

Data & DWBA at Forward Angle

K.S. Kim, L.E. Wright and D. A. Resler, Physical Review C **64** 044607 (2001)

Data & DWBA at Backward Angle

K.S. Kim, L.E. Wright and D. A. Resler, Physical Review C **64** 044607 (2001)