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While many scale-free (SF) networks have been introduced recently for complex systems, most of
them are binary random graphs. Here we introduce a weighted SF network in associated with the cross-
correlations in stock price changes among the S&P 500 companies, where all vertices (companies) are
fully connected and each edge has nonuniform weight given by the covariance between the two returns
connected, normalized by their volatilities. Influence-strength (IS) is defined as the sum of the weights on
the edges incident upon a given vertex. Then the IS distribution in its absolute magnitude jqj exhibits a
SF behavior, PIðjqjÞ � jqj�� with the exponent � � 1:8ð1Þ.
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Recently complex systems such as biological, economic,
physical, and social systems have received considerable
attentions as an interdisciplinary subject.1) Such systems
consist of many constituents such as individuals, companies,
substrates, spins, etc., exhibiting cooperative and adaptive
phenomena through diverse interactions between them. In
particular, in economic systems, adaptive behaviors of
individuals, companies, or nations, play a crucial role in
forming macroscopic patterns such as commodity prices,
stock prices, exchange rates, etc., which are formed mostly
in a self-organized way. Recently there have been consider-
able efforts to understand such complex systems in terms of
random graph, consisting of vertices and edges, where
vertices (edges) represent constituents (their interactions).2,3)

This approach was initiated by Erdös and Rényi (ER).4) In
the ER model, the number of vertices is fixed, while edges
connecting one vertex to another occur randomly with
certain probability. The ER model is however too random to
describe complex systems in real world. An interesting
feature emerging in such complex systems is the scale-free
(SF) behavior in the degree distribution, PDðkÞ � k�� , where
the degree k is the number of edges incident upon a given
vertex. Barabási and Albert (BA)5) introduced an evolving
model illustrating the SF behavior. In the BA model, the
number of vertices increases linearly with time, and a newly
introduced vertex is connected to m already existing vertices,
following the so-called preferential attachment (PA) rule
that the vertices with more edges are preferentially selected
for the connection to the new vertex with the probability
linearly proportional to the degree of that vertex. Then it is
known that the degree distribution follows PðkÞ � k�3 for
the BA model.

The ER and BA models are binary random graphs where
each edge weighs either 1 or 0 depending on whether it is
present or not, respectively. One may introduce a weighted
random graph, where weight on each edge is not uniform,
but distributed in a given interval. For further studies, the
random graph for the former (later) case is called binary
random graph (BRG) [weighted random graph (WRG)].
While many WRGs can be found in various real-world

networks such as neural networks, cardiovascular networks,
and respiratory networks in biological systems, acquaintance
networks in social systems, etc., they are less studied,
compared with BRG.2,3) Moreover, it has not been
investigated yet if such WRGs exhibit the SF behavior. In
this paper, we will introduce a WRG exhibiting the SF
behavior in association with the cross-correlations in stock
price changes among the S&P 500 companies.

Recently, Yook, Jeong and Barabási (YJB) introduced an
evolving WRG.6) In that model, a vertex i is newly
introduced at each time step, connecting to m vertices
existing already according to the so-called preferential
attachment rule. The edge connecting from the vertex i to
an existing vertex j is assigned a nonuniform weight wi; j,
depending on the degree of the vertex j. The weight at each
vertex is defined as the sum of the weights on the edges
incident upon that vertex, which follows a power-law in its
distribution, PYJBðqÞ � q��0 , where q means the weight at a
given vertex. The exponent �0 is different from the degree
exponent �, and turns out to depend on the mean degree m

strongly. While the YJB model is meaningful as the first step
towards relating WRGs to SF networks, it still remains as a
theoretical model. The WRG exhibiting SF behavior has not
been discovered yet. In this paper, we introduce a WRG
showing the SF behavior in association with the cross-
correlations in stock price changes. The WRG we will
introduce is fully connected, while the YJB graph is sparsely
connected.

Recently, many attentions and studies have been focused
and performed on the fluctuations and the correlations in
stock price changes between different companies in physics
communities by applying physics concepts and methods.7,8)

For the problem of the correlations in stock price changes,
each vertex (edge) in the random graph represents a
company (the cross-correlation in stock price changes
between the companies connected via that edge). Stock
price changes of individual companies are influenced by
others. Thus, one of the most important quantities in
understanding the cooperative behavior in stock market is
the cross-correlation coefficient between different compa-
nies. Since the stock prices changes depend on various
economic environments, it is extremely hard to construct a�E-mail: imkim@korea.ac.kr
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dynamic equation, and predict the evolution of the stock
price change in the future. Recently, there have been many
efforts to understand the correlations in stock price changes
between different companies using random matrix theories.
In,9,10) it was found that large eigenvalues for the cross-
correlation matrix are located far away from the bulk part
obeying the random matrix theory, reflecting that there exist
cooperative behaviors of the entire market.

