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We present a systematic analysis of dynamic scaling in the time evolution of the phase order parameter
for coupled oscillators with nonidentical natural frequencies in terms of the Kuramoto model. This provides a
comprehensive view of phase synchronization. In particular, we extend finite-size scaling (FSS) in the steady state
to dynamics, determine critical exponents, and find the critical coupling strength. The dynamic scaling approach
enables us to measure not only the FSS exponent associated with the correlation volume in finite systems but
also thermodynamic critical exponents. Based on the extended FSS theory, we also discuss how the sampling of
natural frequencies and thermal noise affect dynamic scaling, which is numerically confirmed.
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I. INTRODUCTION

Collective synchronization of coupled oscillators is a
fascinating phenomenon, where nonidentical oscillators are
spontaneously coherent at the same frequency with identical
phase angles with each cycle (or a repeating sequence of
phase angles over consecutive cycles) with diverging scales.
This cooperative behavior is ubiquitous in real systems from
well-known examples, such as Josephson junction arrays,
chemical oscillators, and flashing of fireflies [1], to many
recent examples, such as power grids [2], chimera states in
oscillator networks [3], and neural networks [4].

From theoretical point of view, such a remarkable phe-
nomenon has also become a central issue as an universal
concept in nonlinear science [5]. Kuramoto introduced a math-
ematically tractable model of coupled nonlinear oscillators [6]
as refining the earlier model by Winfree [7]. Since then, the
Kuramoto model (KM) has played a role as the paradigmatic
model of synchronization. The KM is simple but exhibits rich
behaviors; among them, the synchronization transition is one
of fundamental problems. At the transition, oscillators’ phases
are tuned by the critical coupling strength against nonidentical
natural frequencies and eventually reach a phase-locked state
(frequency entrainment) including in-phase synchronization
with exactly the same value.

A continuous synchronization transition in the KM was first
characterized in the mean-field (MF) picture and accomplished
by solving a self-consistent equation of the order parameter.
The MF solution of critical exponents associated with the order
parameter (r ∼ εβ) and the correlation volume (ξv ∼ ε−ν̄)
were obtained as β = 1/2 and ν̄ = 2, respectively [8,9], where
ε is the reduced control parameter and natural frequencies were
randomly assigned from the Gaussian distribution. However,
based on the FSS theory and heuristic arguments, the FSS
exponent ν̄ has been reobtained as ν̄ = 5/2 [10]. It was taken
into account for size-dependent sample-to-sample fluctuations
in natural frequencies, but numerical confirmation was not
entirely satisfactory due to finite-size effects. Meanwhile, it
has been also reported that thermal noise, quenched disorder
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of natural frequencies, and link disorder of coupled oscillators
can also be relevant to the value of the FSS exponent [11–13].

In the absence of exact solutions, numerical tests are
inevitable, which is limited to finite systems related to
computing facilities. This issue has long been recognized
in phase transitions and critical phenomena. While FSS has
played a crucial role in its remedy, it requires the steady-steady
limit of finite systems, which takes quite a long computation
time in the numerical sense. Up to now, the FSS analysis
of phase synchronization has been carried out based on the
steady-state limiting data only. So one can naturally pose
the following question: What if there are only temporal data
available? Is there any systematic approach to deal with them?
The answers will be carefully addressed in this paper.

We propose an extended FSS form of the phase order
parameter, which provides another comprehensive view of
synchronization with the connection of dynamic scaling to
FSS near and at the criticality. In particular, we focus on how
the order parameter behaves in the true scaling regime before
it gets into the steady state, involved with the FSS exponent.
Owing to the dynamic scaling analysis, we successfully
confirm the theoretical value ν̄ = 5/2. Moreover, we also show
ν̄ = 2, which is clearly distinct from it in the presence of
thermal noise. As a final remark, we discuss the oscillatory
behavior of the order parameter in time with two scaling
regimes. This occurs when the KM starts at an incoherent
state with fluctuation-free natural frequencies by the regular
sampling from the Gaussian distribution.

