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We study the so-called van Hemmen spin glass (vHSG) model on scale-free (SF) networks without
replicas. The vHSG model contains two types of coupling terms: a ferromagnetic coupling term
with strength J0 and a quenched random exchange coupling term with strength J . The ratio J0/J
is the relative strength between the ferromagnetic (F) and the spin glass (SG) interactions. The
degree exponent λ and mean degree K of SF networks, as well as the temperature T , are control
parameters. We construct phase diagrams based on the analytic solutions of phase boundaries
among the F, SG, mixed (M), and paramagnetic (P) phases. When λ = ∞, the obtained phase
diagram is the same as that of the original vHSG model, consisting of all those phases. When λ
is decreased but greater than three, the phase boundaries are deformed but all the phases exist.
However, when 2 < λ < 3, the P phase disappears but the SG phase exists only at J0 = 0. The
M and F phases prevail. One of the distinct features of the vHSG model is the occurrence of
a first-order transition curve and critical endpoint (CE) at which a second-order transition curve
terminates in the first-order transition curve. At the CE, a hybrid phase transition occurs in which
properties of the second-order and first-order transitions emerge simultaneously. This feature does
not occur in the SG model with replicas. The exponent of the SG order parameter is different from
that obtained from the replica method. We anticipate that the phase diagram and the features
of the phase transitions we obtained here would be helpful to understand emerging patterns from
socio-complex systems.

PACS numbers: 89.75.Hc, 89.65.s, 89.75.Fb, 75.10.Nr

I. INTRODUCTION

A spin glass (SG) model has served as a paradigmatic
model to understand the physical properties of compos-
ite materials with frustrating interactions for a long time
[1]. Recently, however, the SG model has resurged in
the area of complex networks, because it can be used
for understanding emerging patterns from social conflicts
between people. Social relations among people are rep-
resented using networks, in which nodes and links in the
networks represent individuals and their interactions, re-
spectively. Social networks are often scale-free (SF) net-
works of which the distribution of degrees follows a power
law, Pd(k) ∼ k−λ. Here, the degree of a certain node
i is the number of its neighbors, ki. One may naively
think that the solution of the SG model for SF networks
reduces to the mean-field solution with infinite-range in-
teractions; however, it is revealed [2–4] that various prop-
erties such as phase diagrams and critical exponents de-
pend on the degree exponent λ. Accordingly, the critical
behavior of SG models on SF networks is physically much
richer than the mean-field solutions.
In SG models, to obtain the free energy, one needs

take an average over quenched disorder, such as coupling
strengths. To facilitate the calculations of such an ensem-
ble average, the replica method is prototypically used as
−βF = 〈lnZ〉ξ = limn→0[〈Z

n〉ξ − 1]/n, where β = 1/T ,
F , and Z represent the free energy and the partition func-
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tion, respectively, and ξ represents the coupling strength.
The n-th power of the partition function 〈Zn〉ξ indicates
the partition functions of n replicas. Even though n repli-
cas have to be totally independent of each other, a so-
called replica-symmetry breaking phase can exist, which
is not a generic feature of the SG model but an artifact
of the replica method. To avoid this undesirable prod-
uct, van Hemmen [5] introduced a new method using
a quenched random exchange coupling strength, which
could provide an analytic solution without replicas. The
phase diagram he obtained for the Ising spin SG model
with long-range interactions was different from that ob-
tained from the replica method. On the other hand, the
SG model on SF networks has been investigated analyti-
cally using the replica method [3, 4]. Thus, as it is com-
plementary to our previous work, in this paper, we ana-
lytically investigate the van Hemmen SG (vHSG) model
on SF networks.

The main results of this paper are as follows: We find
that the four different phases, paramagnetic (P), ferro-
magnetic (F), mixed phase (M), and SG appear in the
phase diagram. Even though this feature was also ob-
tained using the replica method [3], the phase diagrams
obtained here using the van Hemmen’s method differ
from each other. In this method, the M phase can appear
in the lower temperature region than the temperature re-
gion of the SG phase. For finite λ > 3, the phase bound-
aries are deformed but all the phases exist. However, for
2 < λ < 3, the P phase disappears and the SG phase
exists only at J0 = 0. One of the distinct features of the
vHSG model is the occurrence of a first-order transition
curve and a critical endpoint (CE) at which the second-
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order transition curve terminates in the first-order transi-
tion curve. At the CE, a hybrid phase transition occurs
in which properties of the second-order and first-order
transitions emerge simultaneously. This feature does not
occur in the SG model with replicas. The exponent of
the SG order parameter is different from that obtained
from the replica method.
The paper is organized as follows: in Section II, the