Let YiðtÞ be the stock-price of a company i (i ¼ 1; 
 
 
 ;N)
at time t. Then the return of the stock-price after a time
interval 	t is defined as

SiðtÞ ¼ ln Yiðt þ	tÞ � ln YiðtÞ; ð1Þ

meaning the geometrical change of YiðtÞ during the interval
	t. We take 	t as one day in the following analysis
throughout this paper. The cross-correlations between
individual stocks are considered in terms of the matrix C,
whose elements are given by

ci; j �
hSiSji � hSiihSjiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhS2i i � hSii2ÞðhS2j i � hSji2Þ
q ; ð2Þ

where the brackets mean a temporal average over the period
we studied. Then ci; j can vary between ½�1; 1�. The case of
ci; j ¼ 1 (�1) means that two companies i and j are
completely correlated (anti-correlated), while ci; j ¼ 0 means
that they are uncorrelated. Since the matrix C is symmetric
and real, all eigenvalues are real, and the largest eigenvalue
is not degenerate. It was found that the eigenvector
corresponding to the largest eigenvalue is strongly localized
at a few companies which strongly influence other
companies in the stock price changes.9,10)

In this paper, we consider the cross-correlations in stock-
price changes between the S&P 500 companies during 5-
year period 1993–1997 from the viewpoint of the WRG. The
N ¼ 500 companies correspond to 500 vertices, which are
fully connected to each other through NðN � 1Þ=2 edges.
Each edge is assigned weight, wi; j (i; j ¼ 1; 
 
 
 ;N), slightly
modified from the cross-correlation coefficient ci; j. Before
defining wi; j specifically, we first recall some properties
exhibited by ci; j. It is known that the distribution of the
coefficients fci; jg is of a bell-shape, and the mean value of
the distribution depends on time, while the standard
deviation remains as almost constant.11) The time-dependent
behavior of the mean value might be caused by external
economic environments such as bank interest, inflation
index, exchange rate, etc., which fluctuates from time to
time. Thus we introduce a quantity,

GiðtÞ ¼ SiðtÞ �
1

N

X
i

SiðtÞ; ð3Þ

where GiðtÞ means the relative return of a company i to its
mean value over the entire 500 companies at time t. The
cross-correlation coefficients are redefined in terms of Gi as

wi; j �
hGiGji � hGiihGjiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhG2
i i � hGii2ÞðhG2

j i � hGji2Þ
q : ð4Þ

The cross-correlation coefficient wi; j is assigned to the edge
connecting between vertices i and j. Note that wi; j is slightly
different from other similar quantities defined in ref. 12 In

order to check if the distribution PðwÞ is time-independent,
we take temporal average in eq. (4) over each year from
1993 to 1997. In Fig. 1, we plot the distributions of fwi; jg
obtained for each year. The data for different years are
indeed collapsed, confirming the time-independent behavior.
Therefore the cross-correlation coefficients fwi; jg are generic
for the cross-correlations among the S&P 500 companies.
We find that the distribution function PðwÞ follows a power-
law PþðwÞ � w�1��þ

with �þ � 1:7 for w > 0, while P�ðwÞ
for w < 0 decays much faster than the power-law decay (the
inset of Fig. 1). Those values are comparative to the
previous measurements, �þ � 1:78 for w > 0 and �� �
2:18 for w < 0 for the distribution of the covariance of stock
price changes defined slightly differently.12) Since �þ is less
than 2, the coefficients fwi; jg follow the Lévy distribution for
w > 0.13)

We introduce a physical quantity to measure how strongly
a given vertex influences others, called the influence-
strength (IS). Such a quantity is defined as the sum of the
weights on the edges incident upon a given vertex i,

qi ¼
X
j 6¼i

wi; j; ð5Þ

where j denotes the vertices connected to the vertex i. fwi; jg
are obtained numerically by temporal averaging over the 5
years in eq. (4). Then the IS at a certain vertex i, qi, is
interpreted as the net influence for the company i to affect
other companies in stock price changes. Since the weight
wi; j is distributed in the range ½�1; 1�, the IS at a certain
vertex can be negative. Thus, we deal with the absolute
magnitude of the IS for each vertex. In Fig. 2, we plot the IS
distribution PIðjqjÞ in the absolute magnitude as a function
of jqj, which turns out to follow a power-law,
PIðjqjÞ � jqj��. The exponent � is estimated to be
� � 1:8ð1Þ. Although the power-law regime is rather short
due to the small size of the S&P 500 data, we expect it to be
extended for larger system size. Thus the WRG for the cross-
correlations in stock price changes exhibits the SF behavior.
The fat-tail behavior in the IS distribution implies that there
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Fig. 1. Plot of the distribution of the cross-correlation coefficients fwi; jg.
The data are obtained by temporal averaging over each year from 1993 to