It is well known that dynamic scaling is useful in
nonequilibrium systems such as surface growths [14], cluster
aggregation models [15], and absorbing phase transitions [16].
However, the dynamic scaling analysis in synchronization
models has not yet been studied seriously to our knowledge.

The main purpose of this paper is to present dynamic
scaling in synchronization and to clarify its universality issue
as approaching the critical coupling strength.

This paper is organized as follows: In Sec. II we briefly
review the ordinary KM and the conventional FSS theory of
the phase order parameter. In Sec. III we present the dynamic
scaling concept using the extended FSS theory and test it with
two completely different initial setups. The validity and the
universality issue of dynamic scaling are discussed in Sec. IV
with numerical tests of thermal noise and quenched disorder
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FIG. 1. (Color online) (a) Temporal behaviors of r↓(t) near the criticality [Kc = √
8/π � 1.596 for Gaussian g(ω)] at N = 819 200.

Effective exponent plots in the lower panel indicate the value of Kc where r(t) ∼ t−β/ν‖ with β/ν‖ = 1/2. (b) Based on critical behaviors tsat

and rsat near ε = 0, two thermodynamic exponents (ν‖ = 1,β = 1/2) are measured (insets) as N increases. Here data are obtained from the
random sampling of {ωj } and r(0) = 1 (at least 200 ensembles).

fluctuation. Finally, we conclude in Sec. V with a summary of
our findings.

II. MODEL

We begin with the KM [6], a paradigm of random intrinsic
frequency oscillators with the all-to-all coupling, which is
defined by the set of dynamic equations as

dφj (t)

dt
= ωj + K

N

N∑
k=1

sin[φk(t) − φj (t)], (1)

where φj (t) is the phase of the j th oscillator at time t

(j,k = 1, . . . ,N for total number of oscillators), ωj is its
time-independent natural frequency that follows the distri-
bution g(ω), and K is the coupling strength. To observe a
second-order (continuous) synchronization transition, we set
g(ω) to be a Gaussian with zero mean and unit variance:
g(ω) = 1√

2π
exp(−ω2

2 ). It is well known that {ωj } in the KM

plays a role as quenched disorder, and its functional shape,
g(ω), is relevant to the nature of the synchronization transition
[17]. As K increases, phase synchronization occurs at the
critical coupling strength Kc = 2

πg(0) (=
√

8/π ) [6], which can
be quantified by a global complex-valued order parameter:

r(t)eiψ(t) ≡ 1

N

N∑
k=1

eiφk (t). (2)

For the conventional FSS analysis, one collects the order
parameter r only after it gets saturated to the steady-state
limiting value, where the time-averaged value is also taken,
denoted as 〈r〉, and the sample-averaged value over the
different sets of {φj (0)} at t = 0 and {ωj } is denoted as [〈r〉].
To discuss dynamic scaling in synchronization, we also focus
on r(t) (actually [r(t)] used to reduce statistical errors) for
the whole regimes from the dynamic state up to the steady
state (see Figs. 1 and 2). It is already known that r(t) grows
exponentially far from the criticality: r(t) ∼ exp(at) before
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FIG. 2. (Color online) For the random sampling of {ωj }, r(t) is plotted at K = Kc(T ) at various N with the corresponding effective
exponent (β/ν‖ or θ ) plots: When the KM starts (a) at a coherent [r(0) = 1] with β/ν‖ = 1/2; (b) at an incoherent state [r(0) ∼ N−1/2]
with θ = 1/2 → 3/4; (c) at the same state as (b) but containing thermal noise (T = 0.1) with θ = 1/2. Note that the same symbol (color)
corresponds to the same size as described in (b) unless any other explanations are provided.
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it saturates to rsat for K � Kc [18]. For K � Kc, it does
not grow enough but fluctuates near 0 as much as O(N−1/2).
Moreover, the relaxation and decay mechanism below Kc had
been discussed with the similarity of Landau damping [19].
So the naturally posed question is how it evolves near and at
K = Kc.

