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Two Types of Discontinuous 
Percolation Transitions in Cluster 
Merging Processes
Y. S. Cho & B. Kahng

Percolation is a paradigmatic model in disordered systems and has been applied to various natural 
phenomena. The percolation transition is known as one of the most robust continuous transitions. 
However, recent extensive studies have revealed that a few models exhibit a discontinuous 
percolation transition (DPT) in cluster merging processes. Unlike the case of continuous transitions, 
understanding the nature of discontinuous phase transitions requires a detailed study of the system 
at hand, which has not been undertaken yet for DPTs. Here we examine the cluster size distribution 
immediately before an abrupt increase in the order parameter of DPT models and find that DPTs 
induced by cluster merging kinetics can be classified into two types. Moreover, the type of DPT 
can be determined by the key characteristic of whether the cluster kinetic rule is homogeneous 
with respect to the cluster sizes. We also establish the necessary conditions for each type of DPT, 
which can be used effectively when the discontinuity of the order parameter is ambiguous, as in the 
explosive percolation model.

The percolation transition (PT)1, the emergence of a macroscopic-scale cluster at a finite threshold, has 
played a central role as a model for metal—insulator and sol—gel2 transitions in physical systems as well 
as the spread of disease epidemics3 and opinion formation in complex systems. The ordinary percolation 
model and many models based on it exhibit continuous transitions as a function of increasing occupa-
tion probability. Recently, however, a great interest in discontinuous percolation transitions (DPTs) has 
been sparked by the explosive percolation model4 and the cascading failure model in interdependent 
networks5,6 because of their potential applications to real-world phenomena such as large-scale blackouts 
in power grid systems and pandemics7. The explosive percolation model was an attempt to generate a 
DPT in cluster merging (CM) processes4,8–14, in which clusters are formed as links are added between two 
unconnected nodes following a given rule. However, recent extensive research15–18 shows that the explo-
sive percolation transition in a random graph is continuous in the thermodynamic limit. This result has 
reinforced the robustness of continuous PTs in CM processes. Along with extensive studies on explosive 
percolation, a few models exhibiting DPTs in CM processes have been introduced. However, the patterns 
of DTP that they exhibit are not of the same type, which suggests that further studies are necessary for 
understanding the mechanism underlying such patterns. In this paper, we classify the patterns into two 
types and clarify the underlying mechanisms for each type of DPT.

We consider a CM dynamics with N nodes of size one at the beginning. At each time step, an edge is 
added between two nodes selected according to a given dynamic rule. Then, CM kinetics occurs when 
the two nodes were selected from different clusters. The number of edges added to the system at a certain 
time step divided by the system size N is defined as the time t, which serves as a control parameter in 
PTs. As time passes, the fraction of nodes belonging to the largest cluster in the system, denoted as G(t), 
increases from zero. In the thermodynamic limit N →  ∞, G(t), called the order parameter, exhibits a 
phase transition from zero to O(1) at a critical point tc. Two types of DPTs are possible, as depicted in 
Fig. 1. For type-I DPTs, the order parameter G(t) increases dramatically with infinite slope all the way 
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to unity at tc =  1, whereas for type-II DPTs, it also increases similarly but up to a finite value G t 1c( ) <
+  

at a critical point tc <  1, after which it gradually increases to unity.
The pattern of type-I DPTs in CM processes can be found in various models such as a random 

aggregation model following the Smoluchowski coagulation equation with reaction kernel Kij ~ (ij)ω with 
0 ≤  ω <  0.519, the Gaussian model20, the avoiding-a-spanning cluster21,22, and so on23. The type-II DPT 
in CM processes can be found in a limited number of mathematical models24–26. It would be more inter-
esting to investigate the origin of type-II DPTs because this type of DPT can occur in other models, for 
example, the k-core percolation model27–30, discontinuous synchronization model31,32, jamming transi-
tion model33, and generalized epidemic process model34.

