From Quark to Matter

presented by
Seonho Choi

Seoul National University

High Energy Physics
Sep 7, 2004

Appetizer - Units

\rightarrow Necessary units: length(L), mass(M), time(T)
\rightarrow Two fundamental constants

$$
\begin{aligned}
\hbar & \equiv \frac{h}{2 \pi}=1.055 \times 10^{-34} \mathrm{~J} \sec \quad\left(\mathrm{ML}^{2} / \mathrm{T}\right) \\
c & \equiv 2.998 \times 10^{8} \mathrm{~m} / \mathrm{sec} \quad(\mathrm{~L} / \mathrm{T})
\end{aligned}
$$

\rightarrow New system of units: $\hbar=c=1$
\rightarrow We need one more independent relation to define the system of units
\rightarrow Commen choice: energy $\left(\mathrm{ML}^{2} / \mathrm{T}^{2}\right)$
\rightarrow High energy physics: GeV ($1 \mathrm{GeV} \equiv 10^{9}$ electron volts)

Units (Cont.)

\rightarrow Coupling constant

$$
\alpha_{\mathrm{em}}=\frac{e^{2}}{4 \pi \hbar c} \approx \frac{1}{137} \quad(\text { dimensionless })
$$

\rightarrow Under new system of units
Conversion Factor $\quad \hbar=c=1$ Units Actual Dimension

$1 \mathrm{~kg}=5.61 \times 10^{26} \mathrm{GeV}$	GeV	$\frac{\mathrm{GeV}}{c^{2}}$
$1 \mathrm{~m}=5.07 \times 10^{15} \mathrm{GeV}^{-1}$	GeV^{-1}	$\frac{\hbar c}{\mathrm{GeV}}$
$1 \mathrm{sec}=1.52 \times 10^{24} \mathrm{GeV}^{-1}$	GeV^{-1}	$\frac{\hbar}{\mathrm{GeV}}$
$e=\sqrt{4 \pi \alpha}$	-	$(\hbar c)^{1 / 2}$

A Little Exercise

\rightarrow Mass of the proton

$$
1 \mathrm{GeV}=10^{3} \mathrm{MeV}=10^{6} \mathrm{KeV}=10^{9} \mathrm{eV}
$$

\rightarrow Size of the proton
$1 \mathrm{fm}=10^{-13} \mathrm{~cm} \approx 5 \mathrm{GeV}^{-1}$
\rightarrow Cross section of the proton
$1 \mathrm{fm}^{2}=10 \mathrm{mb}=10^{4} \mu \mathrm{~b}=10^{7} \mathrm{nb}=10^{10} \mathrm{pb}$
$\rightarrow(1 \mathrm{MeV})^{-1}=197 \mathrm{fm}($ or $\hbar c=1=197 \mathrm{MeV} \mathrm{fm})$
$\rightarrow(1 \mathrm{GeV})^{-2}=0.389 \mathrm{mb}\left(\right.$ or $\left.(\hbar c)^{2}=1=0.389 \mathrm{GeV} \mathrm{mb}\right)$

High Energy Physics

\rightarrow Current maximum energy of the electron beam at Jefferson National Lab: 6 GeV

$$
\begin{aligned}
6 \mathrm{GeV} & =10^{-9} \mathrm{~J} \\
& =10^{-16} \mathrm{kWh}
\end{aligned}
$$

\rightarrow Energy of 60 W light bulb for 1 second $=1.7 \times 10^{-5} \mathrm{kWh}$
\rightarrow Energy of an electron in a car running at $100 \mathrm{~km} / \mathrm{h} \approx 2 \times 10^{-21} \mathrm{GeV}$
\rightarrow Electrons at 6 GeV will need 0.66 seconds more to cover the distance of 1 light year.
\rightarrow Building cost of Jefferson Lab: $600 \mathrm{M} \$$ (약 7천억원)
\rightarrow Operating cost of Jefferson Lab: $72 \mathrm{M} \$$ (약 860억원)
$\rightarrow 1$ hour of electron beam time $\approx 10000 \$$ (1200만원)

A Brief History

1911 Rutherford experiment - existence of nucleus
1932 Discovery of the neutron
1936 Yukawa's prediction of meson
1947 Discovery of the pion (π)
50's-60's Discovery of numerous new particles

