

Examples \rightarrow LHC (in construction) will collide two protons at 7 TeV each. (1 TeV = 1000 GeV \rightarrow Center of mass energy = 14 TeV \rightarrow 7 TeV proton on fixed target $E_{\rm cm} \approx 118 \,{\rm GeV}$ \rightarrow the rest was used for the CM motion \rightarrow 1 GeV proton on fixed proton target (KOMAC) $E_{\rm cm} = 2.33 \,{\rm GeV}$ → production of $p + K^+ + \Lambda$ requires $m_p + m_{K^+} + m_{\Lambda} = 2.55 \,\text{GeV}$ or 1.58 GeV beam

Cross Section - Part 1

Mechanics, 3rd edition by Keith R. Symon

If N incident particles strike a thin foil containing n scattering centers per unit area, the average number dN of particles scattered through an angle between Θ and $\Theta + d\Theta$ is given in terms of the cross section $d\sigma$ by the formula

$$\frac{dN}{N} = n \, d\sigma$$

 $d\sigma$ is called the cross section for scattering through an angle between Θ and $\Theta + d\Theta$, and can be thought of as the effective area surrounding the scattering center which the incident particle must hit in order to be scattered through an angle between Θ and $\Theta + d\Theta$. For if there is a "target area" $d\sigma$ around each scattering center, then the total target area in a unit area is $n d\sigma$. If N particles strike one unit area, the average number striking the target area is $Nn d\sigma$, and this,..., is just dN,...

Cross Section - Part 2

Dimension of the cross section

$$d\sigma = \frac{dN}{N}\frac{1}{n}$$
$$[d\sigma] = \frac{1}{[n]} = [area$$

In real experiments,

→ target is specified by $density(\rho)$ and $thickness(\Delta l)$

 \rightarrow beam is specified by *current* (I)

$$n = \rho \cdot \Delta l$$
$$N = \int \frac{I}{e} dt$$

$$d\sigma = \frac{1}{\rho \cdot \Delta l} \frac{dN}{\int \frac{I}{e} dt}$$

→ In general, cross sections are written in *barns*, or b 1 barn = 10^{-28} m² = 10^{-24} cm², 1 fm² = 10 mb

- → Actually, 1 barn is *very* big cross section, usually use smaller units such as μ b, nb, pb.
- \rightarrow In the previous expression,

$$(\rho \cdot \Delta l) \cdot \frac{I}{e}$$

is called *luminosity*, \mathcal{L} with units cm⁻²·sec⁻¹.

 $\rightarrow \mathcal{L} \cdot d\sigma$ gives dN per second (reaction rate, event rate)

Luminosity for Colliders

- → Two bunches each containing N_1 and N_2 particles colliding f times per second
- → Each bunch has Gaussian distribution in transverse direction with σ_x and σ_y
- \rightarrow Head-on collision along z direction

$$\mathcal{L} = f \cdot \frac{N_1 \cdot N_2}{4\pi\sigma_x\sigma_y}$$