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Biconnectivity of the cellular 
metabolism: A cross-species study 
and its implication for human 
diseases
P. Kim1, D.-S. Lee2 & B. Kahng1

The maintenance of stability during perturbations is essential for living organisms, and cellular 
networks organize multiple pathways to enable elements to remain connected and communicate, 
even when some pathways are broken. Here, we evaluated the biconnectivity of the metabolic 
networks of 506 species in terms of the clustering coefficients and the largest biconnected 
components (LBCs), wherein a biconnected component (BC) indicates a set of nodes in which every 
pair is connected by more than one path. Via comparison with the rewired networks, we illustrated 
how biconnectivity in cellular metabolism is achieved on small and large scales. Defining the 
biconnectivity of individual metabolic compounds by counting the number of species in which the 
compound belonged to the LBC, we demonstrated that biconnectivity is significantly correlated 
with the evolutionary age and functional importance of a compound. The prevalence of diseases 
associated with each metabolic compound quantifies the compounds vulnerability, i.e., the 
likelihood that it will cause a metabolic disorder. Moreover, the vulnerability depends on both the 
biconnectivity and the lethality of the compound. This fact can be used in drug discovery and medical 
treatments.

Cellular metabolism enables the execution of numerous cellular functions on the basis of the genetic 
information contained within living organisms. Metabolic reactions and compounds are intricately 
wired, and their organization may change during evolution in fluctuating environments over long peri-
ods of time1–5. The structures of various cellular networks have been studied for the past decade6–15 and 
are quite different from the structures of random networks16–18; they are characterized by enhanced 
modularity19,20 and a power-law distribution of the number of links (degree) of each node21,22. Efforts 
have been made to understand the origin and implications of the anomalous yet universal features of 
biological networks. For example, the gene duplications and mutations that accompany the inheritance 
of interaction links have been proposed as the mechanisms that result in broad degree distributions in 
cellular networks5. The topology of human cellular networks has also proven to be relevant to the patho-
genesis and prevalence of clinical disorders23–27.

In a networked system, a path is necessary for the communication and interaction of two elements. A 
connected component, which is a set of nodes wherein every pair of nodes is connected by one or more 
paths, can act as a functional module, which comprises smaller modules in charge of different roles. The 
largest connected component (LCC) contains the core part of a given network28. Theoretical studies have 
demonstrated that networks with power-law degree distributions, referred to as scale-free (SF) networks, 
are capable of forming an LCC that is comparable in size to the total number of nodes, even with only a 
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small number of links. This finding suggests that SF networks can reliably execute their core functions, 
even with the loss of a significant fraction of links29.

Small perturbations are often more common than large ones. Cellular networks need to maintain 
their regularity during small but frequent perturbations; therefore, a single path between two elements 
may be insufficient for the robust maintenance of their normal states. If more than one disjoint path 
exists between two nodes, the nodes can remain connected and therefore function normally, even with 
some loss in one path. The impact of multiple pathways has recently been investigated in various con-
texts, including the epistatic interactions of different enzymes in yeast metabolism30, the pair-wise inter-
actions of drugs31, and the synthetic lethality of bacterial metabolism32,33.

The reaction pathways of metabolism are organized for the survival and reproduction of a species34. If 
there are alternatives for many pathways, the robustness under perturbation is increased, thus endowing 
a species with a high degree of resilience. However, the establishment of backup pathways may have a 
biochemical and entropic cost; the establishment of a pathway can require biochemical resources, and it 
can take substantial time for a mutant equipped with a backup pathway of interest to appear. Therefore, 
the organization of alternative or backup pathways can indicate the ways in which living organisms 
remodel their cellular networks towards high resilience during evolution. In this work, we analyzed 
the structures of the metabolic networks of hundreds of living species to determine the organization of 
backup pathways. We consulted the BioCyc database version 13.18 to construct the bipartite metabolic 
networks of 506 species and to numerically determine their clustering coefficients and biconnected com-
ponents (BCs). The clustering coefficient quantifies the abundance of diamond-shaped subgraphs that 
involve two distinct reactions that process two metabolites. In graph theory, two nodes are considered 
to be biconnected if there are two disjoint paths connecting them. A BC is a subset of nodes and links 
in which every pair of nodes is connected by two or more disjoint paths and therefore is expected to be 
robust against perturbations because most pairs of nodes would remain connected even if some pathways 
break.

