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Abstract – Packet traffic in complex networks undergoes the jamming transition from free-flow
to congested state as the number of packets in the system increases. Here we study such jamming
transition when queues are operated by the priority queuing protocol and packets are guided by the
dynamic routing protocol. We introduce a minimal model in which there are two types of packets
distinguished by whether priority is assigned. Based on numerical simulations, we show that traffic
is improved in the congested region under the priority queuing protocol, and it is worsened in the
free-flow region. Also, we find that at the transition point, the waiting-time distribution follows
a power law, and the power spectrum of traffic exhibits a crossover between two 1/fα behaviors
with two different exponents α< 2 in low- and high-frequency regime, respectively. This crossover
is originated from a characteristic waiting time of packets in the queue.

Copyright c© EPLA, 2009

Information packet transport via the Internet is
an important problem in complex systems from the
perspectives of both theory and application. Data packets
created at certain nodes in the Internet travel to their
destinations under transmission control protocols. During
the journey, packets interact with other packets as they
share a common line or buffer in the network. Accord-
ingly, several types of collective behaviors can emerge
in the form of self-similar traffic [1,2] or chaos [3]. To
enhance transport efficiency, one would like to design an
appropriate protocol to transport as many packets as
possible with the lowest cost. With this goal in mind,
several packet transport models have been introduced.
When a packet is sent from one node to another in a

network, it is usually routed along the shortest path; such
a path is undoubtedly the best route when the number of
packets in the network is relatively small. However, when
many packets are floating around in the network, traffic
congestion can occur. This problem can be especially
serious in scale-free (SF) networks [4], since hubs are
the bottlenecks of traffic flow. To resolve this congestion,
many routing protocols have been proposed, including
the hub avoidance protocol [5,6] and the optimal routing
protocol [7]. These are static routing protocols, so that a
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path from one node to another is fixed regardless of the
traffic level in the system at any given time. In contrast,
there is a dynamic routing protocol that guides packets to
alternative paths depending on the traffic on the path to
each target [8].
When a packet travels through a node (router), it is

temporarily stored in the buffer (queue) at the node.
There can be many queuing protocols that control the
order of packet transmission in the queue. The most
common one is the “first-in-first-out” (FIFO) protocol.
Alternatively, the “last-in-first-out” (LIFO) protocol can
be used [9–11]. The priority queue is a rather different
protocol [12]. Each packet is assigned a priority upon its
birth. A packet with the highest priority is treated first in
the queue, irrespective of its order of arrival. The diffusion
process [13] under the priority queuing protocol in complex
networks have been studied previously.
In this paper, we study the jamming transition of packet

transport on SF networks using the priority queuing proto-
col and the dynamic routing protocol by adapting Dijk-
stra’s algorithm [14]. At each time step, every node creates
a packet with probability q whose destination is chosen
randomly. These packets are assigned to be either with
or without priority. The fraction of the packets that are
priority-assigned is f . In the queue, packets with prior-
ity are delivered firstly toward their destinations along

58002-p1



K. Kim et al.

the paths that are updated at every time step determined
by Dijkstra’s algorithm. Packets without priority are also
guided similarly, but after packets with priority. Similar
types of packets in the queue are treated following the
FIFO protocol. Packets with priority may be regarded as
paid packets when downloaded from a certain web site.
Note that when f = 0 or f = 1, the priority queuing proto-
col reduces to the standard FIFO protocol. We present a
phase diagram for the free-flow and congested phases in
the parameter space (q,f), and we show that the priority
queuing protocol is efficient when the system is congested.
We simulate packet transport under the dynamic rules

below on undirected binary scale-free networks generated
by the static model [15]. For the network, the total number
of nodes is N = 1000, the average degree of a node is
〈k〉 ≃ 4, and the degree exponent is γ = 2.5. Each type of
packet travels along the path that minimizes the quantity

