Scale-free random branching tree in supercritical phase
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We study the size and the lifetime distributions of scale-free random branching tree inkntviahches are
generated from a node at each time step with probalajlity kY. In particular, we focus on finite-size trees in
a supercritical phase, where the mean branching nu@bef ko is larger than 1. The tree-size distribution
p(s) exhibits a crossover behavior wh@n< y < 3; A characteristic tree sizg. exists such that fos < <,
p(s) ~s V-1 and fors > s, p(s) ~ s ¥/2exp(—s/sc), wheres; scales as- (C—1)~(V-1/(-2) Fory> 3,
it follows the conventional mean-field solutiop(s) ~ s~3/2exp(—s/sc) with s; ~ (C—1)~2. The lifetime
distribution is also derived. It behavests) ~t~(~1/(v-2) for 2 < y < 3, and~t~2 for y > 3when branching
stept < tc ~ (C—1)71, and/(t) ~ exp(—t/tc) for all y > 2 whent > t.. The analytic solutions are corroborated
by numerical results.

I. INTRODUCTION work [15], which follows a power lawp(s) ~ s~2. Here, we
consider finite-size trees in the supercritical phase. In spite
of the large mean branching number, some trees do not grow
infinitely even in the supercritical phase. For such finite-size
etrees in the supercritical phase, we derive the tree-size and
n§1e lifetime distributions using the generating function tech-

: . ique [16]. Distinguished from the critical case, the generat-
tree, in which the number of branchiegenerated from a node ing function of the tree-size distribution exhibits two singular

IS st_ochastu_: fOIIOW'.ng a power-law distributiog ~ k™, 'S" " pehaviors in the supercritical phase and thereby a crossover
particularly interesting here. Such trees can be found in var;

ious phenomena such as the trajectories of cascading fa”ubehawor of the tree-size d|str|_but|_on can arise wheny < 3

in the sandpile model on SF networks [1], epidemic spread: e present in deta!l the dgr|vat|on of al th_ese analyhc_ S0

ing on SF networks [2, 3], aftershock pr(;pagation 0 earth-lu.tlops in the foIIqwmg sectlons.. The t_ree—S|ze and. lifetime
G distributions predicted by analytic solutions are confirmed by

quake [4, 5], random spanning tree or skeleton of SF net-

works [6]. phylogenetic tree [7], etc. Here, SF network is thenumerical simulations. This is important in itself for under-
» PNYI09 C L - standing the branching trees whose structure changes drasti-
network with the degree distribution following a power law

cally depending on the phase. Since the branching tree ap-

~ —A — i i
P((ja(rlf(c)wml((a d t([)8ur}(§)<]-:-.rsstgr]:3r’stsrle1\c/:?l:?;? nﬂyg?t;{g%;eggﬁ\r/:n%eh?n roach can be applied to numerous systems, our results should
P brop e useful for future diverse applications as well.

trees [11]. However, most works are focused on the critica
case, where the mean branching num®ez 5, ko is equal

to 1, motivated by universal feature of scale invariance ob-
served in nature and society.

Recent studies, however, show that the structure of real- | o ;g consider the branching process that each node gen-
world networks may have been designed upon supercriticgl o adc offsprings with probability

trees [6]. Supercritical trees, where the mean branching num-

A tree is a graph with no loop within it. Owing to the sim-
plicity of its structure and amenability of analytic studies, tree
graph has drawn considerable attentions in many disciplin
of scientific researches. Scale-free (SF) random branchi

