From Quark to Matter

prepared by
Seonho Choi

Seoul National University

$$
\frac{\text { Topics in High Energy Physics }}{\operatorname{Sep} 7,2004}
$$

Magnetic Moments

Quark representation of the proton

$$
\begin{aligned}
\mid p \uparrow>= & \sqrt{\frac{1}{18}}[u u d(\uparrow \downarrow \uparrow+\downarrow \uparrow \uparrow-2 \uparrow \uparrow \downarrow) \\
& +u d u(\uparrow \uparrow \downarrow+\downarrow \uparrow \uparrow-2 \uparrow \downarrow \uparrow) \\
& +d u u(\uparrow \downarrow \uparrow+\uparrow \uparrow \downarrow-2 \downarrow \uparrow \uparrow)] \\
= & \sqrt{\frac{1}{18}}[u \uparrow u \downarrow d \uparrow+u \downarrow u \uparrow d \uparrow-2 u \uparrow u \uparrow d \downarrow \\
& + \text { permutations }]
\end{aligned}
$$

Magnetic moment of the quarks

$$
\mu_{i}=Q_{i}\left(\frac{e}{2 m_{i}}\right)
$$

Magnetic Moments (Cont.)

Magnetic moment of the proton

$$
\begin{aligned}
\mu_{p} & =\sum_{i=1}^{3}<p \uparrow\left|\mu_{i}\left(\sigma_{3}\right)_{i}\right| p \uparrow> \\
& =\frac{1}{3}\left(4 \mu_{u}-\mu_{d}\right)
\end{aligned}
$$

Similarly for the neutron

$$
\mu_{n}=\frac{1}{3}\left(4 \mu_{d}-\mu_{u}\right)
$$

If $m_{u}=m_{d}, \mu_{u}=-2 \mu_{d}$ and

$$
\frac{\mu_{n}}{\mu_{p}}=-\frac{2}{3}
$$

Experiment shows

$$
\frac{\mu_{n}}{\mu_{p}}=-0.68497945 \pm 0.00000058
$$

One more quark - c

\rightarrow Discovery of J / ψ in $1974(3.1 \mathrm{GeV})$
\rightarrow Turns out to be $c \bar{c}$ pair (charmonium)

Interpretation

$\rightarrow c$ quark much heavier than other quarks
\rightarrow Appropriate to interprete as heavy quarks inside a potential
\rightarrow A naïve form of potential between $c \bar{c}$

$$
V(r)=-\frac{4}{3} \frac{\alpha_{S}}{r}+a r
$$

\rightarrow At small distance: Coulomb type potential $\sim 1 / r$
\rightarrow At large distnace: confining potential $\sim r$
\rightarrow Too much separation?
Energy wise, easier to produce $q \bar{q}$ pair in the middle

4 quarks instead of 3

\rightarrow Mass of the c quark much heavier than any other
\rightarrow Nevertheless, try SU(4)

$$
\begin{aligned}
\mathbf{4} \otimes \overline{4} & =\mathbf{1 5} \oplus \mathbf{1} \\
\mathbf{4} \otimes 4 \otimes \mathbf{4} & =\mathbf{2 0} \oplus \mathbf{2 0} \oplus \mathbf{2 0} \oplus \overline{\mathbf{4}}
\end{aligned}
$$

Hadron Masses

\rightarrow If $\mathrm{SU}(4)$ were exact, single meson mass and single hadron mass
\rightarrow However, great variety of hadron masses (broken $\mathrm{SU}(4)$ symmetry)
\rightarrow Constituent quark mass

$$
\left.\begin{array}{r}
m_{\omega} \approx m_{\rho}(u \bar{u})=0.78 \mathrm{GeV} \\
m_{\phi}(s \bar{s})=1.02 \mathrm{GeV} \\
m_{K^{*}}(s \bar{u})=0.89 \mathrm{GeV} \\
m_{D^{*}}(c \bar{u})=2.01 \mathrm{GeV} \\
m_{F^{*}}(c \bar{s})=2.11 \mathrm{GeV} \\
m_{J / \psi}(c \bar{c})=3.1 \mathrm{GeV}
\end{array}\right\} \rightarrow \begin{aligned}
& \\
& m_{u} \approx m_{d} \approx 0.39 \mathrm{GeV} \\
& m_{s} \approx 0.51 \mathrm{GeV} \\
& m_{c} \approx 1.6 \mathrm{GeV} \\
&
\end{aligned}
$$

Hadron Masses (Cont.)

\rightarrow Surprising success in explaining mass hierarchies and mass differences between hadrons
\rightarrow Effect of relative spins of the quarks
\rightarrow Remind from hydrogen atom (hyperfine structure)

$$
\Delta E_{h f}=-\frac{2}{3} \mu_{\mathbf{1}} \cdot \mu_{\mathbf{2}}|\psi(0)|^{2}=\frac{2 \pi \alpha_{\mathrm{em}}}{3} \frac{\sigma_{\mathbf{1}} \cdot \sigma_{\mathbf{2}}}{m_{1} m_{2}}|\psi(0)|^{2}
$$

\rightarrow Similary for mesons and baryons

$$
\begin{aligned}
m\left(q_{1} \bar{q}_{2}\right) & =m_{1}+m_{2}+\left[\frac{a\left(\sigma_{\mathbf{1}} \cdot \sigma_{\mathbf{2}}\right)}{m_{1} m_{2}}\right] \\
m\left(q_{1} q_{2} q_{3}\right) & =m_{1}+m_{2}+m_{3}+\left[\frac{a^{\prime}}{2} \sum_{i>j} \frac{a\left(\sigma_{\mathbf{i}} \cdot \sigma_{\mathbf{j}}\right)}{m_{i} m_{j}}\right]
\end{aligned}
$$

Comments on the Mass

\rightarrow Hadron masses: one of the fundamental questions unanswered in QCD
\rightarrow No a priori calculation from QCD Lagrangian
\rightarrow Some hope in lattice QCD
\rightarrow Non-zero quark mass breaks chiral symmetry: problem in effective theories
\rightarrow In hindsight, Standard Model has no predictive power for masses.
\rightarrow Higg's mechanism gives mass for particles.

Particle Mixing

\rightarrow Addendum to yesterday's colloquium by Prof. Subong Kim
\rightarrow Particles in Standard Model

Quarks	$+\frac{2}{3}$	u	c	t
	$-\frac{1}{3}$	d	s	b
Leptons	-1	e	μ	τ
	0	ν_{e}	ν_{μ}	ν_{τ}

$\rightarrow(\mathrm{u}, \mathrm{c}, \mathrm{t})$ and (e, μ, τ) : model particles with good behavior
$\rightarrow(\mathrm{d}, \mathrm{s}, \mathrm{b})$ and $\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}\right):$ strange behavior from time to time
\rightarrow Weak interaction $\left(W^{+}, W^{-}\right)$couples within the same family (most of the time)

Particle Mixing

\rightarrow However, occasionally, coupling between different families
\rightarrow Linear combinations of ($\mathrm{d}, \mathrm{s}, \mathrm{b}$) or $\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}\right)$ give mass eigenstate which does not change with time
\rightarrow Mixing matrix (similar for both quarks and leptons)

$$
\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)
$$

\rightarrow Definite flavor state $\left(e . g . \nu_{e}\right)$ contains a mixture of different mass eigenstates
\rightarrow With time, composition of different mass eigenstates changes
\rightarrow When observed, flavor changes