1997. Left (Right) inset: Plot of the distribution PðwÞ for w < 0 (w > 0)

in a cummulative way versus w in double logarithmic scales. The solid

line in the right inset is a guideline with slope �1:7.
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exist a few companies influencing strongly other companies
in stock price dynamics. This result is reminiscent of that the
eigenvector of the largest eigenvalue for the matrix, eq. (2) is
strongly localized at a few companies. On the other hand, it
is known that as the degree exponent is smaller in SF
networks, the connectivity of a vertex with large degree
becomes higher, so that the network tends to be more
centralized to a few vertices. Since the IS exponent � � 1:8
is smaller than the degree exponent values for SF networks
in real world, mostly in the range 2 < � < 3, the company
with the largest IS among the S&P 500 companies plays a
much more important role in affecting stock price changes
compared with the magnitude of the role of the hub in the
Internet14) and the World-Wide Web15) in transporting
informations. We think that this result reflects that economic
systems are more correlated and adaptive themselves to
achieve high profits, so that each constituent is likely to
behave following the vertex with the highest IS. In contrast,
we can expect that a simple drop in the stock price occurring
in one of the most influential companies can lead to a crash
in the entire stock market, which is reminiscent of that SF
networks are vulnerable to the attacks.16)

We investigate the spectral property of the matrix W with
the elements fwi; jg. The density 	ð
Þ of the eigenvalues of
the matrix W is shown in Fig. 3, which behaves similarly to
that for the matrix C.9,10) However, it is found that the gap
between the first and second largest eigenvalues for the
matrix W is smaller by the factor 10 than the one for the
matrix C. Thus we think that the huge gap observed in the
spectrum for the matrix C is caused by some external effects
rather than the generic nature of the cross-correlations
among the 500 companies. Next, we investigate the
components fvj;1g of the eigenvector corresponding to the
largest eigenvalue for the matrix W , where the vertices are
ordered following the absolute magnitude of influence-
strength. According to the matrix theory, the square of each
component v2j;1 means the relative contribution of the vertex j

to the largest eigenvalue. As shown in the plot of v2j;1 versus
the index j (Fig. 4), fv2j;1g are strongly localized at the
vertices with strong influence-strength (with small index j).

Moreover, it is found that v2j;1 is scaled as �j�1:8ð2Þ for large j

(the inset of Fig. 4). The exponent value coincides with the
influence-strength exponent �. Note that the corresponding
eigencomponents behave v2j;1 � j�1=ð��1Þ for SF networks
where the index j is ordered according to the degree.17,18)

Therefore, the economic system is much localized at a few
companies.

Finally, it would be interesting to compare our result with
the tree structure constructed by the minimum spanning tree
algorithm by Vandewalle et al.19) They measured the degree
distribution for this BRG, following a power-law,
PDðkÞ � k�� , with � � 2:2, which is obviously different
from our result obtained from the influence-strength,
� � 1:8ð1Þ.

In conclusions, we have considered the cross-correlations
in stock price changes among the S&P 500 companies by
introducing a weighted random graph (WRG). The vertices
of the WRG representing the 500 companies are fully
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Fig. 2. Plot of the influence-strength distribution PI ðjqjÞ versus the
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connected via weighted edges. The edge between vertices i

and j has a weight given by the correlation coefficient wi; j,
defined as the normalized covariance of modified returns of
the two companies i and j. Here the modified return means
the return substracted by the mean over all companies. This
modification yields the effect of excluding the overall
behavior of the entire stock prices fluctuating from time to
time. The distribution PðwÞ of the correlation coefficients
obtained in this way turns out to be time-independent, and
the coefficients themselves describe generic correlations
between different companies excluding the effect of external
environments. It is found that the distribution PðwÞ follows
the Lévy distribition, i.e., PðwÞ � 1=w1þ� with the index
� � 1:7 for large w > 0. Next, we defined the influence-
strength at each vertex as the sum of the weights assigned to
the edges incident upon that vertex. It is found that the
influence-strength distribution follows a power-law
PIðjqjÞ � jqj�� with � � 1:8ð1Þ, where q means influence-
strength. The exponent � is close to the Lévy index �. The
fact that the exponent � is smaller than 2 implies that the
stock price changes of the 500 companies are much strongly
correlated, compared with the Internet topology, or the
world-wide web, reflecting that cooperative and adaptive
phenomena appear much dominantly in economic systems.
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