static model for generating SF networks is introduced.
In Section III, we obtain the free energy of the vHSG
model on the static SF networks. In Section IV, we an-
alytically obtain phase boundaries among the P, F, M
and SG phases for various conditions of temperature T ,
ferromagnetic coupling strength J0 in units of J , degree
exponent λ, and mean degree K. In Section V, we gen-
erate several phase diagrams under various conditions of
T , J0, λ and K. These phase diagrams represent peculiar
characteristics of the vHSG model showing the CE and
hybrid phase transition. In Section VI, we show that the
exponent for the SG order parameter is different from
that obtained from the replica method. In Section VII,
we conclude our investigations about the vHSG model on
the static SF networks.

II. THE STATIC MODEL FOR SF NETWORKS

We use the static model to generate SF networks,
which enable us to obtain various physical properties of
the vHSG model analytically. The static model is de-
fined as follows: N nodes are present in a system from
the beginning. Each node i (i = 1, 2, . . . , N) is assigned
a weight pi. A pair of nodes (i, j) is chosen with prob-
abilities pi and pj , respectively, and they are connected
with a link, unless the pair is already connected. This
process is repeated NK/2 times. Then, the resulting
network gets mean degree K. In such weighted ran-
dom networks, the probability that a given pair of nodes
(i, j) (i 6= j) is connected, denoted as fij , is given as
fij = 1 − exp(−NKpipj). Depending on a given func-
tion pi, various types of network structures are generated.
First, when pi = 1/N is given, independent of the index
i, the resulting network is reduced to a random network
introduced by an Erdős-Rényi (ER) graph [6, 7]. The
probability that nodes i and j are connected during the
NK/2 trials is given by fij ≈ K/N . Second, when pi is
given as

pi =
i−µ

ζN (µ)
(1)

where µ is a control parameter in the range [0, 1),

ζN (µ) ≡
∑N

j=1 j
−µ ≈ N1−µ/(1− µ), and an SF network

is generated following a power-law degree distribution
Pd(k) ∼ k−λ with λ = 1 + 1/µ [3, 4, 8, 9]. Next, when
K = N , a fully connected network is generated, which
contains infinite-range interactions. We remark that
the previous study by van Hemmen was limited to the

extreme case K = N [5].

III. THE VHSG MODEL WITHOUT REPLICAS

The Hamiltonian of the vHSG model on a graph G is
given as

H = −
∑

(i,j)∈G

JijSiSj (Si = ±1), (2)

where Jij is nonzero when the nodes i and j are connected
in G. The graph is generated with the weight set {pi} in
Eq. (1). The probability of G in the quenched (i.e., we as-
sume that once a connection between two nodes is fixed,
it will not be changed forever) random network ensemble
is defined as

PK(G) =
∏

(i,j)∈G

fij
∏

(i,j)/∈G

(1 − fij) (3)

with fij = 1 − exp(−NKpipj), pi being given in Eq.(1).
Then, the ensemble average over graph configurations for
a given physical quantity A is taken as

〈A〉K =
∑

G

PK(G)A(G), (4)

where 〈· · · 〉K denotes the average over different graph
configurations.
In the SG problem, the coupling strengths {Jij} are

also quenched random variables. The quenched random
exchange interaction variable Jij is given as

Jij =
1

2

[

J(ξiηj + ξjηi) + J0
]

, (5)

where ξi and ηi are independent and randomly dis-
tributed variables with even distributions around zero
and finite variance, and J and J0 are positive constants.
In our model, Jij can be positive or negative, thus such
ferromagnetic and antiferromagnetic bonds induce frus-
tration, an ingredient of a SG model. After taking an
ensemble average over the randomness of {ξi, ηi}, a given
physical quantity A is obtained as