II. TREE-SIZE DISTRIBUTION

berC > 1, turn out to act as a skeleton of some fractal net- 1- S for k=0

works such as the world-wide web. Here skeleton [12] is _ Ly-1) - 1
. . o Ok ’ 1)

defined as a spanning tree formed by edges with highest be- ﬁk Y for k>1,

tweenness centrality or loads [13, 14]. A supercritical branch-

ing tree can grow indefinitely with a nonzero probability, \yhereC is constant in the range Of< C < Z(y— 1) /Z(y) with
which is the most marked difference from critic@l 1) or e Riemann-zeta functiaf(x), andy is larger tharg, ensur-
subcritical C < 1) tree that cannot grow infinitely. Moreover, ing thatZ(y— 1) is finite. ThenC is automatically identical to
the total number of offspringgt) generated from a single root he mean branching number, i.e. the average number of off-
(gncgstor) up to a given generatibean increase exponen- gpringsC — 52 ko generated from a node. Wheh< 1,
tially in supercritical trees and this is reminiscent of the small-tne number of offsprings decreases on average as branching
world behavior: The mean distance between nodes scales logroceeds and it vanishes eventually. Thus, branching tree has
arithmically as a function of the total number of nodes [11]. finite lifetime with probability one. Whe€ > 1, as branching

Due to the mean branching number being larger than lproceeds, the number of offsprings can increase exponentially
some supercritical trees may be alive in a very long time limit.with non-zero probability. The case Gf= 1 is marginal: Off-
The tree-size distribution of those surviving trees in the susprings persist, neither disappear nor flourish on average. A
percritical phase has been derived in the mean-field framesranching tree generated through the stochastic process (1) is



a SF branching tree, because its degree distribution follows a
power law,Py(kg) ~ kgy asymptotically. Degre&y of each y
node in the tree is related to the branching nuntbef that
node aky = k+ 1 but for the rootky = k.

Y

A. Generating function method 1

A tree grows as each of the youngest nodes generates their
offsprings following the probabilityy in Eq. (1). This evo-
lution is regarded as a process in a unit time step. When a
node generates no offspring with probabiligy it remains in-
active in further time steps. We defing(s) as the fraction
of trees with total number of nodasat timet. By definition, 0 W, 1 w
Po(s) = 8s1. Then,pr1(S) can be written in terms by (s) as

Prra(s) = Z)qk z Pr(S1)pe(S2) - pt(34)62!113571~ FIG. 1: (Color online) Schematic plot of the functigr= w/Q(w)
k=0  s1,%2,- = @ in the supercritical phase. Thiy/dw = 0 occurs atw = w, < 1.
Defining the generating functiong (w) = Sp_oqkw* and
B (y) = Yo 1 p(9)y®, and applying them to (2), one can ob- B. Thesingularityaty=y, >1
tain that
Ba(y) = yQ(BR(Y)). (3) Let us investigate how behaves ae decreases frorth to

) . T o 0. ForA > 0, asw decreases fror to w,, y increases from
Let us consider the tree-size distribution in thes o limit, 1toy, and then decreases to zero as shown in Fig.1, where
€., p(s) = limi—. pr(s) and its generating fUOCt!Oﬁ’(Y) = w, satisfying(d/dw)[w/Q(w)]|w=w, = 0 locates less than 1.
lim_... & (y). However, some trees may grow infinitely in the Thjs feature is distinguished from the solutian = 1 for the

supercritical phase, which makegy) = ysp(s)y® ill-defined  cyitical case. It is obtained thei, depends o as
aty=1. So we limit the summation i?(y) over finite trees

only, i.e.,(y) = Siinite s P(S)YS. This is equivalent to defining A for y> 3,
?(1) = limy_12(y). Then, Eq.(3) gives the relation in the 1w =e ~ 1 a/n) for y=3 -
t — oo limit, . =€, ,
1/(y-2)
P(y) = yQ(P(y)). 4 A for 2<y<3.
The valuey,, determined by the relation. = w,/Q(wx), lo-

