High Energy Experiments

prepared by
Seonho Choi

Seoul National University
$\frac{\text { Topics in High Energy Physics }}{\text { Sep 16, } 2004}$

Lorentz Transformation

\rightarrow Energy-momentum 4-vector

$$
\begin{aligned}
p & =(E, \mathbf{p}) \\
p^{2} & =E^{2}-\mathbf{p}^{2}=m^{2} \\
\beta & =\mathbf{p} / E
\end{aligned}
$$

\rightarrow Lorentz Transformation

$$
\binom{E^{*}}{p_{\|}^{*}}=\left(\begin{array}{cc}
\gamma_{f} & -\gamma_{f} \beta_{f} \\
-\gamma_{f} \beta_{f} & -\gamma_{f}
\end{array}\right)\binom{E}{p_{\|}}, \quad p_{T}^{*}=p_{T}
$$

\rightarrow Lorentz invariant

$$
p_{1} \cdot p_{2}=E_{1} E_{2}-\mathbf{p}_{1} \cdot \mathbf{p}_{2}
$$

Center of Mass

\rightarrow It is often convenient to consider collision process in the center of mass(CM) frame
\rightarrow Center of Mass energy

$$
\begin{aligned}
E_{\mathrm{cm}} & =\sqrt{\left(p_{1}+p_{2}\right)^{2}} \\
& =\left[\left(E_{1}+E_{2}\right)^{2}-\left(\mathbf{p}_{1}+\mathbf{p}_{2}\right)^{2}\right]^{1 / 2} \\
& =\left[m_{1}^{2}+m_{2}^{2}+2 E_{1} E_{2}\left(1-\beta_{1} \beta_{2} \cos \theta\right)\right]^{1 / 2}
\end{aligned}
$$

\rightarrow Special case - Lab frame (one particle is at rest)

$$
E_{\mathrm{cm}}=\left(m_{1}^{2}+m_{2}^{2}+2 E_{1 \mathrm{lab}} m_{2}\right)^{1 / 2}
$$

Examples

\rightarrow LHC (in construction) will collide two protons at 7 TeV each. (1 $\mathrm{TeV}=1000 \mathrm{GeV}$)
\rightarrow Center of mass energy $=14 \mathrm{TeV}$
$\rightarrow 7 \mathrm{TeV}$ proton on fixed target

$$
E_{\mathrm{cm}} \approx 118 \mathrm{GeV}
$$

\rightarrow the rest was used for the CM motion
$\rightarrow 1 \mathrm{GeV}$ proton on fixed proton target (KOMAC)

$$
E_{\mathrm{cm}}=2.33 \mathrm{GeV}
$$

\rightarrow production of $p+K^{+}+\Lambda$ requires

$$
m_{p}+m_{K^{+}}+m_{\Lambda}=2.55 \mathrm{GeV} \quad \text { or } 1.58 \mathrm{GeV} \text { beam }
$$

Examples (Cont.)

\rightarrow Use heavy nuclei such as lead $\left({ }^{208} \mathrm{~Pb}\right)$
\rightarrow Nucleons have Fermi motion inside the nuclei
\rightarrow If $k_{F}=0.2 \mathrm{GeV}, E_{\mathrm{cm}}=2.48 \mathrm{GeV}$
\rightarrow If $k_{F}=0.3 \mathrm{GeV}, E_{\mathrm{cm}}=2.58 \mathrm{GeV}$ (barely possible)

Mandelstam Variables

$$
\begin{aligned}
s & =\left(p_{1}+p_{2}\right)^{2}=\left(p_{3}+p_{4}\right)^{2} \\
t & =\left(p_{1}-p_{3}\right)^{2}=\left(p_{2}-p_{4}\right)^{2} \\
u & =\left(p_{1}-p_{4}\right)^{2}=\left(p_{2}-p_{3}\right)^{2}
\end{aligned}
$$

and

$$
s+t+u=m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+m_{4}^{2}
$$

Cross Section - Part 1

Mechanics, 3rd edition by Keith R. Symon

If N incident particles strike a thin foil containing n scattering centers per unit area, the average number $d N$ of particles scattered through an angle between Θ and $\Theta+d \Theta$ is given in terms of the cross section $d \sigma$ by the formula

$$
\frac{d N}{N}=n d \sigma
$$

$d \sigma$ is called the cross section for scattering through an angle between Θ and $\Theta+d \Theta$, and can be thought of as the effective area surrounding the scattering center which the incident particle must hit in order to be scattered through an angle between Θ and $\Theta+d \Theta$. For if there is a "target area" $d \sigma$ around each scattering center, then the total target area in a unit area is $n d \sigma$. If N particles strike one unit area, the average number striking the target area is $N n d \sigma$, and this, \ldots, is just $d N, \ldots$

Cross Section - Part 2

Dimension of the cross section

$$
\begin{aligned}
d \sigma & =\frac{d N}{N} \frac{1}{n} \\
{[d \sigma] } & =\frac{1}{[n]}=[\text { area }]
\end{aligned}
$$

In real experiments,
\rightarrow target is specified by density (ρ) and thickness (Δl)
\rightarrow beam is specified by current (I)

$$
\begin{aligned}
n & =\rho \cdot \Delta l \\
N & =\int \frac{I}{e} d t
\end{aligned}
$$

Cross Section - Part 3

$$
d \sigma=\frac{1}{\rho \cdot \Delta l} \frac{d N}{\int \frac{I}{e} d t}
$$

\rightarrow In general, cross sections are written in barns, or b 1 barn $=10^{-28} \mathrm{~m}^{2}=10^{-24} \mathrm{~cm}^{2}, 1 \mathrm{fm}^{2}=10 \mathrm{mb}$
\rightarrow Actually, 1 barn is very big cross section, usually use smaller units such as $\mu \mathrm{b}, \mathrm{nb}, \mathrm{pb}$.
\rightarrow In the previous expression,

$$
(\rho \cdot \Delta l) \cdot \frac{I}{e}
$$

is called luminosity, \mathcal{L} with units $\mathrm{cm}^{-2} \cdot \mathrm{sec}^{-1}$.
$\rightarrow \mathcal{L} \cdot d \sigma$ gives $d N$ per second (reaction rate, event rate)

Cross Section - Part 5

Luminosity for Colliders

\rightarrow Two bunches each containing N_{1} and N_{2} particles colliding f times per second
\rightarrow Each bunch has Gaussian distribution in transverse direction with σ_{x} and σ_{y}
\rightarrow Head-on collision along z direction

$$
\mathcal{L}=f \cdot \frac{N_{1} \cdot N_{2}}{4 \pi \sigma_{x} \sigma_{y}}
$$