〈A〉ξ,η =

∫

∏

i

dξidηiP (ξi)P (ηi)A({ξi}, {ηi}), (6)

where 〈· · · 〉ξ,η is an average over the quenched disorder
of the ξi and ηi. Thus, the free energy F is evaluated
as −βF = 〈〈lnZ〉ξ,η〉K , where Z (≡ Tr exp{−βH}) is
the partition function for a given distribution of {ξi} and
{ηi} on a particular graph G with inverse temperature
β = 1/T .
The analytic solutions of the original version of the

vHSG model could be derived without using the replica
method [5]. Although we consider not only the aver-
age over the quenched disorder of ξi and ηi but also the
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average over different graph configurations, we find that
〈〈lnZ〉ξ,η〉K can be obtained on SF networks without the
replica method. For this, we use the Taylor expansion of

the natural logarithmic function:

lnZ = (Z − 1)−
1

2
(Z − 1)2 +

1

3
(Z − 1)3 − · · · . (7)

Let us first calculate 〈〈Z − 1〉ξ,η〉K as follows:

〈〈Z − 1〉ξ,η〉K =
〈〈

Tr
{Si=±1}

exp
(

β
∑

(i,j)∈G

JijSiSj

)

− 1
〉

ξ,η

〉

K

= Tr
{Si=±1}

exp
[

∑

(i,j)

ln
{

1 + fij

(〈

exp
(

βJijSiSj

)

〉

ξ,η
− 1

)}]

− 1

= Tr
{Si=±1}

exp
[

∑

(i,j)

fij

〈

βJijSiSj +
1

2!
(βJijSiSj)

2 +
1

3!
(βJijSiSj)

3 + · · ·
〉

ξ,η

]

− 1. (8)

Inside [· · · ] of the last formula of Eq. (8), the second term
containing (SiSj)

2 is a function which does not depend
on Si so that it can be neglected. The third term inside
[· · · ] has both 1/3! and (Jij)

3 ∼ (1/2)3 so it becomes
very small compared with the first term. Furthermore,
(Z − 1)2 and other terms in Eq. (7) can also be ne-

glected because they contain a higher order of fij(< 1).
Therefore, to obtain 〈〈lnZ〉ξ,η〉K , it may be sufficient to
consider only the first term of Eq. (8) within the leading
order of fij .
Using the definition of Jij , the first term inside [· · · ] of

Eq. (8) becomes

∑

(i,j)

fijβJijSiSj =
∑

(i,j)

1

2
NKβ

[

J(ξiηj + ξjηi) + J0
]

(piSi)(pjSj)

=
1

2
NKβJ

[(

∑

i

pi(ξi + ηi)Si

)2

−
(

∑

i

piξiSi

)2

−
(

∑

i

piηiSi

)2]

+
1

2
NKβJ0

(

∑

i

piSi

)2

+ C, (9)

where C is independent of Si.

Now
(
∑

i pi(ξi + ηi)Si

)2
,
(
∑

i piξiSi

)2
,
(
∑

i piηiSi

)2
, and

(
∑

i piSi

)2
can be simplified using the Hubbard-

Stratonovich transformation,

exp
{1

2
λa2

}

=

√

λ

2π

∫ ∞

−∞

dx exp
{

−
1

2
λx2 + λax

}

. (10)

Therefore, we obtain

〈〈lnZ〉ξ,η〉K =

(

NKβJ

2π

)3/2(
NKβJ0

2π

)1/2 ∫ ∞

−∞

dxdydzdw exp
[

−
1

2
NKβJ(x2 − y2 − z2)

]

· exp
[

−
1

2
NKβJ0w

2
]

× Tr
{Si=±1}

〈

exp
[

NKβJ
∑

i

{

xpi(ξi + ηi)Si − ypiξiSi − zpiηiSi

}]

exp
[

NKβJ0w
(

∑

i

piSi

)

]〉

ξ,η
− 1

=

(

NKβJ

2π

)3/2(
NKβJ0

2π

)1/2 ∫ ∞

−∞

dx dy dz dw
〈

exp[−NG(x, y, z, w)]
〉

ξ,η
− 1 (11)

where

G(x, y, z, w) ≡
1

2
KβJ(x2 − y2 − z2) +

1

2
KβJ0w

2 −
1

N

∑

i

ln Tr
{Si=±1}

exp(βH̃i) (12)

with the effective Hamiltonian

H̃i ≡ NKJ(x− y)piξiSi +NKJ(x− z)piηiSi +NKJ0wpiSi. (13)

In the thermodynamic limit (N → ∞), the free energy f per node can be obtained using the steepest descent
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method as

βf = min

〈

1

2
KβJ

{

(q1 + q2)
2 − q21 − q22

}

+
1

2
KβJ0m

2 −
1

N

∑

i

ln Tr
{Si=±1}

exp(βH̃′
i)