Results
Necessary conditions for two types of discontinuous percolation transitions.  Here, we show 
that the two types of DPTs have different origins. To uncover those origins, we examine the cluster size 
distributions immediately before and after the percolation threshold, denoted as tc

− and tc
+, respectively, 

and defined later in the Methods. To induce a type-II DPT, it is necessary that the clusters at tc
− are 

heterogeneous in size, ranging from small cluster sizes to large ones. Among those clusters, primarily 
large clusters merge to create a macroscopic-scale giant cluster during a short time interval t t[ ]c c,

− + . 
Beyond tc

+, most of the merging is caused by remnant small clusters, the number of which is still O(N), 
which mainly join the giant cluster. On the other hand, for a type-I DPT, at tc

−, the remaining clusters 
are mainly homogeneous with mesoscopic-scale size, and they merge during the interval t t[ ]c c,

− +  to 
create a macroscopic-scale giant cluster. A schematic comparison of these kinetics between DPTs of types 
II and I is shown in Fig. 2.

To quantify the origin, we propose the necessary conditions for each type of DPT as follows. Here 
ns(t) denotes the number of s-size clusters divided by N, which changes with time.

1.	 Necessary condition for type-II DPT: At tc
−, at least one characteristic cluster size s* >  1 has to exist, 

which fulfills the following conditions in the thermodynamic limit: I-i) n t 0s s s c∑ ( ) →=
∞ −

⁎ , I-ii) 
n t O 1s s c1∑ ( ) ∼ ( )=

∞ − , and I-iii) sn t rs s s c∑ ( ) →=
∞ −

⁎  (0 <  r <  1).
2.	 Necessary condition for type-I DPT: At tc

−, at least one characteristic cluster size s* >  0 has to exist, 
which fulfills the following conditions in the thermodynamic limit: I-i) n t 0s s s c∑ ( ) →=

∞ −
⁎ , and II-ii) 

sn t 1s s s c∑ ( ) →=
∞ −

⁎ .

The derivations of the two necessary conditions are presented in the Methods.

Two-species cluster aggregation model.  We introduce a cluster aggregation model that exhibits 
both type-I and -II DPTs as the model parameter changes. The dynamic rule is depicted schematically in 
Fig. 3. For this model, which is referred to as the two-species cluster aggregation (TCA) model, we start 
with N isolated nodes, half of which are colored black and the other half of which are white. The color 
may represent opinion, for example, the left- and right-wing positions on a political issue. According 
to the dynamic rule below, all nodes in the same cluster have the same color: either black or white. At 
each time step, we first select one case among the three possible combinations, (black, black), (black, 
white), or (white, white), with probabilities 1/(1 +  2p), p/(1 +  2p), and p/(1 +  2p), respectively, where p is 

Figure 1.  Schematic diagram of two types of DPTs in CM processes. Δ G =  1 at tc =  1 for type-I, and 
Δ G <  1 at tc <  1 for type-II.
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a model parameter in the range 0 <  p ≤  1. Second, two clusters are selected following the colors selected 
but independently of the cluster sizes. Finally, two nodes—one from each cluster—are selected randomly 
and connected, which causes the two clusters to merge. If the two selected clusters are the same, then 
two distinct nodes from that cluster are connected.

The colors of all the nodes in the resulting merged cluster are updated according to the following rule: 
if the colors of the two clusters are the same, there is no change. However, if the colors are different, then 
the colors of all the nodes in the smaller cluster are changed to that of the larger cluster. This change 
may represent opinion formation following the so-called majority rule. If the clusters have the same 
size but different colors, then either color is picked with equal probability. We numerically show that if 
0 <  p <  1, the PT is discontinuous and occurs at a finite threshold, tc <  1, and if p =  1, tc =  1 [Fig. 4(a)]. 
We note that if 0 <  p <  1, the symmetry between different species in the dynamic rule is broken; if p =  1, 
the symmetry is preserved.

Figure 2.  Schematic illustrations of the cluster size distributions for two types of DPTs. Schematic 
illustrations of the cluster size distribution at tc

− and tc
+ for (a) type-II and (b) type-I are depicted. The 

number of clusters at tc
− in [1,s*] is O(N) for (a) and o(N) for (b).