In this paper, we trace the formation of synchronized
clusters and the cooperative behavior with time in the vicinity
of Kc (ε ≡ K−Kc

Kc
= 0), as the correlation volume ξv and

the correlation time τ become very large, compared to the
subcritical regime (ε < 0) and the supercritical regime (ε >

0), which algebraically decay as ξv ∼ |ε|−ν̄ and τ ∼ |ε|−ν‖ ,
respectively. However, ξv → N in finite systems at ε = 0.
As a result, τ ∼ Nz̄ with z̄ = ν‖/ν̄. Therefore, we are able
to estimate the FSS exponent ν̄ using both temporal and
static properties of the order parameter from either z̄ of the
saturation time (tsat ∼ τ ∼ Nz̄) or α ≡ β/ν̄ of the saturation
value (rsat ∼ N−α) as well as the critical threshold Kc in two
independent ways.

All numerical data presented here are obtained using the
fourth order Runge-Kutta method and dt = 0.01, which are
averaged over at least 500 samples, except Fig. 1 in which 200
ensemble is enough.

III. DYNAMIC SCALING

When a system exhibits self-similar dynamics at the
criticality, one can focus on dynamic scaling with a proper
initial setup.

We revisit phase synchronization in the ordinary KM since
the values of Kc and β are exactly known. Owing to that fact,
we easily test various properties and confirm the existence
of dynamic scaling. However, we note that the dynamic
scaling analysis is also powerful to indicate the location of
Kc (see Fig. 1). Furthermore, we discuss the universality issue
in synchronization, related to the relevance of thermal and
link-disorder fluctuations of oscillators against two different
sampling methods of natural frequencies.

Two different initial conditions of the KM are chosen to start
either at a fully coherent state [where φj (0) = φo: an arbitrary
angle, independent of j , so r(0) = 1] or at an incoherent
state [where φj (0) ∈ [0,2π ) is random, so r(0) ∼ N−1/2].
For a given value of K , r(t) evolves either exponentially or
algebraically up to τ ≡ tsat, which is also subject to the system
size N .

Based on the FSS theory and thermodynamic limiting
results as N → ∞, tsat ∼ ε−ν‖ with ν‖ = 1 and rsat ∼ εβ with
β = 1/2, which is also numerically confirmed in Fig. 1. So the
extended FSS to dynamic scaling can be rewritten near and at
ε = 0 as

r(t,N,ε) = b−αrb(b−z̄t,b−1N,b1/ν̄ε), (3)

where b is an arbitrary scaling factor and α ≡ β/ν̄. In the
steady-state limit (t → ∞), Eq. (3) is exactly the same as the
earlier FSS form, r(ε,N ) = N−αf (εN1/ν̄) [10].

Equation (3) can also be rewritten as the dynamic scaling
form with two variables, t and N , as N → ∞ (b = t1/z̄) or as
t → ∞ (b = N ):

r(t,N ) = t−α/z̄f (t/Nz̄) = N−αF(t/Nz̄), (4)

which is numerically confirmed [see Figs. 2–4]. Here α = β/ν̄

from rsat and z̄ = ν‖/ν̄ from tsat.
To confirm that the transition is continuous and discuss how

the initial setup affects dynamic scaling at the transition in
detail, two completely different configurations are considered,
which correspond to Figs. 4(a) and 4(b) for the ordinary
KM starting from a fully coherent state and from a random
(incoherent) state, respectively.

The below form of dynamic scaling describes that the KM
initially starts at r(0) = 1. As time elapses, the order parameter
decays as a power law, denoted as r↓(t,N ):

r↓(t,N ) = t−α/z̄f↓(t/Nz̄) = N−αF↓(t/Nz̄)