We demonstrated that real networks have, compared with randomly wired networks that preserve 
degree distributions of both metabolites and reactions, greater clustering coefficient but smaller larg-
est biconnected component(LBC), and indicating the scale-dependent organization of pathways for the 
maintenance of order. This feature is preserved even after coarse graining of nodes into modules. We 
subsequently defined the biconnectivity of individual compounds by counting the number of species 
in which the compound belonged to the LBCs. The establishment of a detour pathway is determined 
by the competition in terms of cost and benefit. Evolutionarily old compounds, identified here with 
those present in many species, were demonstrated to have high biconnectivity because they are associ-
ated with many backup pathways. Additionally, the important compounds, which may be lethal if their 
concentrations reach abnormal levels and which were identified with compounds located close to the 
biomass components, exhibited high biconnectivity, thus suggesting that abundant backup pathways are 
associated with compounds of functional importance. The biconnectivity of each compound is related 
to the maintainability of its normal state. Therefore, the likelihood of disease occurrence related to a 
compound is expected to depend on the compounds biconnectivity. By identifying human diseases, the 
pathogenesis of which could potentially involve the abnormality of each metabolic compound8,24,25,35–37, 
we demonstrated that the prevalence of the associated diseases was negatively correlated with biconnec-
tivity. Disease prevalence should also depend on the lethality of the compound, and we demonstrated 
that the correlation between the biconnectivity and the lethality of metabolic compounds facilitates an 
understanding of the disease prevalence patterns.

The work we present here is an extensive and quantitative analysis of pathway organization across 
hundreds of species. The obtained results offer insights into the evolutionary pressure imposed on the 
topology of metabolic networks that should be stable while interacting ceaselessly with fluctuating envi-
ronments. We discuss the implications of our findings for human diseases and drug target searches.

Results
Biconnectivity of the metabolic network of each species.  In the bipartite metabolic network for 
each species, a reaction is connected by undirected links to all its substrates and products [Fig. 1(a–c)]. 
Although the reversibility of individual reactions may provide important information, some irreversible 
reactions may be forced in the reverse direction under certain physiological conditions of temperature 
or metabolite concentrations38–40. The numbers of metabolic reactions, Nr, compounds, Nc, and links, L, 
are not broadly distributed over species [Fig. 1(d)]. In contrast, the number of reactions that process a 
compound is highly heterogeneous. The distribution of the degree k of a compound follows a power-law 
( ) γ−~p k k , with the exponent γ, which ranges between 2 and 3 [Fig. 1(e)]6.

In this study, we applied the compound-centric view in considering the biconnectivity of the met-
abolic networks, because the stable production and consumption of metabolites is the most important 
function of metabolism. Moreover, the presence of two distinct paths is more meaningful for a pair of 
compounds than for a pair of reactions. When two metabolites are connected by two pathways, the pro-
duction of one metabolite from the other is conducted along two pathways and can occur even if one 
pathway is broken. However, two pathways that connect two reactions do not guarantee the stability of 
both reactions.
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The clustering coefficient of each metabolic network was computed, as described in Methods. Using 
the algorithm in ref. 41, we obtained the connected components and the BCs of each metabolic network 
[Fig. 2(a)]. A metabolic network typically consists of a single LCC and many small connected compo-
nents. The LBC lies inside the LCC, and the fraction of the nodes that belong to the LBC, = /m S N2 2 , 
with S2 the number of nodes in the LBC and = +N N Nr c, characterizes the biconnectivity of a net-