〉

ξ,η

(14)

with

H̃′
i ≡ NKJpi(q2ξi + q1ηi)Si +NKJ0mpiSi. (15)

Here, three order parameters are defined as follows:

q1 ≡
∑

i

pi〈ξiSi〉i

q2 ≡
∑

i

pi〈ηiSi〉i (16)

m ≡
∑

i

pi〈Si〉i

where q1(2) and m represent spin glass order parame-
ters and magnetization, respectively, and 〈· · · 〉 represents

〈A〉i ≡ Tr [A eβH̃
′

i ]/Tr eβH̃
′

i.

The free energy f per node becomes minimum when
we take q1 = q2 = q as

βf = KβJq2 +
1

2
KβJ0m

2 −
1

N

∑

i

〈

ln
(

2 coshΘi

)

〉

ξ,η
(17)

with Θi ≡ NKβpi
[

J(ξi + ηi)q + J0m
]

.

We determine m and q by the condition that f re-
sumes the stable extrema and obtain the self-consistency
equations of m and q (i.e., ∂f/∂m = ∂f/∂q = 0):

m =
〈

∑

i

pi tanhΘi

〉

ξ,η
(18)

and

q =
〈

∑

i

pi

(ξi + ηi
2

)

tanhΘi

〉

ξ,η
. (19)

Now we restrict ourselves to the case of discrete (or
bimodal) distribution of ξ and η:

P (ξi) =
1

2
δ(ξi − 1) +

1

2
δ(ξi + 1) (20)

P (ηi) =
1

2
δ(ηi − 1) +

1

2
δ(ηi + 1). (21)

Then, m, q, and f are given by

m =
〈

∑

i

pi tanhΘi

〉

ξ,η
(22)

=

∫

∏

i

dξidηiP (ξi)P (ηi)
∑

i

pi tanhΘi

=
∑

i

pi
4

[

tanh(Θi++) + 2 tanh(Θi+−) + tanh(Θi−−)
]

,

q =
〈

∑

i

pi

(ξi + ηi
2

)

tanhΘi

〉

ξ,η
(23)

=

∫

∏

i

dξidηiP (ξi)P (ηi)
∑

i

pi

(ξi + ηi
2

)

tanhΘi

=
∑

i

pi
4

[

tanh(Θi++)− tanh(Θi−−)
]

,

and

f = KJq2 +
1

2
KJ0m

2 −
T

4N

∑

i

[

ln
(

2 coshΘi++

)

+2 ln
(

2 coshΘi+−

)

+ ln
(

2 coshΘi−−

)

]

, (24)

where

Θi++ = NKβpi(2Jq + J0m)

Θi+− = NKβpiJ0m (25)

Θi−− = NKβpi(−2Jq + J0m).

Therefore, m has a value in the range [0,1], whereas q
has a value in [0,1/2]. In particular, at T = 0, {m, q} has
only two solutions: {1, 0} and {1/2, 1/2}.

IV. THE PHASE BOUNDARIES

We define the four phases for the bimodal distributions
of ξ and η in Eqs. (20) and (21) as follows: the P phase
with m = q = 0; the F phase with m > 0 but q =
0; the SG phase with m = 0 but q > 0; and the M
phase with m > 0 and q > 0. We obtain several phase
diagrams in the T/J−λ plane, in the T/J−K plane, and
in the T/J − J0/J plane. The phase boundary can be
obtained from the self-consistency equations for m and q
in Eqs. (22) and (23).

A. At the edge of q = 0

The P-SG and F-M phase boundaries can be obtained
by taking the derivative of Eq. (22) and by taking the
limit q → 0, the edges of the SG and the M phases as
follows:

T/J = KN

N
∑

i=1

p2i sech2
(

NKpimJ0/T
)

. (26)
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1. The P-SG phase boundary

The P-SG phase boundary is determined by Eq. (26)
after taking the limit m → 0, which determines the SG
transition temperature Tg,

Tg/J = KN

N
∑

i=1

p2i ≡ K/Kp, (27)

where

1

Kp
= N

N
∑

i=1

p2i
N→∞
−→

(λ− 2)2

(λ− 1)(λ− 3)
(28)

becomes infinite as λ → 3.0+ and one as λ → ∞ [3]. The
SG temperature Tg/J is linear with respect to K with
a slope 1/Kp. The slope increases from one to infinite
as λ is decreased from infinity to 3.0+. Therefore, for
2 < λ ≤ 3, there exists only the SG phase for K > 0.