∼
{

t−α/z̄ for t× < t � tsat(∼Nz̄),

N−α for t � tsat,
(5)

where f↓(x) is constant for x � 1 in the true scaling regime
(t× < t � tsat) after the transient regime (t < t× when the
initial condition effect exists; t× is independent of N in
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FIG. 3. (Color online) The effect of thermal noise on dynamic
scaling of r(t) at K = Kc(T ) is tested for two cases, T = 0.1 (noisy,
open symbols) and T = 0 (noiseless, filled symbols), at three different
N values. (a) The noisy random sampling case (lines for T = 0.1) is
compared to the noiseless case (symbols for T = 0). (b) The ratio of
two cases are plotted. Two straight lines are guides for eyes, of which
slopes are −0.15 and −0.25, respectively. Based on our conjecture,
it should be the same as θT =0.1 − θT =0 = −1/4. (c) Scaling collapse
of effective exponents in the lower panel of Fig. 2(b) implies tcross ∼
tsat ∼ Nz̄ with z̄ = 2/5. Here we use the same data as those in the
upper panel of Figs. 2(b) and 2(c).
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FIG. 4. (Color online) Scaling collapse of Fig. 2: In the upper panel, F(x) = r(t)Nα is tested as main plots and f (x) = r(t)Nζ ty as inset
plots, where x ≡ t/Nz̄, α = β/ν̄, and (ζ,y) = [(0,β/ν||) for (a); (1/2, −θ ) for (b) and (c)] at K = Kc(T ) for various N . In the lower panel, the
corresponding effective exponents are also plotted using dynamic scaling with the exponent set of (β/ν̄,z̄,β/ν‖ or θ ): When the system starts
(a) at a coherent [r(0) = 1] with (1/5, 2/5, 1/2); (b) at an incoherent state [r(0) ∼ N−1/2] with (1/5, 2/5, 3/4); (c) at the same state as (b) but
containing thermal noise (T = 0.1) with (1/4, 1/2, 1/2).

general), and f↓(x) ∼ xα/z̄ for x � 1 in the saturation regime
(t � tsat ∼ Nz̄; when the system-size dependence only exists)
[see Figs. 2(a) and 4(a)].

If one chooses an initial configuration starting at an inco-
herent state with N -dependent randomness [r(0) ∼ N−1/2],
the order parameter increases in a trivial power law to wash
out such randomness after the transient regime, and then it
exhibits true scaling. Therefore, Eq. (5) should be modified due
to N -dependent trivial offset (∼N−1/2) and trivial temporal
scaling (∼ t1/2), denoted as r↑ for convenience, as follows:

r↑(t,N ) = N−1/2t θf↑(t/Nz̄) = N−αF↑(t/Nz̄)

∼

⎧⎪⎨
⎪⎩

N−1/2t1/2 for t× < t < tcross,

N−1/2t θ for tcross � t � tsat,

N−α for t � tsat,

(6)

where f↑(x) is constant for x∗(≡tcross/N
z̄) � x � 1 in the

true scaling regime, and f↑(x) ∼ x(α− 1
2 )/z̄ for x � 1 in the

saturation regime [see Figs. 2(b), 2(c) and 4(b), 4(c)].
Figure 2(b) [see Fig. 4(b) as well] shows very long transient

trivial scaling in the time evolution of r(t) due to random
phases at t = 0, r(t) ∼ N−1/2t1/2. This lasts up to tcross until the
random initial condition effect is washed out and the system
exhibits true scaling with N−1/2t θ . In order to resolve this
universality issue, one needs to find the crossover time tcross
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FIG. 5. (Color online) The noiseless (T = 0) case: (a) for the
random sampling of {ωj } at N = 102 400 and (b) for the regular
sampling of {ωj } at N = 1600 (relatively small to the random case
due to slow relaxation). Here circle (blue) symbols start from an
incoherent state and square (red) ones from a coherent state.

accurately as well as the true scaling behavior. It is definitely
not an easy task and sometimes extremely tricky if the window
of two consecutive scaling regimes is narrow because one
scaling interferes with the other one.