Figure 3.  Schematic illustrations of the dynamic rule of the TCA model. (a) There are three types of 
CM processes, each of which depends on the species of merging clusters. The probabilities for each case are 
given in the figure.
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The dynamic rule, particularly in the process of updating the color of nodes, can be modified in 
several ways. Nevertheless, the overall behavior of the DPT does not change significantly. To facilitate an 
analytic solution, we modify the dynamic rule as follows: When the colors of the two selected clusters 
are different, we take black regardless of the cluster size, i.e., without following the majority rule. This 
modification enables us to set up a coupled Smoluchowski coagulation equation and, consequently, to 
analytically understand the evolution of a large cluster. When 0 <  p <  0.5, the PT is discontinuous at a 
finite threshold tc <  1 and Δ G <  1 (type-II DPT). When p ≥  0.5, the PT is also discontinuous, but at tc =  1 
and Δ G =  1 (type-I DPT). A detailed derivation is presented in the Methods.

Numerical tests and symmetry-preserving (-breaking) dynamics.  Here we test the necessary 
conditions for the TCA model and clarify the origin of the type-II DPT. For this purpose, we plot the 
cluster size distribution for the TCA model at tc

− and tc
+ in Fig. 4(b). At tc

−, the size distributions of the 
white and black clusters decay exponentially in the asymptotic region. However, the size distribution of 
the black clusters is extended to a larger region owing to the symmetry-breaking properties of the 
dynamic rule. The nodes belonging to the extended (shaded) region correspond to the powder keg 
referred to in previous studies11,12,16. The combined cluster size distribution exhibits crossover behavior 
from the region primarily composed of white clusters to that primarily composed of black clusters across 
a characteristic size, which we denote as s*. This segregation is induced by the symmetry-breaking 
dynamic rule: Merging occurs with a higher probability between black clusters than between other types 
of clusters. Thus, black clusters grow more rapidly and belong to the region s >  s*. The cluster size distri-
bution at tc

+, when the dramatically increasing order parameter G(t) changes to a gradually increasing 
G(t), is shown in the lower panel of Fig. 4(b). The difference between the two figures shows that during 
the interval t tc c−+ −, almost all the black clusters aggregate to form a large cluster, and a small number 
of white clusters merge with large black clusters as black clusters. This microscopic understanding of the 
mechanism of a type-II DPT is schematically illustrated in Fig.  5. This origin can also be observed in 
other models such as the so-called Bohman—Frieze—Wormald (BFW) model24 and a half-restricted 
process model25, which are shown in the supplementary information. On the basis of these numerical 
results for the merging processes, we made the assumption stated previously when the necessary condi-
tions were set up.

We numerically confirm the necessary conditions that the number of clusters of size s >  s* at tc
− is 

sub-extensive [condition I-i)]. The total number of clusters over the entire range of s is, however, exten-
sive to N [condition I-ii)] [Fig.  4(c)], which is needed for a gradual increase of the order parameter 
beyond tc

+. Next, we measure the number of nodes belonging to clusters of sizes s >  s*, finding that the 
order parameter converges to a finite value r ≈  0.63 <  1 as the system size is increased. The nodes belong-
ing to this region become the elements of a macroscopic-scale giant cluster, as can be seen for large N 
cases [condition I-iii)] [Fig. 4(d)]. Numerical testing of the necessary conditions is performed for other 
models such as the BFW model24, the half-restricted process model25, and the ordinary percolation 
model in a hierarchical network with long-range connection26. The details are presented in the supple-
mentary information.

Discussion
We investigated the origins of the two types of DPTs in CM processes and derived the necessary condi-
tions for them. Our derivation is similar to the picture proposed by Friedman and Landsberg11, in which 
the occurrence of an abrupt PT is determined by the number of the clusters in the powder keg region 
with s >  s*. They set the characteristic size as s* ~ N1−β with β <  1. Then, Δ t <  Nβ−1, which is reduced to 
zero in the limit N →  ∞. This criterion is the same as condition I-i) we obtained here. On the other hand, 

Figure 4.  Numerical tests of necessary conditions for type-II DPT in TCA model. (a) G(t) vs. t in the 
TCA model for various values of p for a system size of N =  105. From left to right, p =  0,0.2,0.4,0.6,0.8, and 
1.0. (b) The cluster size distributions of black clusters n0s(•) and white clusters n1s(•) at tc