- mesons: $\pi, \rho, K, \eta, \omega, \phi$ etc.
- baryons: $\Delta, \Sigma, \Lambda, \Xi, \Omega$ etc.
\rightarrow All these new particles, are they fundamental?
\rightarrow More fundamental building blocks - Quarks

Naïve Quark Model

\rightarrow Start from two quarks $(u$ and $d)$ for $\mathrm{n}, \mathrm{p}, \pi$'s and Δ 's
\rightarrow Add one more strange quark for Λ, K 's and $\Sigma \mathrm{s}$
\rightarrow Three quarks make baryons
\rightarrow Pair of one quark and anti-quark makes mesons
\rightarrow Three different quarks (u, d, s)

- Are they completely different objects? (as sun and moon)
- Or something similar? (as electrons with two different spins)
- Search for symmetry

Symmetry

\rightarrow Symmetries in nature
Crystals rotational/translational symmetry
Snowflakes rotational symmetry by 60°
Human body mirror symmetric
Electrons spin up and spin down $(\mathrm{SU}(2))$
Particles with respect to spin in general
Proton-Neutron almost symmetric (isospin 1/2)
Pions again almost symmetric (isospin 1)
Quarks quite symmetric (SU(3))
People symmetric?

Review of Spin - SU(2)

\rightarrow Stern-Gerlach experiment - discovery of two different electrons
\rightarrow Almost identical (same mass, charge etc) except magnetic moments
\rightarrow Same particle with different spin
\rightarrow Transformation from one spin to another spin governed by $\mathrm{SU}(2)$ symmetry group
\rightarrow Famous commutators

$$
\left[J_{j}, J_{k}\right]=i \varepsilon_{j k l} J_{l}
$$

\rightarrow Step-up, step-down operators

$$
\begin{aligned}
J_{ \pm} & =J_{1} \pm i J_{2} \\
J_{+} \mid \text {spin down }> & =\mid \text { spin up }> \\
J_{-} \mid \text {spin up }> & =\mid \text { spin down }>
\end{aligned}
$$

Application to p-n system

\rightarrow the proton and the neutron are different
$\rightarrow m_{p}=0.93827203 \mathrm{GeV}, m_{n}=0.93956536 \mathrm{GeV}$
$\rightarrow \Delta m / \bar{m}=0.07 \% \approx 0$
\rightarrow Same algebra as electron spin

$$
\left[I_{j}, I_{k}\right]=i \varepsilon_{j k l} I_{l}
$$

\rightarrow Electric charge of the baryons

$$
\begin{array}{ll}
Q=I_{3}+\frac{Y}{2} & Y=\text { hyper-charge } \\
Y=B+S & B=\text { baryon number } \quad S=\text { strangeness }
\end{array}
$$

\rightarrow Experimentally, isospin is a very good symmetry

What about three quarks?

\rightarrow Quite different masses

$$
\begin{aligned}
m(u) & \approx 1.5 \sim 4 \mathrm{MeV} \\
m(d) & \approx 4 \sim 8 \mathrm{MeV} \\
m(s) & \approx 80 \sim 130 \mathrm{MeV}
\end{aligned}
$$

\rightarrow Reasonably good symmtery with u and d quarks ($\mathrm{SU}(2)$)
\rightarrow Approximate symmetry with all three quarks $(\mathrm{SU}(3))$
\rightarrow Separate consideration of the effects from $\mathrm{SU}(3)$ symmetry breaking

Exercise with u and d

\rightarrow Similar to combining two spin $1 / 2$ (hydrogen atom)
\rightarrow Add one quark and one anti-quark to form mesons

$$
\binom{u}{d} \quad \text { and } \quad\binom{-\bar{d}}{\bar{u}}
$$

\rightarrow iso-triplet

$$
\begin{aligned}
\mid I=1, I_{3}=1> & =-u \bar{d}\left(\pi^{+}\right) \\
\mid I=1, I_{3}=0> & =\sqrt{1 / 2}(u \bar{u}-d \bar{d}) \quad\left(\pi^{0}\right) \\
\mid I=1, I_{3}=-1> & =d \bar{u} \quad\left(\pi_{-}\right)
\end{aligned}
$$