From the fact that at a continuous transition the steady
state should be the same, irrespective of initial setups [see
Fig. 5(a)], we derive a scaling relation among α(=β/ν̄),θ, and
z̄(=ν‖/ν̄) as 1

2 − θ z̄ = α in rsat ∼ N−α,r↑(t)N1/2 ∼ t θ , and
tsat ∼ Nz̄, respectively. This is equivalent to θ = ( 1

2 − α)/z̄ =
( ν̄

2 − β)/ν‖. Hence, r↑(t) for the random sampling of {ωj }
with the random choice of {φj (0)} ∈ [0,2π ) is characterized by
two different length scales, unlike the conventional temporal
behavior in a simple power-law manner. It is because it is
involved with two different dynamic exponents, which is
attributed to the finite-size effect and the crossover from t1/2

to t3/4 at tcross as time elapses.
The true dynamic exponent z̄ related to the true FSS

exponent ν̄ in the long-time regime after the crossover yields
τ ∼ Nz̄ where z̄ = 1/ν̄ = 2/5 with ν‖ = 1 in networks, only
observed in sufficiently large system sizes. Otherwise, the
crossover scaling of z̄ = 1/ν̄ = 1/2 is only detected, which is
related to thermal noise (see Fig. 3). This anomalous dynamic
scaling of r↑(t) is resolved with thermal noise ηj (t) using the
modified KM [11]:

dφj (t)

dt
= ωj + K

N

N∑
k=1

sin[φk(t) − φj (t)] + ηj (t), (7)

where 〈ηj (t)〉 = 0 and 〈ηj (t)ηk(t ′)〉 = 2T δjkδ(t − t ′). In the
modified KM, we observe that the conventional dynamic
scaling governed by random fluctuations with z̄ = 1/ν̄ = 1/2
as expected [see Figs. 2(c) and 4(c)].

Using the KM with various settings, we discuss the
universality of the dynamic exponent in true scaling.

IV. EFFECTS OF NOISE AND DISORDER

In order to discuss the validity of our conjecture on the
dynamic scaling form, it is necessary to test the relevance of
thermal noise and the type of disorder in the KM as discussed
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TABLE I. All critical exponents are summarized with the earlier FSS results and our conjecture for dynamic scaling. For the noiseless
regular sampling of {ωj }, θ (t) = 1/2 for t � tp1 (∼Nz̄1 with z̄1 � 2/5); −1/2 for tp1 � t � tp2 (∼Nz̄2 with z̄2 � 4/5) (see Figs. 6 and 8). For
all cases, the scaling function F↑(x) = constant for x � 1, where x ≡ t/Nz̄.

Sampling Noise Steady state Dynamic state Dynamic scaling Scaling function
{ωj } from g(ω) T (β/ν̄,1/ν̄) (β/ν‖,θ,z̄) starting at r(0)N−1/2 F↑(x)

Random T = 0 (1/5, 2/5) (1/2, 3/4, 2/5) r↑(N,t) = N−2/5F↑(t/N 2/5) x3/4 for xcross � x � 1
T �= 0 (1/4, 1/2) (1/2, 1/2, 1/2) r↑(N,t) = N−1/4F↑(t/N 1/2) x1/2 for x× � x � 1

Regular T = 0 (2/5, 4/5)a (1/2, 1/2, 2/5) r↑,p1(N,t) = N−3/10F↑,p1(t/N 2/5) x1/2 for x× � x � xp1

(1/2, −1/2, 4/5) r↑,p2(N,t) = N−2/5F↑,p2(t/N 4/5) x−1/2 for xp1 � x � xp2

T �= 0 (1/4, 1/2) (1/2, 1/2, 1/2) r↑(N,t) = N−1/4F↑(t/N 1/2) x1/2 for x× � x � 1

aThese values are from Refs. [10–13].

in the FSS theory [11,12,20]. In the presence of thermal noise,
it is always relevant, irrespective of disorder type. So it changes
the value of ν̄ = 1/z̄ with ν‖ = 1 from ν̄ = 5/2 to ν̄ = 2 (see
Table I).

