

Integral of g_1 In Quark-Parton Model $g_1(x) = \frac{1}{2} \sum_{i} e_i^2 \left(f_i^{\uparrow}(x) - f_i^{\downarrow}(x) \right)$ For the proton $g_1^p(x) = \frac{1}{2} \left(\frac{4}{9} \Delta u(x) + \frac{1}{9} \Delta d(x) + \frac{1}{9} \Delta s(x) \right)$ Using $\Delta u = \int_{0}^{1} \Delta u(x) \, dx \quad etc.$ Integral of $g_1(x)$ can be written as $\Gamma_{1}^{p} = \int_{0}^{1} g_{1}^{p}(x) \, dx = \frac{1}{2} \left(\frac{4}{9} \Delta u + \frac{1}{9} \Delta d + \frac{1}{9} \Delta s \right)$ Proton Spin

→ Naïve Quark Model

$$\frac{1}{2}(\text{proton}) = \frac{1}{2}(\Delta u + \Delta d + \Delta s)$$

- → Experimental measurement of Γ_1^p gives *one* linear combination of Δu , Δd and Δs .
- → We need two more relations. \rightarrow SU(3) flavor symmetry
- → In QPM, linear combinations of these moments ~ weal axial-vector couplings

$$a_{0} = \Delta u + \Delta d + \Delta s \equiv \Delta \Sigma$$
$$a_{3} = \Delta u - \Delta d$$
$$a_{8} = \Delta u + \Delta d - 2\Delta s$$

Baryon Decays

- → Semi-leptonic decays of baryon octet under SU(3) symmetry involves the transition $d \rightarrow u$ or $s \rightarrow u$
- \rightarrow Decay lifetime can be parametrized by two numbers F and D

$n \to p e^- \bar{\nu}$	$d \rightarrow u$	F + D
$\Xi^- \to \Xi^0 e^- \bar{\nu}$	$d \rightarrow s$	F - D
$\Xi^- \to \Lambda e^- \bar{\nu}$	$d \rightarrow s$	F - D/3
$\Lambda \to p e^- \bar{\nu}$	$d \rightarrow u$	F + D/3
	etc	

 \rightarrow Current algebra under SU(3) gives

$$a_3 = F + D$$
$$a_8 = 3F - D$$

Summary Three unknowns with three equations $\Gamma_1^p = \frac{1}{2} \left(\frac{4}{9} \Delta u + \frac{1}{9} \Delta d + \frac{1}{9} \Delta s \right)$ $= \Delta u - \Delta d = F + D$ a_3 $= \Delta u + \Delta d - 2\Delta s = 3F - D$ $Q_{\mathcal{R}}$ a_3 is related to the neutron β -decay and $a_3 = g_A$, axial coupling constant. $\Gamma_1^p = \int_0^1 g_1^p(x) \, dx = \frac{g_A}{12} \left(\frac{1}{3} \frac{3F/D - 1}{F/D + 1} + 1 \right) + \frac{1}{9} \Sigma$ $\Gamma_1^n = \int_0^1 g_1^n(x) \, dx = \frac{g_A}{12} \left(\frac{1}{3} \frac{3F/D - 1}{F/D + 1} - 1 \right) + \frac{1}{9} \Sigma$

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L$$

→ $\Delta \Sigma = 0.347 \pm 0.024 \pm 0.066$

 $\Rightarrow \Delta G = 0.41 \pm 0.23$

- SMC, HERMES, COMPASS, RHIC-spin
- From extended database of $g_1(x, Q^2)$
- or from $\vec{p}\vec{p}$ collision (RHIC)
- → L?

- → To be compared with 0.181 ± 0.003 from Bjorken sum rule with QCD corrections.
- → Note that Bjorken Sum Rule requires only SU(2) symmetry, which is a good symmetry.