The next step is to extract a singular part&gfy) from Eq. (4),

and then to derive the behavior pfs) for s> 1. cates at
The power-law form o€ in Eq. (1) results in the expansion n? for y>3,
of Q(w) aroundw = 1:
Q) BY) Y. —1=05,~ ¢ A?/In(1/A) for y=3, (8)
Y
Q) =1-C(1-w)+ =~ (1- @)+ AYV-D/0-2) for 2 <y<3.
Aly)(1-w)¥? (y# intege The curvey = w/Q(w) in the regionw > w, is just the ana-
1y 1 _ +--+4(5) Iytic continuation of the inverse function= ?~1(w) that is
oy 1— W)Y In(1-w) (y=intege) analytic forw < w, [17].
whereB(y) = C[Z(y— 2)/Z(y— 1) — 1], andA(y) = CT(1— Thedr|ght—hand—3|de of Eq. (6) fow < w, is expanded
y)/C(y— 1) with the Gamma functiofi (x). The inverse func- around, as
tiony = P~(w) is then expanded as o D
d © P By y=>Y.+ 22:](.\/) (0 — )", ©)
_ w y 2 n= )
= P YW= ———~1+01-w) - S (1- W)+
y () Q(w) ( ) 2 ( ) whenwis close tow, such that
Ay)(1—w)Y1 y # intege D
B ( SR max ot (o) < (10)
%(1—&))V*1In(l—oo) (y= intege) =
) N ~__ HereDg(y) is thenth derivative ofw/Q(w) atw,. Forn= 2,
whereA = C— 1. We recall thatA is positive (negative) in
the supercritical (subcritical) regime afidn the critical case. —B(y) for y>3,
Here we focus on the supercritical casefof- 0 and being Da(y) ~{ InA for y=3, (11)

very small, but the obtained result can be naturally extended
to largeA cases. —AV-3/-2) for 2<y<3.



This result is used for future discussions. Keeping only the
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quadratic termw, — w)? in Eq.(9), one obtains the leading 104 |- Tal cios =
singular behavior of?(y) atys,, T, i .
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In fact such a square-root singularity at= vy, is generic W g2l ) QQ\@ LT
regardless of the form of the branching probability when L0y o, N
Qo+ 01 < 1 [17], yielding the asymptotic behavior gi(s) 10 103 PR ) 7o
given by i : & .|
10-6 4‘ .‘I3‘ . ‘IZI .‘Il‘ . ‘ID‘ . ‘Il.
~ —3/2 _ 10° 10° 10° 10° 10 10
p(s) ~ b(a)s %2 exp(—s/s.), (13) s/s
WheL the coefiicienb(A) ~ a~taEy2) for 2 < v<3, FIG. 2: (Color online) The tree-size distributiqats) for y = 3.3 for
1/4/In(1/4) for y = 3 and constant foyy > 3, and's. = various values of in the scaling form Eq. (17). Dashed line is guide-

-1 ! . o
(Iny.)~=. line with a slope of-3/2. Inset: Dependence of the characteristic
sizes; on the mean branching number

C. Thesingularityaty=1

asymptotic behaviors in Egs.(13) and (16) differs from each
Whenw is far from w, such that the linear term with the other and thus there should be a crossover behavior in the tree-
coefficientA is not comparable to the next-order term, an-sijze distribution.
other singularity becomes dominant. The next-order term is The ranges ofo in which Egs. (9) and (14) are valid are
the quadratic term foy > 3 and the non-analytic term for closely related to those of for Egs. (12) and (15) and that
2<y<3. To be precise, if the conditiod,—w>>Afory>3,  of sfor Egs. (13) and (16), respectively. Here we find those

—(1-w)In(1—w) > Afory=3, and1—w>> AYV"2 for  ranges ofw, y, ands, and then determine the crossover in the
2 <y < 3, holds, then the linear term is negligible comparedtree-sjze distributiom(s).

with the next order terms, and then Eq.(6) is reduced to First, we study valid ranges of Egs. (9), (12), and (13).
BY) ) The coefficientDy(y) in Eq. (9) behaves as (1— w, )"
=2 (1-w for y>3, for n > y—1 due to the non-analytic ternil — w)¥Y~1 in