Compared to the case of the noiseless (T = 0) random
sampling [see Figs. 2(b) and 4(b)], r↑(t) for the noisy case
exhibits clean dynamic scaling [see Figs. 2(c) and 4(c)] with
ν̄ = 2. This distinction of these two cases plays a key role
in detecting the true scaling regime (t � tcross) for the case
of noiseless random sampling (see Fig. 3). However, the
window of the true scaling regime is somehow quite short (at
most one decade) and hardly observable in smaller systems,
implying that the case of noiseless random sampling is hardly
distinguishable with the noisy one in numerical senses unless
N is big enough. This is why some numerical results reported
ν̄ = 2 (not ν̄ = 5/2) even for the noiseless case.

Based on our extensive numerical simulation results, r↑(t)
in bigger systems at least N � 204 800 exhibit their own true
scaling regime clearly [see Figs. 3 and 4(b)–4(e)]. This is
why one cannot observe true scaling in smaller systems (N <

Ncross), where tcross(N ) � tsat(N ) due to finite-size corrections
to scaling. Note that Ncross = O(105) can be estimated from
rsat(ε,N ) = N−1/5f (εN2/5) and rsat � 1 at ε = 0.

To discuss the relevance of natural frequency sampling
(quenched disorder type) in dynamic scaling as well as the
initial setups, we revisit the KM in the absence of thermal
noise. If {ωj } is regularly generated by ωj = √

2erf−1(−1 +
2j−1

N
), it plays a role as “sample-to-sample fluctuation-free”

quenched disorder in the system.
For this regular sampling (see Fig. 6), r↑(t) exhibits

very interesting damped oscillation, rather than anomalous
crossover scaling for the random sampling case. However, if a
system exhibits a continuous phase transition, the steady-state
limit should be independent of initial setups. Through Fig. 5
we confirm that the order parameter for the noiseless (T = 0)
case starting two completely different initial setups has the
same value in the steady state, and we find that the anomalous
oscillatory behavior exists for the regular sampling of {ωj }
starting with an incoherent state. The comparison with the
noisy case (T �= 0) is shown in Fig. 7. In the inset of Fig. 6(a),
the heights of two largest peaks at the corresponding times are
taken as indicators, respectively.

Based on numerical tests as shown in Figs. 6(b), 6(c)
and 8(e), 8(f), we find that (rp1 ∼ N−α1 ,tp1 ∼ Nz̄1 ) at the first
largest one and (rp2 ∼ N−α2 ,tp2 ∼ Nz̄2 ) at the second largest

(a) (b) (c)

FIG. 6. (Color online) For the noiseless regular sampling of {ωj }, dynamic scaling is tested at various N . (a) Temporal behaviors of r(t)
(upper panel) and the corresponding effective exponent (lower panel) are plotted, where N = 100,200, . . . ,12 800 from top to bottom. In the
inset, the random case (red, line) is compared with the regular one (blue, symbol) with N = 800. Two sets of data collapse of r(t) are shown
for two different scaling regimes as well as those of effective exponents (b) near the first peak with θ1 = 1/2 and z̄1 = 2/5, and (c) near and
after the second peak with θ2 = −1/2 and z̄2 = 4/5.
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FIG. 7. (Color online) Critical behaviors of r↑(t) at K = Kc(T ):
at N = 800 for the regular sampling of {ωj } for the upper panel and
at N = 3200 for four different cases that are described in Table I
with 1000 ensembles for the lower panel. However, the steady-state
limiting value in finite systems, rsat(N ), seems to depend on the value
of T for the regular sampling case of {ωj } if the effect of T is relatively
small, compared to the effect of N .

one, with (α1 = 3/10, z̄1 = 2/5) with θ1 = 1/2 for the first
scaling regime and (α2 � 2/5, z̄2 � 4/5) with θ2 � −1/2 for
the second one. We conjecture the following scaling relations:
α1 = 1/2 − θ1z̄1 and α2 = −θ2z̄2. As a result, Eq. (6) should
be modified to the following two forms:

r↑,p1(t,N ) = N−1/2t θ1f↑,p1(t/Nz̄1 ) = N−α1F↑,p1(t/Nz̄1 )