Figure 1.  Properties of the metabolic networks of the 506 species investigated. (a–c) Bipartite networks 
of compounds and reactions of (a) Ashbya gossypii ATCC 10895 (Nc =  46 and Nr =  24), which is known to 
have the smallest genome among eukaryotes60. (b) Burkholderia sp. (Nc =  1951 and Nr =  1888) and (c) 
human (Nc =  1513 and Nr =  1451). Here, Nc and Nr represent the numbers of compounds (red squares) and 
reactions (blue circles). Among the 506 species considered in this work, Burkholderia sp. has the largest 
metabolism and Ashbya gossypii has the smallest. (d) Distribution of Nc and Nr. Inset: Distribution of the 
mean degree = /k L N2  with = +N N Nc r. (e) Distribution of the exponent γ, which characterizes the 
degree distribution for compounds ( ) γ−~P k k .
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Figure 2.  Biconnected components (BC). (a) A network of 5 compound nodes (red squares) and 5 
reaction nodes (blue circles) has two BCs. BC 1, of size 5, is the LBC; thus, m2 of this network is 
= / = .m 5 10 0 52 . (b) Distribution of the relative size = /m S NBC BC  of a BC in the 506 species considered. 

Note that the fraction of nodes in each BC other than the LBC is less than 0.05.
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work on the largest scale. Except for the LBC, other BCs are quite small in a given metabolic network 
[Fig. 2(b)].

For comparison, we generated three ensembles of rewired networks; they are obtained by relocating 
of randomly selected links completely randomly (‘rewired-all’), by changing the end reactions of the 
links to randomly selected reactions, which preserves the degree of every compound (‘rewired-c’), and 
by exchanging the neighbor reactions of two metabolites via crosslinking, which preserves the degree 
distributions of both compounds and reactions (‘rewired-cr’).

The clustering coefficients, C, and the fractions of the LBC, m2, were plotted as a function of the mean 
degree = /k L N2  for the real and the rewired networks of the 506 species in Fig.  3(a,b). On average, 
75% of the nodes of the real networks belonged to the LBC, i.e., = .m 0 752  and = .C 9 5. The clus-
tering coefficient was greater than any of the considered rewired networks, thus suggesting enhanced 
biconnectivity on a small scale. The fraction of the LBC was smaller than the rewired-all and the 
rewired-cr networks; however, it was larger than the rewired-c networks.

It has been shown42,43 that m2 depends on k and the large-k behavior of the degree distribution p(k). 
When k is not too small, the random SF networks have smaller LBCs than the Erdös-Rény (ER) net-
works, which are constructed by randomly assigning links and thus have narrow Poisson degree distri-
butions. Therefore, the order of the m2s of the real, rewired-all, and rewired-c networks can be understood 
by noting that the rewired-all networks have narrower degree distributions for both reactions and com-
pounds compared with the real networks, whereas the rewired-c networks have broader degree distribu-
tions for reactions than the real networks. It should be noted, however, that in large-scale failures in 
which a significant number of links are lost and k becomes quite small, hub nodes, the abundance of 
which is responsible for broad degree distributions, play a dominant role as seeds for building connected 

Figure 3.  Biconnectivity of the metabolic networks. (a) Plot of the clustering coefficient C versus the mean 
degree k. Each of the 506 data points grouped as ‘rewired-all’ (‘rewired-c’, ‘rewired-cr’) is the average over 
100 rewired-all (rewired-c, rewired-cr) networks generated for each species. Inset: Both −( ) ( − )C C creal rewired  
and −( ) ( − )C Creal rewired cr  are positive, which indicates that C(real) is larger than the rewired networks. (b) Plot 
of the fraction of the LBC, m2 versus the mean degree k. Inset: −( ) ( − )m m2

real
2

rewired cr  is negative, which 
indicates that the m2 of the real networks is smaller than the rewired-cr networks. (c) Distribution of the 
size of a module Nintra. P(Nintra) is broader for the real networks than the rewired networks. Inset: Plot of the 
number of modules Nmod versus k. (d) Plot of the clustering coefficient Cmod versus the mean degree 

= /k L N2mod mod mod for the modular networks. The modular network is a unipartite network; thus, Cmod is 
evaluated following the conventional definition, ∑ /∑, , , ,A A A A Ai j k ij ik jk i j k ij ik where Aij is the adjacency 
matrix of the modular network. (e) Plot of m2,mod versus the mean degree = /k L N2mod mod mod for the 
modular networks.
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components and BCs, leading to larger LCCs and LBCs than without hubs43,44. Therefore, the abundance 
of hub nodes facilitates large-scale failure survival.