2. The F-M phase boundary

To obtain the F-M boundary, we first consider the T =
0 case. In this case, the free energy is obtained as

fT=0 = K(Jq2 +
1

2
J0m

2). (29)

As we previously obtained at T = 0, there exist two solu-
tions {m, q} = {1, 0} and {1/2, 1/2}, which represent the
states of the F and M phases, respectively. To determine
which state is more stable between the two solutions, we
compare the free energy of each of the two states: i)
fT=0|M = fT=0(m = 1/2, q = 1/2) = K(J/4+J0/8) and
ii) fT=0|F = fT=0(m = 1, q = 0) = KJ0/2. Thus, when
J0/J = 2/3, the two free energies become the same in
their magnitudes, and thus J0/J = 2/3 becomes the M-
F phase boundary at T = 0. When fT=0|M < fT=0|FM ,
i.e., J0/J < 2/3, the M phase is stable at T = 0, and vice
versa. This solution is consistent with the previous one
obtained in Ref. [5] on fully connected networks. Actu-
ally the point (J0/J, T/J) = (2/3, 0) becomes a critical
point (CP) at T = 0, which is invariant regardless of λ,
as will be discussed later.
Next, let us consider the F-M boundary at finite tem-

perature. We rewrite Eq. (26) using Eq. (1) as follows:

T/J = K(1− µ)2N−1
N
∑

i=1

(N/i)2µ sech2
(

(N/i)µK(1− µ)mJ0/T
)

. (30)

For λ → ∞ (ER case), i.e., µ = 0,

T/J = K sech2
(

KmJ0/T
)

. (31)

For finite λ > 2, i.e., 0 < µ < 1, under the condition
J0/J < 1.0, T/J becomes zero in the thermodynamic
limit (N → ∞). For λ > 3, i.e., 0 ≤ µ < 1/2, with
J0/J = 1.0, the right-hand side of Eq. (30) depends on
∑N

i=1 i
−2µ so that T/J becomes infinite in the limit N →

∞. For 2 < λ ≤ 3, i.e., 1/2 ≤ µ < 1, with J0/J = 1.0,
the right-hand side of Eq. (30) depends on N2µ−1 so that
T/J becomes infinite in the limit N → ∞.

B. At the edge of m = 0

The P-F and SG-M phase boundaries can be deter-
mined by taking derivative of Eq. (23) and by taking the
limit m → 0, the edges of the F and the M phases, as
follows:

T/J =
1

2
(J0/J)KN

N
∑

i=1

p2i

[

1 + sech2
(

2NKpiqJ/T
)

]

.(32)

1. The P-F phase boundary

The P-F phase boundary, which is located at J0/J ≥
1.0, is determined by setting q = 0 in Eq. (32). Since
sech(0) = 1, the transition temperature Tc is obtained
for J0/J ≥ 1.0 as

Tc/J = (J0/J)KN

N
∑

i=1

p2i = (J0/J)(K/Kp). (33)

When λ approaches 3.0+, the slope (1/Kp) of the P-F
boundary becomes infinite in the T/J − J0/J plane.

2. The SG-M phase boundary

Since sech(∞) = 0, the SG-M boundary in the limit
N → ∞ simply becomes as follows:

T/J =
1

2
(J0/J)KN

N
∑

i=1

p2i =
1

2
(J0/J)(K/Kp), (34)

which is a half of Tc, the transition temperature between
P and F phases.
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C. At the edge of m = 0 and q = 0

The first-order SG-F phase boundary in the T/J−J0/J
plane is determined as the intersection of the two phase

boundaries given by Eqs. (26) and (32):

J0/J =
2
∑N

i=1 i
−2µ sech2

(

(N/i)µK(1− µ)mJ0/T
)

∑N
i=1 i

−2µ
[

1 + sech2
(

2(N/i)µK(1− µ)qJ/T
)

] . (35)

For λ → ∞ (ER case), i.e., µ = 0,

J0/J =
2 sech2

(

KmJ0/T
)

1 + sech2
(

2KqJ/T
) . (36)

For finite λ > 2, i.e., 0 < µ < 1, J0/J = 1.0 in the limit
N → ∞.