∼
{

N−1/2t θ1 for t× < t � tp1 ∼ Nz̄1 ,

N−α1 at t = tp1 ∼ Nz̄1 ,
(8)

r↑,p2(t,N ) = t θ2f↑,p2(t/Nz̄2 ) = N−α2F↑,p2(t/Nz̄2 )

∼
{

t θ2 for tp1 � t � tp2 ∼ Nz̄2 ,

N−α2 for t � tp2,
(9)

where f↑,p1(x) is constant for x � 1, f↑,p1(x) ∼ x−θ1 for x �
1 and f↑,p2(x) is constant for x � 1, f↑,p2(x) ∼ x−θ2 for x �
1. Figures 6(b) and 6(c) correspond to the scaling function
F↑(t/Nz̄) = r↑(t)Nα in Table I.

Unlike the random sampling of {ωj }, the regular one has
not been fully understood except for the nontrivial value of
the FSS exponent (ν̄ � 5/4 reported in Refs. [11–13]). Our
dynamic scaling results would give a hint to find the correct
value of ν̄ but also address how and when the effect of initial
condition is washed out in r(t) (see Fig. 5).

Furthermore, the origin of oscillatory behaviors in dynamic
scaling is still under investigation. Figure 7 shows that it
is completely gone once thermal noise is turned on. Most
recently, it has been also reported in Ref. [13] that link fluctu-
ations of oscillator networks generate effective fluctuations of
natural frequencies, which means the absence of oscillatory
behaviors once random fluctuations in links of oscillator
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FIG. 8. (Color online) FSS data analysis for the saturated values
with rsat ∼ N−α and tsat ∼ Nz̄: (a) and (b) for the noiseless random
case, where blue circle (red square) symbols represent the data starting
at a fully coherent (incoherent) state, and the slope sets (−α,z̄) of
naive fitting lines correspond to (−0.22, 0.44) for circles and (−0.23,
0.51) for squares; (c) and (d) for the noisy random case with T = 0.1,
where blue square symbols represent the data starting at an incoherent
state, and the slope set of naive fitting lines corresponds to (−0.24,
0.50); (e) and (f) for the noiseless regular case, where red square (blue
circle) symbols represent the scaling properties of the first (second)
peak in r↑(t) [described in the inset of Fig. 6(a)], and the slope sets
of naive fitting lines correspond to (−0.27, 0.42) for squares and
(−0.35, 0.74) for circles.

networks are considered. Such a change is also numerically ob-
served. A more detailed investigation for dynamic scaling [21]
will be provided elsewhere to complete the discussion of the
universality issue in synchronization as well as the transition
nature against the distribution type of natural frequencies.

Finally, we discuss how the strength of thermal noise (T )
affects dynamic scaling of r↑(t) at K = Kc(T ), which is based
on Fig. 7. Once we turn on thermal noise, the oscillatory
behavior for the noiseless case is washed out. For four different
cases that are described in Table I, we also compare one with
another. Moreover, all the FSS data analysis and dynamic
scaling results are summarized in Fig. 8 and Table I in as
detailed manner as possible.

V. SUMMARY AND DISCUSSIONS

In conclusion, we have systematically explored dynamic
scaling of synchronization in the Kuramoto model and investi-
gated scaling relations between our results and the earlier FSS
ones. We also found that dynamic scaling properties can also
clearly locate the critical coupling strength of synchronization
and estimate the values of critical exponents. As a final
remark, we addressed how the initial phases of oscillators
and the generation method of natural frequency sequences
affect dynamic scaling and the FSS exponent, which were
numerically confirmed.
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The merit of dynamic scaling, similar to the earlier work on
the short-time behavior of the two-dimensional φ4 theory [22],
is to provide another comprehensive view of synchronization
by the time evolution of the order parameter before the system
reaches the steady state against various initial setups. This of-
fers a guideline how to analyze a phase synchronization transi-
tion in finite systems without any steady-state limiting results.

We believe that dynamic scaling provides rich information
in analyzing real systems, including the transition nature and
the universality issue.
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