The topology of metabolic networks exhibits various features, such as modularity19,20, which may be 
responsible for the difference between the real networks and the rewired-cr networks. Cellular metabo-
lism consists of biochemical pathways, such as glycolysis, the TCA cycle, and fatty acid pathways45, and 
the graph-theoretical approaches enable us to computationally identify the modules that exhibit high 
intraconnectivity and low interconnectivity20,46. In the application of the algorithm utilizing the maximi-
zation of modularity47, one can obtain the modules, which provide a coarse-grained view of the cellular 
metabolism in each species. We identified a larger number of modules Nmod in the real networks than 
any ensemble of the rewired networks. These modules were non-uniform in size compared with the 
rewired networks [Fig. 3(c)]. The networks of Nmod nodes and Lmod links, in which two nodes (modules) 
are connected if a link connects the nodes that belong to them in the original network, exhibit clustering 
coefficients and LBCs larger than the modular networks extracted from the ER networks [blue lines in 
Fig.  3(d,e)] for a given mean degree = /k L N2mod mod mod. In the real networks, compared with the 
modular networks from the rewired-cr networks, the modular clustering coefficients were similar; how-
ever, the modular LBC, m2,mod, was substantially larger in the rewired-cr networks than the real networks, 
similar to m2. Given the prominent modularity of metabolic networks19,20, the smaller values of m2, a 
measure of the long-range biconnectivity, of the real networks than the rewired-cr networks can be 
related to the larger number of modules and their low biconnectivity. The backup pathways are subse-
quently expected to be selectively established for pathways that require a high degree of stability.

Although the specific modules in a given network may differ depending on the algorithm used, we 
demonstrated that our results were not changed even when we used a different algorithm, such as the 
algorithm in48 (Fig. S2). To further confirm the robustness of our results, we performed the same analysis 
after removal of the highly abundant compounds that are involved in numerous reactions, such as pro-
tons, water, adenosine triphosphate (ATP), and carbon dioxide49, in the metabolic networks of the stud-
ied species, and our results remained valid (Fig. S3). For example, even without currency metabolites49, 
the fraction of the LBC is only mildly changed ( = . )m 0 732 . We also analyzed the well-curated meta-
bolic reconstructions of two strains of Escherichia coli and Helicobacter pylori, Pseudomonas putida, 
Staphylococcus aureus, Methanosarcina barkeri, Mycobacterium tuberculosis, Saccharomyces cerevisiae, 
and Homo sapiens from the BiGG database50; our results did not qualitatively change, although some 
trends were difficult to identify because of the small number of data points [Fig. S4].

The evolution of species, including speciation, may have occurred along with the recruitment of new 
pathways, which enhanced stability, or the removal of those that were merely redundant, thus leading to 
the gradual variation of the biconnectivity of metabolism1,2. Using the National Center for Biotechnology 
Information (NCBI) taxonomy database for species classification according to morphological studies and 
molecular information51,52, we computed the network distance, dij, which represents the length of the 
shortest path in the phylogenetic tree, between every pair of species i and j to define as the evolutionary 
distance. Considering the normalized difference of m2 between two species i and j, defined as 

δ =,
−

+
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, we demonstrated that δ δ/( ) ( − ) /m m[ ]2

real
2

rewired all 1 2 increased with the evolutionary dis-
tance dij; the Pearson correlation coefficient (PCC) was 0.017, and the P-value (P) was smaller than 10−8. 
The exponent 1/2 was introduced to allow the small values of δ δ/( ) ( − )m m2

real
2

rewired all  to significantly 
contribute to the average over species pairs.

Biconnectivity of individual metabolic compounds.  The cross-species analysis of the BCs of the 
metabolic networks indicates the heterogeneity of the metabolic compounds that participate in cellular 
metabolism. Let us equate the ratio of the number of species that have a compound i in metabolism to 
the total number of all considered species by the popularity fi

53. Compounds with a large f, and the 
enzymes that bind to them, may have been introduced to metabolism in the early stages of evolution and 
inherited by many contemporary species. Therefore, compound popularity can be a measure of evolu-
tionary age. The popularity is broadly distributed, and follows a power-law distribution: ( ) α−~P f f , 
where α . ± . 1 0 0 1.