− (upper panel) and 
tc
+ (lower panel) for N =  212 ×  104. (c) ∑ ( )=

∞ −
⁎ n ts s s c  () and n ts s c1∑ ( )( )=

∞ −


 vs. N. (d) ∑ ( )=
∞ −

⁎ sn ts s s c  () and 
G tc( )( )

+


 vs. N. The two data sets converge to the value y0 ≈  0.63. Inset: − ∑ ( )=
∞ −

⁎y sn ts s s c0  () and 
G t yc 0( ) − ( )+


 vs. N, respectively. The slopes of the guidelines for () in (c) and the inset of (d) are equal to 

− 0.52. The data sets for (b), (c), and (d) are obtained for p =  0.5.
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the authors of11 did not classify the necessary conditions for a type-I or -II DPT separately. In a similar 
way, Hooyberghs and Schaeybroeck12 proposed another criterion for a DPT, which is again limited to 
our necessary condition for a type-I DPT.

We have also introduced an analytically solvable model in which two species of clusters evolve 
through CM processes under the symmetry-breaking rule and showed that this symmetry breaking 
dynamics generates a type-II DPT. This phenomena can also be found in a model for synchronization 
transition31,32. The detail is presented in SI.

We remark that the origin of the type-II DPT in CM processes differs from that of DPTs driven by 
the cascading failure dynamics in interdependent networks5 or in the k-core percolation model29. The 
cluster size distribution at tc

− for the latter case does not resemble that in the former case. Thus, the 
necessary conditions we studied cannot be applied to the latter case. In addition, when a type-II DPT is 
induced by the hierarchical structure as in26, even though our necessary conditions were found to be 
valid, it is not clear yet whether the DPT originates from the symmetry-breaking kinetics.

Methods
Numerical testing.  It is necessary to use the appropriate times tc

− and tc
+. In Fig. 6, we illustrate how 

to take t Nc ( )
−  and t Nc ( )

+  in numerical tests of the necessary conditions. We used more than O(1011/N) 
configurations for all numerical analyses.

Derivation of the necessary conditions.  To derive the necessary conditions, we suppose the 
extreme case, in which CM dynamics occurs only between clusters of size s >  s* during a short time 
interval within t t[ ]c c,

− + . In this case, when intercluster links are added, the order parameter can increase 
the most rapidly. The number of links to connect all those clusters divided by N is n ts s s c∑ ( )=

∞ −
⁎ , which 

is equivalent to t t tc cΔ ≡ −+ −.
First, we consider a type-II DPT. To verify condition I-i), we use the fact that if n t 0s s s c∑ ( ) →=

∞ −
⁎  in 

the limit N →  ∞, then Δ t →  0. During this interval, because the order parameter increases as much as 
O(1), the PT is discontinuous. Thus, condition I-i) provides a necessary condition for a discontinuous 
PT. To verify condition I-ii), we consider the inequality n t t1 s s c c1− ∑ ( ) ≤=

∞ − −, which comes from the 
fact that the number of links added up to tc

− is larger than (or equal to) the number of CM events. The 
equality holds when the model disallows the attachment of intracluster links. In general, when n ts s c1∑ ( )=

∞ −  
goes to zero, t 1c ≥

−  in the thermodynamic limit. Condition I-ii), n t Olim 1N s s c1∑ ( ) ∼ ( )→∞ =
∞ − , provides 

a necessary condition for the transition point to be t 1c <
− . Next, let us define r sn ts s s c= ∑ ( )=

∞ −
⁎ , which 

corresponds to the size of the powder keg in11. Then, r sn t1 s
s

s c1
1= − ∑ ( )=
− −⁎

. This quantity satisfies the 
following inequality: r n t n t n t1 1s

s
s c s s c s s s c1

1
1≤ − ∑ ( ) = − ∑ ( ) + ∑ ( )=

− −
=
∞ −

=
∞ −⁎

⁎ . When conditions I-i) 
and I-ii) hold, r ≤  1 −  O(1). Thus, r <  1. Condition I-iii) is needed to exclude the case r =  0 for a contin-
uous transition. Thus, conditions I-i), I-ii), and I-iii) are all needed for a type-II DPT.