\rightarrow iso-singlet

$$
\mid I=0, I_{3}=0>=\sqrt{1 / 2}(u \bar{u}+d \bar{d})
$$

To 3 quarks

\rightarrow mesons with u and d quarks using $\mathrm{SU}(2)$ terminology

$$
\mathbf{2} \otimes \overline{\mathbf{2}}=\mathbf{3} \oplus \mathbf{1}
$$

\rightarrow extension to 3 quarks to form baryons with $\mathrm{SU}(3)$
\rightarrow systematic method with Young diagrams

$$
\begin{aligned}
\mathbf{3} \otimes \mathbf{3} & =\mathbf{6} \oplus \overline{\mathbf{3}} \\
\mathbf{3} \otimes \mathbf{3} \otimes \mathbf{3} & =(\mathbf{6} \otimes \mathbf{3}) \oplus(\overline{\mathbf{3}} \otimes \mathbf{3}) \\
& =\mathbf{1 0} \oplus \mathbf{8} \oplus \mathbf{8} \oplus \mathbf{1}
\end{aligned}
$$

\rightarrow Quarks with spins: $\mathrm{SU}(3)$ and $\mathrm{SU}(2) \rightarrow \mathrm{SU}(6)$
\rightarrow Getting more complicated

$$
\mathbf{6} \otimes \mathbf{6} \otimes \mathbf{6}=\mathbf{5 6} \oplus \mathbf{7 0} \oplus \mathbf{7 0} \oplus \mathbf{2 0}
$$

Baryons

\rightarrow Completely symmetric state

$$
56=(\mathbf{1 0} \otimes 4) \oplus(8 \otimes \mathbf{2})
$$

\rightarrow Nice fit with lowest mass baryons

A little problem

\rightarrow Quark representation for Δ^{++}of $J_{3}=\frac{3}{2}$

$$
u \uparrow u \uparrow u \uparrow
$$

\rightarrow symmetric under the exchange of identical quarks
\rightarrow solution: additional quantum number, color $u, d, s \quad: \quad$ Flavor $\mathrm{SU}(3)$
$\uparrow, \downarrow: \quad \operatorname{Spin} \mathrm{SU}(2)$
Red, Green, Blue : Color $\mathrm{SU}(3)$
\rightarrow All hadrons are postulated to be colorless - color singlet
$(q q q)_{\text {color singlet }}=\sqrt{\frac{1}{6}}(R G B-R B G+B R G-B G R+G B R-G R B)$
\rightarrow Overall symmetric for space \times spin \times flavor

Magnetic Moments

Quark representation of the proton

$$
\begin{aligned}
\mid p \uparrow>= & \sqrt{\frac{1}{18}}[u u d(\uparrow \downarrow \uparrow+\downarrow \uparrow \uparrow-2 \uparrow \uparrow \downarrow) \\
& +u d u(\uparrow \uparrow \downarrow+\downarrow \uparrow \uparrow-2 \uparrow \downarrow \uparrow) \\
& +d u u(\uparrow \downarrow \uparrow+\uparrow \uparrow \downarrow-2 \downarrow \uparrow \uparrow)] \\
= & \sqrt{\frac{1}{18}}[u \uparrow u \downarrow d \uparrow+u \downarrow u \uparrow d \uparrow-2 u \uparrow u \uparrow d \downarrow \\
& + \text { permutations }]
\end{aligned}
$$

Magnetic moment of the quarks

$$
\mu_{i}=Q_{i}\left(\frac{e}{2 m_{i}}\right)
$$

Magnetic Moments (Cont.)

Magnetic moment of the proton

$$
\begin{aligned}
\mu_{p} & =\sum_{i=1}^{3}<p \uparrow\left|\mu_{i}\left(\sigma_{3}\right)_{i}\right| p \uparrow> \\
& =\frac{1}{3}\left(4 \mu_{u}-\mu_{d}\right)
\end{aligned}
$$

Similarly for the neutron

$$
\mu_{n}=\frac{1}{3}\left(4 \mu_{d}-\mu_{u}\right)
$$

If $m_{u}=m_{d}, \mu_{u}=-2 \mu_{d}$ and

$$
\frac{\mu_{n}}{\mu_{p}}=-\frac{2}{3}
$$

Experiment shows

$$
\frac{\mu_{n}}{\mu_{p}}=-0.68497945 \pm 0.00000058
$$

