Extension to Spins

presented by
Seonho Choi

Seoul National University

Nov $\frac{H E P}{2,2004}$

Spin of the Nucleon

- One of the basic property of the nucleon
- Fermion with spin $1 / 2$
- Well established fact
- Internally, composite particle
- quarks: spin $1 / 2$ (fermions)
- gluons: spin 1 (bosons)
- orbital angular momentum: L
- In addition to three valence quarks
- Almost infinite number of soft gluons
- Sea quarks ($q \bar{q}$ pairs)
- Puzzle: how do all these constituents combine to give final spin of $1 / 2$?

Case of Charge

- Again, one of the basic property
- Either 0 (neutron) or +1 (proton)
- Again, very well established (H_{2} is neutral)
- Internally, composite particle
- quarks: charge $+2 / 3(u)$ or $-1 / 3(d)$
- gluons: charge 0
- orbital angular momentum: no contribution
- In addition to three valence quarks
- Almost infinite number of soft gluons (charge 0)
- Sea quarks ($q \bar{q}$ pair - net charge 0)
- Not a puzzle: total charge of the nucleon do come from valence quarks.

Conceptual Decomposition

- Δq - Contribution from the quarks (polarized electron scattering)
- Δg - Contribution from the gluons (polarized proton scattering)
- L - Contribution from the orbital angular momentum (Generalized Parton Distribution)

Quark Spins

In analogy of the parton distribution functions $q(x)$, consider $q_{\uparrow}(x)$ and $q_{\downarrow}(x)$
$q(x)$: probability to find a quark (any spin direction) with momentum fract
$q_{\uparrow}(x) \quad$: probability to find a quark with $u p$-spin with momentum fraction x is
$q_{\downarrow}(x)$: probability to find a quark with down-spin with momentum fraction From the definitions,

$$
\begin{array}{rlrl}
q(x) & =q_{\uparrow}(x)+q_{\downarrow}(x) & & \\
\Delta q(x) & \equiv q_{\uparrow}(x)-q_{\downarrow}(x) & \text { Enough to measure } q(x) \quad \text { and } \\
q_{\uparrow}(x) & =\frac{1}{2}[q(x)+\Delta q(x)] & \Delta q(x) &
\end{array}
$$

Polarized Nucleon?

- $\Delta q(x)=0$ in unpolarized nucleons (of course!)
- Aren't nucleons always polarized? (spin $1 / 2$)
- What is polarization?
- True: each individual nucleons are polarized
- either up or down with respect to polarization axis
- Consider a large number of nucleons.
- Statistically, equal number of nucleons in up and down polarization
- Polarization is defined as

$$
P=\frac{N_{\uparrow}-N_{\downarrow}}{N_{\uparrow}+N_{\downarrow}}
$$

- For example, if 30% of the nucleons are definitely in up state and the rest 70% are equally ditributed among $u p$ and down states,

$$
\begin{aligned}
N_{\uparrow} & =0.3 N+0.35 N=0.65 N \\
N_{\downarrow} & =0.35 N \\
P & =\frac{0.65 N-0.35 N}{0.65 N+0.35 N}=30 \%
\end{aligned}
$$