If a compound belongs to the LBC, it can maintain a connection to most core compounds; thus, its 
concentration can be readily stabilized, even when some pathways are inactive. We define the biconnec-
tivity, bi, of a compound i, as the ratio of the number of species that have compound i in the LBC to 
the number of all species having it. The compound biconnectivity is expected to be related to the main-
tainability of the normal state against perturbations by utilizing alternative pathways. We demonstrated 
that among 6058 compounds 3071 compounds had b =  0, which indicates that they were not protected 
by backup pathways in their communication with the core compounds in any species. Many of these 
unprotected compounds were not isolated; they belong to the LCC. Defining the (single) connectivity 
gi as the ratio of the number of species that have a compound i in the LCC to the number of all species 
that have it, we demonstrated that 5097 compounds had g =  1 and 2545 compounds had g =  1 and b =  0. 
We hypothesize that the abnormal concentration of a compound with low biconnectivity is not suffi-
ciently lethal to the cells overall function as to overcome the entropic and biological costs of establishing 
backup pathways. In contrast, 971 compounds, approximately 16% overall, belonged to the LBC in all 
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species. Chlorides, 3-beta-hydroxysterols, brassinosteroids, trans-polyisoprenyls, amino acids, quinones, 
folates, and uridine diphosphate glucose were the first few types of compounds that exhibited high bicon-
nectivity. However, organosulfur, antibiotics, and sugar-alcohols exhibited quite low biconnectivity. The 
biconnectivity distribution P(b) peaked both at b =  0 and b =  1, whereas the connectivity distribution 
P(g) peaked at g =  1 [Fig. 4(a)].

We also evaluated the biconnectivity of each of the 924 pathways, as listed in the BioCyc database, via 
the mean biconnectivity of the involved compounds. When the analysis was restricted to the pathways 
consisting of more than 10 reactions, glycolysis had the largest biconnectivity b =  0.999, which indicates 
that the compounds involved in these pathways had that value of biconnectivity on average. Following 
the glycolysis pathways were L-histidine biosynthesis (b =  0.991), L-lysine biosynthesis (b =  0.989), aden-
osylcobalamin biosynthesis (b =  0.973), mixed acid fermentation (b =  0.962), and folate biosynthesis 
(b =  0.953). In contrast, nicotine degradation (b =  0.324) had the smallest biconnectivity, followed by 
the tRNA charging pathway (b =  0.382), the gibberellin inactivation pathway (b =  0.436), the phospholi-
pase pathways (b =  0.524), and mycolate biosynthesis (b =  0.557).

Evolutionarily old compounds may have had more chances to acquire alternative pathways than young 
compounds over time, which effectively reduced the cost of establishing backup pathways. Relating the 
popularity f to the evolutionary age of each compound, one can expect a positive correlation between 
the popularity f and the biconnectivity b, which was confirmed by our analysis shown in Fig. 4(a). The 
correlation between the connectivity g and f was substantially weaker.

The metabolic compounds occupy different locations in each metabolic network and play different 
roles of varying importance in metabolism. On average, the compounds located close to other com-
pounds may be lethal because their abnormality can quickly spread to other compounds. The deprivation 
of essential enzymes can halt the production of the biomass components, as well as cell growth54. For 
each compound i, we evaluated the average of the inverse of the network distance to the biomass com-
ponents and denoted it by the closeness ci to represent its potential lethality. We used the union of the 
biomass components identified for several well-studied species55, which may deviate from the true list of 
biomass components of each species. In ref. 55, the biomass components of B. subtilis, E. coli, H. pylori, 
S. aureus, M. barkeri and S. cerevisiae have been experimentally determined. Here, we consider the 
lethality of a compound as the probability that local perturbation around the compound can threaten the 