V. PHASE DIAGRAM

Fig. 1(a) and (b) show the phase diagram in the
T/J−K plane at J0 = 0 for the case λ > 3 and 2 < λ ≤ 3,
respectively. The P-SG phase boundary can be deter-
mined by Eq.(27). For the ER case (λ → ∞), pi = 1/N ,
i.e., Kp = 1; thus, the slope of the P-SG boundary be-
comes one. As λ is decreased, according to Eq.(28), the
slope of P-SG boundary becomes steeper and eventually
it becomes infinite at λ = 3. Therefore, for 2 < λ ≤ 3,
there exists only the SG phase for nonzero K, as shown
in Fig. 1(b).
Fig. 2 shows the phase diagram at J0/J = 0 for three

values of K in the T/J − λ plane. Following Eq. (27),
as λ is increased, the P-SG boundary, (which is the SG
transition temperature Tg), tends to be independent of λ
and its value becomes proportional to K. As λ → 3+, Tg

increases drastically. We note that there exists only the
SG phase for 2 < λ ≤ 3 in the limit N → ∞.
Figs. 3 show the phase diagrams in the T/J − λ plane

for several values of J0/J . The phase boundaries are
determined by Eqs. (27), (33) and (34). When 0 < J0 <
2/3 in (a), not only the P and SG phases exist for λ > 3,
but also the M phase appears in the region 2 < λ ≤ 3
and below the SG phase as T is lowered for λ > 3. When
2/3 ≤ J0 ≤ 1 in (b), the F phase exists in the region
2 < λ ≤ 3 and the P, SG, and M phases appear for λ > 3
as they do in the way of (a). When J0 > 1 in (c), the F
phase exists for 2 < λ ≤ 3 and below the P phase as T is
lowered.
Figs. 4 show the phase diagrams in the T/J − J0/J

plane in the thermodynamic limit (a) for the ER case, (b)
for λ > 3, and (c) for 2 < λ ≤ 3. Five phase boundaries
appear among the four phases, which are determined by
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FIG. 1. (Color online) Phase diagram in the T/J −K plane
when J0 = 0 for the cases (a) λ > 3 and (b) 2 < λ ≤ 3. P
and SG phases exist in (a) and only SG phase exists in (b).

Eqs.(27), (30), (33), (34), and (35). Moreover, three dif-
ferent types of singular points exist: critical point (CP),
critical endpoint (CE), and multicritical point (MCP).
At T = 0, the M-F phase transition occurs at the CP
J0/J = 2/3, which is second-order. In (a), the F-M and
SG-F transitions are first-order, which is determined by
Eq. (31) and (36), respectively. The first-order transi-
tion curve between the F and M phases runs from the
CP to the CE [10, 11], at which the transition changes
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FIG. 2. (Color online) Phase diagram in the T/J − λ plane
when J0/J = 0 for three different values of K (K = 2, 5 and
10). The SG transition temperature normalized by J Tg/J is
the P-SG phase boundary, which depends on λ, but becomes
constant K in the limit λ → ∞.

to a hybrid phase transition, which exhibits properties of
the second-order and the first-order transitions simulta-
neously [12–16]. As T is increased, beyond the CE, the
first-order transition curve sustains until it meets a MCP.
At this point, the first-order transition curve meets the
two second-order transition curves and the three phases
P, SG, and F merge, and a second-order transition oc-
curs.
When 3 < λ < ∞ in (b), the F-M boundary at

zero temperature locates on the line 2/3 ≤ J0/J ≤ 1.0
and forms a vertical straight line at J0/J = 1 span-
ning from T = 0 to the CE. The SG-F boundary also
forms a vertical straight line from the CE to the MCP at
J0/J = 1.0. Therefore, the CP, CE and MCP locate at
(2/3, 0), (1.0,K/2Kp), and (1.0,K/Kp) in the T/J-J0/J
plane, respectively. Such a drastic change of the first-
order transition curve from the ER case to the finite-λ
case can be observed only in the thermodynamic limit.
However, for finite systems, as shown in Fig. 5(a) and
(b) below, there exists no such a drastic change.
For 2 < λ ≤ 3 in (c), the slope of the SG-M phase

boundary becomes infinite so that the M phase covers
the region 0 < J0/J < 2/3 in the entire range of temper-
ature. Furthermore, since both the M-F and SF-F phase
boundaries are vertical lines and the former line locates
at J0/J = 2/3, the F phase covers all the temperature
range in the region J0/J > 2/3 as shown in (c).
Figs. 5 show the phase diagrams in the T/J − J0/J

plane for finite systems with N = 1000 and K = 5.
As in Fig. 4, the five different phase boundaries and the
three singular points exist. The phase boundaries are
determined by Eqs. (28), (30), (32), (33), and (34) with
N = 1000. For the ER case (a), the phase diagram for in-
finite systems remains the same even for finite systems,
because the analytic solutions for the ER case are in-
dependent of system sizes. In (b), as λ is decreased,
the F-M boundary deforms slightly from the one in (a).
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J
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(c)