1 1 2 o Eqg. (6) wheryis not integer. Then, it follows thab,(y)(n+
Y179 —2(1-0)?n(l-w) for y=3, A ) Dmay)] ~1/(1—w.) = 1/¢.. Thus, the cjr?digiczrg (10)
AY)(1— )t for 2<y<3. can be rewritten as, — &g < W < w,, wheregZ ~ A for
y >3, & ~ A/In(1/A) for y =3, andeZ ~ AY(-2) for
The generating functio(y) then behaves as 2 <y < 3 from Eq.(7). The corresponding range pfis
Yo — 8 <Y<Y Whered; is given by~ A? for y > 3,
2(81&);/) for y> 3, ~ £?/In(1/A) for y= 3, and~ AY-D/v-2) for 2 < y < 3 by
using Egs.(8) and (12).
w=P(y)~1- |f;',<(11:33)‘ for y=3, (15) To find valid range of for p(s) in Eq.(13), we use the fact
1/(y-1) that the singular functional behavior @fy) aroundy = § is
(ﬁ) for 2<y<3. determined by that off(s) arounds = §, wherey andS are re-
lated agf® ~ 1. Then, one can find that = |In(y, — &)1 ~

From this result, one can obtain the tree-size distribution as (3. —8; ), sothatsg ~A~2fory> 3, A~2In(1/A) fory=3,
andA~(-D/(-2) for 2 < y < 3. For the rangs > 57, the for-
5732 for y>3, mula (13) is valid.
—3/2 _1/2 o Second, we check the validities of Eqgs. (14), (15), and
P(s) ~ q s¥*(Ins)™/2 for y=3, (16) (16). Comparing the magnitude of the linear term and the
sV (-1 for 2<y<3. next-order term in Eq. (6), we find that Eq. (14) is valid for
w< 1—¢g, wheree. behaves aA fory > 3, A/In(1/4) for
y =3, andAY(-2 for 2 < y < 3. The corresponding range
D. Crossover behavior between the two singularities of y for Eq. (15) is given ay < 1— &5, whereds ~ A? for
y> 3, 85 ~A%/In(1/A) for y= 3, andds ~ AV-D/-2) for
The two singular behaviors d@f(y) in the forms of Egs. (12) 2 <Y< 3. The corresponding range sfor Eq. (16) iss< 53
and (15) occurring a =y, andy = 1, respectively, enables With s5 = [In(1—85)|" ~ (&5) " given byss ~ A2 for
us to determine the ranges of sigavhere the formulae of y<3,s5 ~A~2In(1/A) fory= 3, andss ~ A~ V-9/(-2) for
Eqgs.(13) and (16) are valid. In particular, wherry < 3,the 2<y<3.



10° — T T T Tomig a7
AL C=12 =
A g Cc=13 .
10* - ‘l-‘\.\\ 0:14 n t
- . C=15
, *“u;\_ Cc=1.6 .
—_ 10° . Ax,’ C=1.7 ® -
2 L 10 Y 1
E: o -3.0 ‘-I&‘ .. 1
o 10° . Vg _
B o 107 ¢ 3 < x
n o o,
102 - 4 .
| 10% F E ‘é
-
10% | 10t “:A -
0.1 1 -
(C-l) =
Pl MY R EY B Ll r
10 10 10° 10 10° 10 O . * 1
s/s, | r
FIG. 3: (Color online) The tree-size distributiqats) for y = 2.5 for r :
various values of in the scaling form Eq. (19). Dashed line is guide- r* """"""
line with a slope of—5/3. Inset: Dependence of the characteristic

sizes; on the mean branching numb@r

As already noticed, the crossover sizgS s;, ands.  FiGg, 4: (Color online) Schematic plot of the functiatr/dt =
are consistent for all values (ny|th|n A-dependence, and Q(r) —rinthe Supercritica| phaséa/ar)(dr/dt) = 0 occurs ar,
thereby, we use the notatiggafor all of them. The overall be-  at whichdr/dt is denoted as,.
havior of the tree-size distribution is obtained by combining
Egs. (13) and (16). For> 3, there is no need to introduce a

r(t) isrelated ta(t—1) as

p(s) ~s ¥ 2exp(—s/s) (v>3), (17) o )
rt) = Z)qk[r(t - =Q(r(t-1)). (20)
for all s. And s ~ A~2. As A increases, the cut-off, de- k=
creases and the exponential-decaying pattern prevails. Thus, we are given approximately a differential equation for
Wheny = 3, p(s) is given by rt),
s92(ng) 2 fors<s, I~ ) = Q) -1, 1)
p(s) ~ (y=3) (18) dt
s ¥2exp(—s/s) fors> s, Expanding the right hand side of Eq. (21) around 1, one