Figure 4.  The cross-species biconnectivity of the metabolic compounds. (a) The average (single-) 
connectivity g  and the biconnectivity b  of the compounds of given popularity f. The correlation between g 
and f was PCC =  0.102 and between b and f was PCC =  0.358. Inset: The distributions of g and b. (b) Plot of 
the average biconnectivity b  of the compounds of given closeness c. The correlation between b and c is 
PCC =  0.389. Inset: (left) Distribution of the closeness c. (right) Plot of b  versus c with the log-binned data 
used. A crossover was identified from α~b c  with α . 0 4 (solid line) to α . 1 7 (dot-dashed line).
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most important function of the metabolic network that generates the biomass components; furthermore, 
the compounds’ lethality may arise in a context other than their impact on biomass components. 
Figure 4(b) indicates that the biconnectivity b increases with the closeness c. This correlation implies that 
the metabolic networks have many loops around the biomass components, and the backup pathways are 
not equally distributed but concentrated around functionally important (lethal) compounds. Interestingly, 
we identified a crossover behavior b as a function of c: α~b c , with α . 0 4 for small c and α . 1 7 for 
large c, which indicates that the evolutionary pressure for backup pathways is substantially stronger for 
the compounds with high lethality.

Implications of biconnectivity on the prevalence of human diseases.  The malfunction of an 
enzyme accompanied by perturbation in the concentrations of related compounds is not confined and 
may spread in metabolism, which could result in a disorder on a large scale. Backup pathways help 
suppress these cascading failures. Human diseases, particularly metabolic diseases, may arise from 
cellular-level failures; thus, the prevalence pattern of various diseases may reflect the organization of 
backup pathways.

Inherited disorders are associated with the mutations of specific gene(s) and have been archived, e.g., 
in the Online Mendelian Inheritance in Man (OMIM) database35. In cases in which a disease gene gener-
ates enzymatic proteins that catalyze certain reactions, the perturbations of the compounds processed by 
the reactions may be involved in the pathogenesis of the associated diseases24,37. We consulted the OMIM 
database35 and the BioCyc database8 to identify the diseases potentially associated with each metabolic 
compound [Fig. 5(a)]. To assess the likelihood that a compound’s fluctuation would eventually lead to a 
human disease, we computed the mean prevalence of the associated disease. Here, the prevalence is the 
fraction of the patients diagnosed with a given disease among all patients in the Medicare dataset24,25,36,37. 
For each compound i, we took the mean prevalence of the associated diseases as its vulnerability vi.

The human metabolic network has 1513 compounds that are processed by 1451 reactions, and only 
754 compounds are associated with 477 diseases. The compounds that have multiple pathways to the core 
compounds are less likely to cause diseases than the compounds without multiple pathways. In Fig. 5(b), 
the disease compounds in the LCC but outside the LBC of the human metabolic network have an average 

Figure 5.  The vulnerability and the biconnectivity of the metabolic compounds. (a) The diseases 
associated with glycerate-2P. The compound (red square) is processed by three reactions (blue ellipses) 
denoted by the Enzyme Commission (EC) number. The genes (triangles) that generate the enzymatic 
proteins catalyzing the reactions are also shown, some of which are involved in the pathogenesis of three 
inherited diseases (trapezoids). The vulnerability of glycerate-2P is given by the mean of the prevalence 
values of the three diseases, = . × −v 9 21 10 4. (b) Plots of the average vulnerability v  of the metabolic 
compounds in the LBC (∈ LBC), outside the LBC but in the LCC (∉ LBC, ∈ LCC), and outside the LCC (∉ 
LCC) of the human metabolic network. (c) Distribution of the biconnectivity b for the three groups of the 
compounds considered in (b). (d) The average vulnerability v  of the compounds of a given biconnectivity b 
and closeness c. The correlation between v and b was negative, = − . ( = . )PCC P0 0604 0 05 . In contrast, the 
correlation between v and c was not significant, = . ( = . )PCC P0 0220 0 29 . (e) Plot of v  versus b for the 
compounds in the LBC. (f) Plot of v  versus b for the compounds outside the LBC and in the LCC. (g) The 
vulnerability v  as a function of biconnectivity b and closeness c.
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vulnerability = .v 0 012, which is larger than = .v 0 0075 of the human LBC (P =  0.002). In contrast, 
the disease compounds located outside the LCC have = .v 0 0025, which is smaller than the com-
pounds in the LCC because local fluctuations in the small components do not affect the LCC in which 
most elements reside.