P

 

 

T/
J

F

FIG. 3. (Color online) Phase diagram in the T/J − λ plane
for finite J0 > 0: (a) J0/J = 0.5, (b) J0/J = 0.8, and (c)
J0/J = 1.2. K is fixed as K = 5. (a) For 0 < J0/J < 2/3,
the M phase appears in the region 2 < λ ≤ 3 and below the SG
phase as T is lowered for λ > 3. (b) For 2/3 ≤ J0/J ≤ 1, the
F phase appears in the region 2 < λ ≤ 3, but for λ > 3, the M
phase still exists below the SG phase as T is lowered. Thus,
for λ > 3, as T is lowered from sufficiently high temperature,
successive phase transitions occur following the order P →

SG → M. (c) For J0/J > 1, there exists only the F phase for
2 < λ ≤ 3. For λ > 3, the F phase also exists below the P
phase as T is lowered.
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FIG. 4. (Color online) Phase diagram in the T/J − J0/J
plane in the limit N → ∞ (a) for the ER case (λ → ∞),
(b) for λ > 3 and (c) for 2 < λ ≤ 3. The solid-line (dotted-
line) indicates the second-order (first-order) phase transition.
Dots denoted by ◦, ⊳, • represent the critical point, critical
endpoint, and multicritical point, respectively.

The same applies for the SG-F phase boundary. The
CP remains at the same point. The CE and MCP still
exist, but move to higher temperature positions as λ is
decreased.

For 2 < λ ≤ 3, the P-SG and P-F boundaries move
in the higher temperature region. As a result, the SG-
M and M-F boundaries become much steeper and the
regions of SG, M, and F phases become extended, as

0.0 0.5 1.0 1.5
0

2

4

6

8

10
(a)

 

 

T/
J

J0/J

P

SG

M

F

0.0 0.5 1.0 1.5
0
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6

8

10
(b)
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J
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0
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8

10
(c)

 

 

T/
J

J0/J

SG

M F

FIG. 5. (Color online) Phase diagram in the T/J−J0/J plane
in finite systems with N = 1000 and K = 5 (a) for the ER
case (λ → ∞), (b) for λ = 3.5 and (c) for λ = 2.5. The
solid line (dotted line) indicates the second-order (first-order)
phase transition. Dots denoted by ◦, ⊳, • represent critical
point, critical endpoint, and multicritical point, respectively.

shown in Fig. 5(c).

We remark that the positions of the CP and MCP are
fixed as (J0/J, T/J) = (2/3, 0) and (1.0,K/Kp), inde-
pendent of N , but the CE depends on N . Let us de-
note the coupling strength J0 at the CE for a given J
as J0,CE(N). For J0,CE(N) < J0/J < 1.0, when T is
lowered from sufficient high temperature, the SG order
parameter increases continuously from zero to finite q(T )
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FIG. 6. (Color online) Plot of the order parameters m and q
versus T/J (a) for the ER case (λ → ∞) with J0/J = 0.754,
and (b) for λ = 3.5 with J0/J = 0.800. Data are obtained
from the systems with N = 1000 and K = 5.0. As T is low-
ered from a sufficiently high temperature, the order parameter
m jumps suddenly at Tc and continuously increases below Tc

following the second-order transition pattern. However, the
SG order parameter increases continuously from Tg but drops
suddenly at Tc.