Ls,d(t) = ℓx+h
∑

i∈x

Qi(t− 1), (1)

where ℓx is the hopping distance along a path x between
nodes s, d, Qi(t) is the queue length at node i on the
path x at time t, and h is a traffic control parameter [8].
For packets with (without) priority, Qi(t) is regarded as
the number of priority-assigned (both types of) packets
that have accumulated in the queue at node i at time
t. Hence, the path minimizing Ls,d(t) can be the best
choice to route the packet at time t, since the packet can
circumvent congested nodes along its way. Note that we
calculate Ls,d(t) with Qi(t− 1), the queue lengths at time
t− 1. This path is determined using Dijkstra’s algorithm
in the simulation. Note that, when h= 0, this routing
protocol reduces to the shortest path routing protocol. We
choose other control factors as follows: The queue size is
unlimited, and the process rate in each queue is one packet
per time step. Thus, if more than one packet arrives at a
node per unit time, then the queue length increases. The
system is updated in parallel, meaning that all packets
move simultaneously with the queue length information
of the previous time step. Our simulations are performed
for up to 5× 104 time steps.
To characterize the jamming transition, we define an

order parameter for each type of packet as the delivery
fraction Dα, where α=p for packets with priority, α=n
for packets without priority, and α= tot for all packets
combined. Dα is defined as

Dα = lim
t→∞

1

Nα(t− t0)

∫ t

t0

λα(t
′)dt′, (2)

where λα(t) is the number of packets of type α arriving
at their destinations at time t and Nα is the number of
packets of type α generated in a unit time. Here, Nα
is Nα =Nqf , Nq(1− f), and Nq for α=p, n, and tot,
respectively. If the traffic of packets of type α is in the
free-flow state, then Dα is close to 1, since all packets
of type α arrive successfully at their targets. However, if
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Fig. 1: (Color online) The delivery fraction D for packets with
priority vs. the packet generation rate q for various h’s. The
traffic control parameter h; h= 0.0 (�), 0.1 (©), 0.5 (△) and
1.0 (♦). The priority fraction f is chosen as 0.9.

the traffic is in a congested state, then 0<Dα < 1. When
Dα = 0, the traffic is in the completely congested state.
In general, the jamming transition point for packets

with priority does not coincide with that for packets
without priority, denoted by qp and qn, respectively.
Obviously qp > qn. When f = 0 and f = 1, all packets are
of the same type and the queuing process is governed by
the FIFO protocol. In this case, the delivery fraction and
the jamming transition point are denoted by D0 and q0,
respectively. Technically, we select the transition point as
the q-value at which ∆D exhibits a sudden drop for the
first time with respect to increasing q.
First, we consider the effect of the traffic control

parameter h. We observe that the traffic is dramati-
cally improved when h> 0 compared with the case when
h= 0, as shown in fig. 1. However, the traffic seems to
be unaffected by changes in h when h> 0. This result is
reasonable because the sum of accumulated packets along
the path is far larger than the topological length ℓx in the
congested state. Hence, we will confine our interest to the
case when h= 1 from here on.
We observe the behavior of the delivery fraction. We

consider Dp as a function of q for various f in fig. 2(a).
The preliminary result of this was reported in [16]. For
f = 0 and f = 1, we obtain q0 ≃ 0.048, which can change
depending on the system size N . When 0< f < 1, the
jamming transition point qp for priority-assigned packets
is larger than q0. Since packets without priority do not
hamper the traffic of packets with priority, one can obtain
the relation

qpf = q0. (3)

On the other hand, when q > qp, a fraction of packets with
priority cannot reach their targets during a given time
interval. Hence, Dp < 1 in such a case.
Second, we examine the behavior of the jamming transi-

tion for packets without priority. Since packets with prior-
ity delay the traffic of packets without priority under
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Fig. 2: (Color online) The delivery fraction D for packets
with (a) and without (b) priority, and all packets (c) vs. the
packet generation rate q for various fractions f of the priority
assignment.