An example of a disease that is associated with low-b and a high prevalence is depressive disorder 
with an accelerated response to antidepressant drug treatment, with = .v 0 00815. It is associated with 
peptidyl-proline, in which b =  0. Hyperproteinemia associated with angiotensinogen in which b =  0 has 
= .v 0 004. Renal carcinoma associated with 12 compounds that have = .b 0 21 has = .v 0 0038. 

Other examples include renal tubular dysgenesis (b =  0, = . )v 0 0022  and dyskeratosis congenita 
(b =  0.0046 and = . )v 0 0005 .

Whether a disease compound belongs to the LBC and the LCC of the human metabolic network 
depends on the cross-species biconnectivity b. The disease compounds outside the human LBC have 
b =  0, with few exceptions [Fig. 5(c)]. Many disease compounds in the human LBC have b =  1, whereas 
some have b <  1. Diverse features of the human metabolic networks may contribute to preventing local 
perturbations from spreading, and the compound biconnectivity may provide the relevant information. 
The compounds with high biconnectivity are less vulnerable than the compounds that exhibit low bicon-
nectivity. In Fig.  5(d), the vulnerability v is shown to decrease with the biconnectivity b 
( = − . , = . )PCC P0 0604 0 05 . This correlation was stronger when we disregarded the currency metabo-
lites in each metabolic network ( = − . , = . )PCC P0 078 0 03  [Supplementary Material]. The vulnerability 
of the 498 compounds in the human LBC exhibited a negative correlation with their biconnectivity 
( = − . , = . )PCC P0 067 0 07 , thus implying that the compounds with high biconnectivity are stabilized 
better than the compounds with low biconnectivity, while they are all in the human LBC.

The vulnerability of a compound depends on its lethality and its capacity to maintain its normal state, 
which can be roughly represented as follows:

∝ .
( )

vulnerability
lethality

maintainability 1

The closeness ci of a compound can quantify its lethality, and the biconnectivity bi represents a meas-
ure of the maintainability of the normal state under perturbations. The vulnerability v is expected to 
increase with the closeness c if other conditions are identical. However, the lethality and the maintaina-
bility are not independent of each other; evolutionary pressure is imposed to enhance the maintainability 
of lethal compounds, as supported by the correlation between the closeness c and the biconnectivity b 
shown in Fig. 4(b). The correlation between b and c makes it difficult to identify their independent con-
tributions to vulnerability, as indicated in the weak correlation between v and c in Fig. 5(d). Interestingly, 
for compounds outside the human LBC, a higher biconnectivity is associated with greater vulnerability 
[Fig. 5(f)], which contrasts the negative correlation identified for the disease compounds in the human 
LBC. To understand the reason for this difference, let us assume that the lethality and the maintainability 
are proportional to the closeness c and the biconnectivity b, respectively, in Eq. (1). They are correlated 
with each other as shown in Fig.  4(b), in which α~b c  with α . < 0 4 1 for small c ( . )c 0 1  and 
α . > 1 7 1 for large c ( . )c 0 1 . Inserting α~c b

1
 into ~v c

b
 of Eq. (1), we find that −α~v b 11

. Therefore, 
v decreases with b if α >  1, which may be the case for the compounds in the human LBC that have a 
large b. However, v increases with b if α <  1, which is valid for the compounds outside the LBC that have 
a small b. Figure 5 (g) shows the plot of the vulnerability as a function of closeness c and biconnectivity 
b. Both plots in Fig. 5(e,f) indicate that v peaks at intermediate values of b, which results from v increas-
ing with b for small b and decreasing with b for large b.

These findings suggest that the network properties of the metabolic compounds in other species can 
be helpful for understanding human diseases. The cross-species features reflect the generic features of 
each compound identified in diverse metabolic networks that have evolved in different ways; thus, they 
carry information that could not be identified by only analyzing the human metabolic network. Our 
findings could be useful in the search for drug targets and medical treatments. For example, if we must 
choose one of two candidate target compounds to set up alternative pathways and thereby suppress 
the spread of perturbations initiated somewhere in metabolism, we can first select the compound with 
increased biconnectivity. We expect this approach to establish the additional pathway and make it stable 
relatively easily.