at Tg. As T is lowered even further to Tc, q(T ) drops sud-

denly to zero, however, the ferromagnetic order parame-
ter m(T ) jumps suddenly from zero to m(Tc). When T is
lowered beyond Tc, m(T ) increases continuously follow-
ing a pattern of the second-order phase transition. Thus,
the order parameter m(Tc) exhibits the natures of the
second-order and the first-order phase transitions. Thus,
the phase transition at the CE is hybrid. The behaviors
of the order parameters m and q are shown in Fig. 6(a).
At the CE, as temperature is lowered, m jumps from zero
to nonzero; however, q becomes zero from nonzero.
For 2/3 < J0/J < J0,CE(N)/J , when T is lowered

from a sufficiently high temperature, the SG order pa-
rameter increases continuously from zero to finite q(T )
at Tg. As T is lowered across the SG-M boundary, q(T )
still increases continuously and m(T ) begins to increase
from zero continuously. When T is lowered to the M-F
boundary, m(T ) jumps suddenly from a finite value to
m(Tc); however, q(T ) suddenly drops to zero. The be-
haviors of the order parameters m and q are shown in
Fig. 6(b).
The CE for the ER case (λ → ∞) with N = 1000

and K = 5.0 is located at (J0/J, T/J) = (0.754, 1.931)
as shown in Fig. 5(a). Meanwhile, the CE for λ = 3.5
under the same N and K is located at (J0/J, T/J) =
(0.835, 3.590) as shown in Fig. 5(b).

VI. THE SG ORDER PARAMETER

In the SG phase (m = 0, q 6= 0), the SG order param-
eter q is determined by the self-consistency equation,

q =
1

2

∑

i

pi tanh(2NKpiJq/T ). (37)

Now, we determine the critical behavior of q near the SG
transition Tg. The right hand side of Eq. (37) contains a
sum of the type

S(y) =
1

N

∑

i

H(Npiy/(1− µ)), (38)

where y = (1 − µ)2KqJ/T and H(x) = x tanh x. When
y is small, q can be expanded following the method used
in Appendix B of Ref. [3] as

q = A(λ)T 2−λqλ−2 + J
K

Kp
T−1q +B(λ)K2T−2q2 +O(q3), (39)

where A(λ) and B(λ) are λ-dependent positive coeffi-
cients.

Therefore, we obtain that

q ∼























T−(λ−2)/(3−λ) for 2 < λ < 3,
T exp(−T/KJ) for λ = 3,

ǫ
1/(λ−3)
g for 3 < λ < 4,
ǫg/ ln ǫ

−1
g for λ = 4,

ǫg for λ > 4,

(40)
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where T is presumed to be extremely high for 2 < λ < 3
and ǫg ≡ (Tg − T )/Tg → 0 for λ > 3. We remark that
the critical exponent of q for 2 < λ < 3 is a half of
that obtained using the replica trick [3], because the self-
consistency equation q of the vHSG model is in the form
of tanh instead of tanh2, the form of the SG model with
replicas.

VII. CONCLUSION

In summary, we have analytically investigated the
phase diagram and the transition behavior of the van
Hammen SG model on the static SF networks with-
out replicas (method (i)) [5]. The obtained results are
compared with those obtained from the Sherrington-
Kirkpatrick approach using the replica method (method
(ii)) [3]. As common features, the phase diagram con-
tains the P, F, M, and SG phases. The shape of the
phase diagram depends on the degree exponent λ and
is classified based on three cases: λ = ∞, 3 < λ <
∞, and 2 < λ ≤ 3. We note that in our previous
work [3], the coupling strength is given stochastically as
Jij = rδ(Jij − J) + (1 − r)δ(Jij + J), where r serves as
the asymmetry ratio between ferromagnetic and antifer-
romagnetic interactions. Thus, the parameter r plays a
similar role to that of J0/J in the current work, although
the two quantities may not be exactly mapped. As dif-

ferent features, there exist two types of phase transitions,
the second-order and the first-order transitions in method
(i); however, only the second-order phase transition exists
in method (ii). In the phase diagram of method (i), the
F-SG and F-M phase boundaries are of the first order.
However, the transition between the SG and M phases
are of the second order. Subsequently, there exists a crit-
ical endpoint at which the SG, M, and F phases meet.
At this point, the magnetic order parameter exhibits a
hybrid phase transition. Moreover, the formulas for the
phase boundaries are different. The critical behavior of
the SG order parameter depends on the methodology ap-
plied.
Thus far, the van Hemmen-type SG models have been

investigated as one of the SG solutions [17–21], although
their SG phases lack multiplicity of metastable states
[22]. According to our work, the present model becomes
exactly solvable when the model is on SF networks. The
phase diagram and the features of the phase transitions
we obtained here would be helpful to understand emerg-
ing patterns from socio-complex systems.
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