the priority queuing protocol, the jamming transition for
packets without priority occurs at qn smaller than q0. As
qp > qn for a given f , Dp = 1 and 0<Dn < 1 for qn < q <
qp. Figure 2(b) shows the behavior of Dn as a function of
q for various f . For q > qp, the traffic for packets without
priority is completely congested, i.e., Dn ≃ 0,
Next, we combine the above two cases and consider the

jamming transition for all packets irrespective of priority
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Fig. 3: (Color online) Phase diagram for packet traffic (a)
and scaling behavior of the delivery fraction for packets with
priority (b). In (a), the dark-grey region represents the free-
flow state when the FIFO protocol is used and the light-grey
region represents the additional free-flow state for the priority-
assigned packets under the priority queuing protocol. (b) shows
that Dp’s collapse to a single scaling function.

assignment. Dtot is the order parameter for all packets.
The behavior of Dtot is shown in fig. 2(c). Dtot satisfies
the relationship

Dtot = fDp+(1− f)Dn, (4)

where Dp and Dn can change depending on q. We
summarize the delivery fraction for all packets as

Dtot =

⎧

⎪

⎨

⎪

⎩

1, for q < qn,

f +(1− f)Dn, for qn < q < qp,

fDp, for q > qp.

(5)

It is interesting to note that the delivery fraction Dtot
under the priority queuing protocol can exceed the D0
obtained from the simple FIFO protocol. This phenom-
enon can occur in the region of q > qp, as shown in
fig. 2(c) (for example, q > 0.12 for f = 0.5, and q > 0.096
for f = 0.75). The unexpected improvement in overall
transport efficiency is due to the priority queuing protocol,
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Fig. 4: (Color online) The waiting-time distribution in the free-
flow region for packets with (a) and without (b) priority for
f = 0.9 and f = 0.25, respectively. The power law behaviors
are obtained at qp ≈ 0.053 and qn ≈ 0.015, which are regarded
as the jamming transition points. The solid lines are guidance
with slopes −3.4 (a) and −1.9 (b), respectively.

since it enables us to control the density of packets with
priority; these packets remain deliverable packets in the
congested state. For the other cases, Dtot <D0, implying
that the overall traffic under the priority queuing proto-
col is worse in the free-flow state, despite the improve-
ments observed when the system is in the congested
state.
Figure 3(a) is a phase diagram of the traffic of packets

in the space of (q, f). Under the FIFO protocol only, the
phase space is divided into two parts by the line q= q0,
with the free-flow state appearing in the region q < q0
and the congested state appearing in the region q > q0.
However, when the priority queuing protocol is used, the
free-flow region can be extended into the region q < (q0/f).
The scaling behavior eq. (3) of the delivery fraction
for packets with priority with various f ’s is checked in
fig. 3(b).
We measure the waiting-time distributions P (tw) for

packets with and without priority [9,10]. The waiting
time tw is defined as the time spent in the queues on
the way to the target, excluding the transit time. As
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Fig. 5: (Color online) The power spectrum of traffic in the
system for packets with (a) and without (b) priority, respec-
tively. We use f = 0.9 (a) and f = 0.25 (b). For qp = 0.053 (a)
and qn = 0.015 (b), the power spectrum exhibits a crossover
between two power law behaviors. Solid lines are guidelines
with slopes −0.7 in small ω regime and −1.7 in large ω regime
for (a) and −0.9 in small ω regime and −1.8 in large ω regime
for (b).

shown in fig. 4, the waiting-time distribution follows a
power law P (tw)∼ t

−δ
w near the transition points qp and

qn, where δ≈ 3.4(1) for packets with priority and δ≈
1.9(1) for packets without priority. In the free-flow regions
q < qp and q < qn, the waiting-time distribution behaves
as P (tw)∼ e

−tw/τ , where τ is the mean waiting time and
depends on the density of packets in the network. The
maximum waiting time of packets in the free-flow region
is estimated to be tm ≈ 70 for a system of size N = 10