Discussion
Our study illustrates a novel use of the cross-species cellular network data that are rapidly accumulating 
in this post-genomic era. Metabolic pathway organization is essential to allow living organisms to be 
resilient to perturbations; thus, we performed an extensive quantitative analysis of the biconnectivity of 
the cellular metabolism in hundreds of species. As a result, we were able to understand how biconnec-
tivity is achieved on small and large scales in real metabolic networks in the presence of other struc-
tural features, such as modularity and heterogeneous connectivity patterns. The idea that biconnectivity 
serves for resilience to perturbations is supported by the negative correlation between the prevalence 
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of associated diseases and the biconnectivity of compounds. Furthermore, we demonstrated that the 
pattern of disease prevalence can be better understood by considering the dependence of the compound 
vulnerability on both the lethality and the biconnectivity, suggesting its potential use in drug design and 
medical treatments.

Our study does have several limitations. We used the biomass components known in the well-curated 
metabolic reconstructions55,56 as the biomass components of the species studied in our work as long as 
they were present in the metabolic network of a given species, which must be curated by plugging the 
species-specific biomass components. The development of a biconnectivity measure that incorporates 
the direction of chemical reactions could better elucidate pathway organization in metabolism. Although 
we focused on individual compounds, the properties of pairs of compounds in terms of their multiple 
paths deserve investigation. The present work focused on the structure of metabolic networks; however, 
an understanding of the dynamics, e.g., flux-balance modeling, would allow us to identify different sets 
of pathways that are active in wild-type and perturbation conditions, which would thereby facilitate an 
understanding of homeostatic mechanisms in living organisms. It would also be interesting to investigate 
structural biconnectivity and dynamical flux-coupling relations. The idea that biconnected compounds 
are resilient to perturbations can be confirmed and better supported by in-depth studies regarding the 
stoichiometry of specific compounds.

Methods
Database.  We used the BioCyc database version 13.18, which included 506 species, to construct the 
bipartite metabolic networks of 453 bacteria, 34 archaea, and 19 eukarya. The latest version is 19.1, which 
covers 5700 metabolic pathways as of 2015. The same compounds in different compartments were con-
sidered to reflect different nodes. The transport reactions between different compartments were included.

Clustering coefficient of a bipartite network.  A diamond-shaped subgraph (a quad) that involves 
two metabolic compounds and two reactions involves two disjoint pathways that connect the two com-
pounds. For a bipartite metabolic network of the adjacency matrix Acr, we defined the clustering coef-
ficient as follows:

=
∑ ∑ ∑ ∑

∑ ∑ ∑ , ( )

> ≠

>
C

A A A A

A A 2

c c c r r r c r c r c r c r

c c c r c r c r

1 2 1 1 2 1 1 1 2 1 1 2 2 2

1 2 1 1 1 1 2 1

which is the ratio of the total number of quads that involve distinct pairs of compounds to the total num-
ber of reactions that involve pairs of compounds. If two compounds had k distinct reactions processing 
them, the number of quads would be k2. Therefore, C would be larger than 1 if all pairs of compounds 
had more than one reaction processing them. If all pairs of compounds were involved in only one reac-
tion, C would be zero. This definition of the clustering coefficient is rather different from the previous 
definitions for bipartite networks57–59.

Popularity, biconnectivity, and closeness.  Let  be the set of the 506 species considered in this 
work. Using =



F 1i  or 0 to represent whether a species  has a compound i or not, respectively, and 
=



B 1i  or 0 to represent whether a species  has the compound i in the LBC or not, respectively, we can 
represent the popularity and the biconnectivity as  = ∑ /∑∈ ∈





f F 1i i  and  = ∑ /∑∈ ∈

 





b F B Fi i i i , 
respectively. Considering the set BM of the 129 biomass components identified in at least one species, 
i.e., B. subtilis, E. coli, H. pylori, S. aureus, M. barkeri, and S. cerevisiae55,56, we first made the set of bio-
mass components  = ∈ , =, 

{ }j F 1BM BM j  of a species . We subsequently computed the network 
distance 



dij;  between a compound i and each biomass component ∈ ,j BM  in each species  and eval-
uated the closeness as O C C O= ∑ 

∑ /∑ 
/∑∈ ∈

−
∈ ∈, ,

 





 

c F d F1i i j ij j i;
1

BM BM
.
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