We now consider a type-I DPT. Condition I-i) suggests that Δ t →  0 in the thermodynamic limit. 
Condition II-ii) suggests that G t 1c( ) →

+ . Then, using the inequality n t t1 s s c c1− ∑ ( ) ≤=
∞ − −, one can 

obtain t 1c ≥
−  in the thermodynamic limit. Thus, the percolation threshold is positioned at tc ≥  1.  

Figure 5.  Schematic illustration of symmetry-preserving (-breaking) dynamics. Schematic illustration 
of the formation of type-I and -II DPTs in CM processes through ① upper pathway and ② lower pathway, 
respectively.
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We remark that this necessary condition for a type-I DPT in CM processes is equivalent to 
n tlim 0N s s c1∑ ( ) =→∞ =

∞ − .

Analytic calculation of the solvable two-species cluster aggregation model.  Let n0s(t) and 
n1s(t) be the numbers of s-size black and white clusters per node, respectively, at time step t. The rate 
equations of the two quantities are written as

dn
dt p
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where c n ts s0 1 0= ∑ ( )=
∞  and c n ts s1 1 1= ∑ ( )=

∞  are the number of finite black and white clusters per node 
at time t in the system, respectively. Next, we define the generating functions f z t n t zs s

s
1 0( , ) = ∑ ( )=

∞  
and g z t n t zs s

s
1 1( , ) = ∑ ( )=

∞ , where the summation runs over finite clusters. As a result, the rate equa-
tions (1) and (2) are changed to

Figure 6.  tc
− and tc

+ used for numerical tests. G(t)  vs. t for the TCA model with p =  0.5 for different system 
sizes, N/104 =  1,4,16,64, and 256. (a) We draw a tangent at the time at which the slope dG(t)/dt becomes 
maximum, which is almost independent of N and denoted as tc. The t intercept of the tangent of the curve 
G(t) is denoted as t Nc ( )

− . As the system size N is increased, the slope dG(t)/dt|max increases. (b) We plot ( )G t  
of different system sizes vs. a rescaled time as ≡ ( − ( )) ( )/−t t t N dG t dtc max

. Then, the t intercept of the 
tangent of the curve ( )G t  is denoted as t 0c =

− , which is independent of N. Next, we take tc
+ as a crossover 

point from which G t( ) begins to grow gradually. Then, ( ) ≡ ( ) + ( ( )/ )+ − + −t N t N t dG t dtc c c axm

1.
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Using c0(t) =  f(1,t) and c1(t) =  g(1,t), we obtain c0(t) =  1/2 −  t/(1 +  2p) and c1(t) =  1/2 −  2pt/(1 +  2p). 
When 0 <  p <  0.5, the percolation threshold can be obtained by setting c0(tc) =  0 but c1(tc) >  0, because 
c0(t) decreases more rapidly than c1(t). Thus, tc =  1/2 +  p, and a large black cluster emerges at tc. The size 
of the jump in the order parameter at tc can be obtained using the formula Δ G =  1 −  f′ (1,tc) −  g′ (1,tc), 
which reduces to Δ G =  1 −  g′ (1,tc), because f′ (1,tc) =  0. Thus, the jump in the order parameter is deter-
mined to be G p1 1 2 2Δ = − − / . The PT is discontinuous at a finite threshold tc <  1 and Δ G <  1 
(type-II DPT).

When p ≥  0.5, because c1(t) decreases more rapidly than c0(t), the percolation threshold can be 
obtained using c1(tc) =  0 and c0(tc) >  0. Thus, t c p

1
2

1
4

= + . The size of the jump in the order parameter 
can be obtained using the formula Δ G =  1 −  f′ (1,tc). However, f′ (1,tc) =  1 and f′ (1,t) =  1 even for t <  1. 
Thus, Δ G =  0 for t <  1. When t >  1, f′ (1,t) =  0. Thus, the order parameter behaves as Δ G =  1 for t >  1, 
and the threshold tc =  1 (type-I DPT). These analytic results are checked numerically in the supplemen-
tary information.
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