can see its asymptotic behavior. Using Eg. (5) again, we find
wheres. ~ A~2In(1/A). Similarly, for2 < y < 3, we find that dr/dt in the long time limit as follows:

dr B(Y)

s V(-1 for s< s, — = Q) —r==A1-r1)+—2(1-r)*>+...
o N{ = aey<3) 19 G = QD (1-nN+—=-(1-n+
s32exp(—s/s;) fors> s, Aly)(1—r)v1 (y # intege)
(-1Y -1 i +-+(22)
where boths, ~ A~-1/-2) AsA — 0, s; diverges, and the oy A=Y In(1—r) (y=integey

power-law behavior prevails. o . .
We invoke numerical simulations to confirm our analytic Whaj vlvelczn seein thls(;elatlon IS that_lthe vall:]e’of, rz]ero
solutions. Figs. 2 and 3 show the tree size distributions foFltr = L It decreases asdecreases until it Ceac eswhere
y=3.3andy= 2.5in the scaling forms, Eq. (17) and Eq. (19), (d/dr)[Q(r)f— wr:r* ~ O.holi.:,. Passmrg]]*, I’ Increases as
respectively. The data are well collapsed into the predictec‘ijec.reases _urt er, crossing te-=0as s ownin '.:'g' 4'. .

formulas for differenC values for both cases. First, as in the case ab/Q(w), two singularities exist in

Q(r) —r. Forr close tor,, Eg. (22) is expanded as

< Gn(Y)

n!

I ! _r\n
lll. LIFETIME DISTRIBUTION rer+ 2 (re—1)"% (23)
wherer, = Q(r.) —r. < 0andGp(y) is then-th derivative of

Next we solve the lifetime distributioé(t). This is defined Q(r)—r atr*. Whenr is close tar, such that

as the probability that the branching process stops®i de-
rive ¢(t), we first introduce the probability that the branching Gnra(y)

process stops at or prior to timedenoted by (t). Then/(t) a2 Gn(y)(n+1) (r—n <1, (24)



one may neglect higher order terms, keeping only the e T
guadratic term i, —r as 10* | N c-104 = A
A LT C=1.0 .
d Ga(y) I el i
r / 2(Y 2 2| LN T =115 v |
— I+ (re —r)~. (25) 10 T Sy, Cs120
e~ 2 I e ]
. . . L D0 1o 10 .le“x
The solution to the above differential equation is = T ) RO
()~ 1) - 22 e T
- dt_1 - o :
0% 10t . o
where r(o) = r, —a and a = /2|r.[/Gz(y), andt, = L oo o3 ! o
/\/2IrL|Gz(y). The lifetime distributior/(t) =r'(t) is then 10-610_3 ; 152 ; 1;1 ; 1<In° a—"
given by £/t

/t
228 ~ Zjle*t/t*. (27)  FIG.5: (Color online) The lifetime distributiof(t) for y=3.3in the

® t*(é/t* -1 scaling form Egs. (31) and (32). Dashed line is guideline with slope
. ) ... —2. Data for smalkt are deviated from the data collapse, indicating
Second, following the same steps taken for the singularitieg,at our solution is valid for largeonly. Inset: Dependence of the
of P(y), we find another approximate relation betweeand  characteristic timé on the mean branching numb@r
r in the region ofr (t) where the next order term in Eq. (22) is
much larger than its linear term as follows:

10® —

JRAMAN R =T N
B(v) 2 i LR gL
dr T(l— l’) for Y> 3, 108 - . = .‘ g;igg ,
L M4 AR =110 v
ri ~2(1-r)2In(1—r) for y=3, (28) i M ’ cass -]
Aly)(1—r)¥1 for 2<y<3. = 108 ‘ ",
= 1P| , L0 “ i
Their solutions are, in long time limit, given by e ol el %@% ] ¢ ]
t1 for y> 3, h ‘
10% - 101) 01 o1 1 C
1-r(t)~<{ t71(nt)~t for y=3, (29) - ' €1 .
-4 TR EEEET | L riul il RN
t—1/(v-2 for 2< y<3. 10 10 102 17'1 10° 10t
t/t,