3.
This means that packets can reach their targets within tm
at the most.
Next, we consider the number of packets with (or

without) priority traveling on the network and in queues,
called network-load in [10], as a function of time. Then,
the power spectrum S(ω) of the traffic is defined as

S(ω) =
|g(ω)|2

∑T/2
ω=0 |g(ω)|

2
, (6)
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where g(ω) =
∑T−1
t=t0
Fc(t) exp(−i2πωt/(T − t0)) and Fc(t)

is the number of packets with (c= p) or without (c= n)
priority in the system at time t. t0 denotes a certain time
in steady state and T is the total simulation time step,
taken as 5× 104. The power spectrum of the traffic in the
system is measured in fig. 5. The behavior of the power
spectrum S(ω) depends on the packet generation rate q
as well as the packet type. When the packet generation
rate q is near the jamming transition point, the power
spectrum exhibits a crossover between two power-law
behaviors S(ω)∼ ω−α with α≈ 0.7 and α≈ 1.7 for pack-
ets with priority and α≈ 0.9 and α≈ 1.8(1) for packets
without priority. The crossover behavior occurs roughly at
ωc ≈ T/2πtm ≈ 10

2. This value corresponds to the maxi-
mum waiting time in the system, tm, roughly estimated
in fig. 4 to be 60∼ 70 for a system of size N = 103. The
1/fα-type (α< 2) power spectral density suggests that
there exists a long time correlation in the transport of both
types of packets. The crossover behavior above is distinct
feature compared with what were observed in a model
system [10] and empirical data [17]. In those systems, the
1/fα-type behavior appears in broad range, more than
three decades of ω, without showing the crossover behav-
ior. The difference may root in: For our system, we used
Dijkstra’s algorithm, which reduces the waiting time in
queues drastically, so that the maximum waiting time tm
is rather small. Thus, the crossover behavior occurs at
finite ωc. However, in those systems, the maximum time
tm is large, and then the crossover behavior cannot be
observed.
In summary, we studied the packet transport problem

on SF networks under the priority queuing protocol and
the dynamic routing protocol. We showed that total traffic
can be improved in the congested state by introducing the
priority queuing protocol; however, the overall traffic is
worse in the free-flow state and the jamming transition
point is reduced, which is reminiscent of the price of
anarchy. The jamming transition points for packets with
and without priority are different. Near each jamming
transition point, the waiting-time distribution follows a
power law, and the power spectrum exhibits a crossover
between two power-law behaviors. We obtain 1/fα-type
power spectra in the small ω regime for both types of
packets.

∗ ∗ ∗

This work was supported by KOSEF grant Accelera-
tion Research (CNRC) (No. R17- 2007-073-01001-0) and
KRCF.

REFERENCES

[1] Fekete A. and Vattay G., Self-similarity in bottle-
neck buffers, in Proceedings of Globecom 2001, Vol. 3
(2001) pp. 1867–1871.

[2] Park K. and Willinger W., in Self-Similar Network
Traffic and Performance Evaluation, edited by Park K.
and Willinger W. (Wiley Interscience) 2000, pp. 1–38.

[3] Veres A. and Boda M., The chaotic nature of TCP
congestion control, in Proceedings of IEEE INFOCOM
2000, Vol. 3 (IEEE) 2000, pp. 1715–1723.

[4] Barabási A.-L. and Albert R., Science, 286 (1999)
509.

[5] Sreenivasan S., Cohen R., Lopez E., Toroczkai Z.
and Stanley H. E., Phys. Rev. E, 75 (2007) 036105.

[6] Yan G., Zhou T., Hu B., Fu Z.-Q. and Wang B.-H.,
Phys. Rev. E, 73 (2006) 046108.

[7] Danila B., Yu Y., Marsh J. A. and Bassler K. E.,
Phys. Rev. E, 74 (2006) 046106.

[8] Echenique P., Gomez-Gardenes J. and Moreno Y.,
Europhys. Lett., 71 (2005) 325.
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