From these results, the lifetime distributions are obtained as
FIG. 6: (Color online) The lifetime distributiof(t) for y=2.5in the

t2 for y>3, scaling form Egs. (31) and (32). Dashed line is guideline with slope
D) 1 —3. Data for smalt are deviated from the data collapse, indicating
£t) ~ ¢ t7=(Int) for y=3, (30)  that our solution is valid for largeonly. Inset: Dependence of the

t-0-D/-2) for 2 < y<3 characteristic timé&: on the mean branching number

Different behaviors of the lifetime distribution shown in 10 Eq. (29) leads commonly o< t,, ~ A-L. One can find
Egs. (27) and (30) suggest the presence of a crossover beh%hét tﬁe two characteristic times, *azndt éndt scale in
ior. The characteristic time that distinguishes the two behav; +2) *
iors for giveny can be found by considering the valid rangesthe same manner, so that they are denotet asmmonly.
of t for Egs. (27) and (30), respectively. When the Condi_Therefore, we conclude that the lifetime distribution behaves

tion of Eq. (24) is fulfilled, Egs. (26) and (27) are valid. The

condition is approximately represented in different form of t—2 for y> 3,
r.—r < 1—r, sinceGy(y) ~ (1—r,)Y"1"". From Eq. (22), , .
one can find the value df—r, for differentys: 1—r, ~ A ()~ t7=(nt)=>  for y=3, (31)

fory>3,A/In(1/A) for y= 3, andAY -2 for 2 < y < 3, re-
spectively. Applying these conditions to Eq. (26), it is found
that Egs. (26) and (27) are validtifs> t,; with t,; ~ A~ 1 irre-
spective ofy as long ay > 2.

Egs. (29) and (30) are valid when the linear term is much () ~ete  for y>2 (32)
smaller than the next order term, which is satisfied when
r>Afory>3,1-r>A/In(1/A) fory=3,andl—r>  whent > t.. The analytic solutions for the lifetime distribu-
AY(-2) for 2 < y < 3, respectively. Applying these conditions tion are checked by numerical simulations in Figs. 5 and 6.

t=0-D/0-2) for 2<y<3,

whent <« t; ~ A1, and
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Data in smallt regime are somewhat deviated from the data-ic sizes; increases as the expongrpproaches 2. This leads
collapsed formula, indicating that our solution is valid in largeto an interesting result: A larger-size tree can be generated for
t regime. smaller value of the exponegt However, the probability to
have such a large-size tree becomes smaller as the exponent
approaches 2, because the expongat— 1) for the tree-size
IV.  CONCLUSIONS AND DISCUSSION distributionp(s) becomes larger.

Our main results are Egs. (17), (18), and (19) for the The Iifetimejistribution also exhibits a crossover behavior

tree-size distribution when trees are finite: Contrary to the?tte ~ (€ —1)7". It follows Eq. (31) fort <t and (32) for
case ofy > 3 for which the tree-size distributiop(s) be- >t
haves asv s %/2exp(—s/s;) for all s with s, ~ (C—1)72,
a crossover behavior occurs st~ (C — 1)~(-1/(v-2) for This work was supported by KRF Grant No. R14-2002-
2<y<3 Fors<s, p(s)~s¥0b and fors> s,  059-010000-0 of the ABRL program funded by the Korean
p(s) ~ s 3/2exp(—s/s). This result is complementary to government (MOEHRD). Notre Dame’s Center for Complex
the previous mean-field solutiguns(s) ~ s~2 for infinite-size ~ Networks kindly acknowledges the support of the National
tree. From our solutions, it is noteworthy that the characterisScience Foundation under Grant No. ITR DMR-0426737.
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