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We study the Ising spin-glass model on scale-free networks generated by the static model using the replica
method. Based on the replica-symmetric solution, we derive the phase diagram consisting of the paramagnetic
sPd, ferromagneticsFd, and spin glasssSGd phases as well as the Almeida-Thouless line as functions of the
degree exponentl, the mean degreeK, and the fraction of ferromagnetic interactionsr. To reflect the inho-
mogeneity of vertices, we modify the magnetizationm and the spin-glass order parameterq with vertex-
weights. The transition temperatureTc sTgd between the P-FsP-SGd phases and the critical behaviors of the
order parameters are found analytically. When 2,l,3, Tc andTg are infinite, and the system is in the F phase
or the mixed phase forr .1/2, while it is in the SG phase atr =1/2. m and q decay as power-laws with
increasing temperature with differentl-dependent exponents. Whenl.3, theTc andTg are finite and related
to the percolation threshold. The critical exponents associated withm and q depend onl for 3,l,5 s3
,l,4d at the P-FsP-SGd boundary.
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I. INTRODUCTION

Recently, considerable effort has been devoted to under-
standing complex systems by means of networksf1–4g. An
emerging phenomenon in real-world complex networks is a
scale-freesSFd behavior in the degree distribution,Pdskd
,k−l, where the degreek is the number of edges connected
to a given vertex andl is the degree exponentf5g. Due to the
heterogeneity of degree, many physical problems on SF net-
works exhibit distinct features from those in Euclidean
space. For example, the critical behavior of the ferromag-
netic Ising model on SF networks exhibits an anomalous
behavior depending on the degree exponentl f6–10g. While
the critical behaviors are of the mean field type forl.5,
they exhibit an anomalous scaling for 3,l,5. Moreover,
the magnetization,m̄, decreases with increasing temperature
asm̄,T−1/s3−ld for 2,l,3, and so onf7,8g. The Ising spin
system on the complex networks, besides being of theoretical
interest, can be used to describe various real world phenom-
ena. For example, the two Ising spin states may represent
two different opinions in a society. Depending on the inter-
action strength between neighbors, the overall system can be
in a single or mixed opinion state, corresponding to the fer-
romagnetic or paramagnetic phase, respectively.

In complex systems, such a description with only ferro-
magnetic interactions may not be sufficient in certain cir-
cumstances. In social systems, for example, the relationship
between two individuals can be friendly or unfriendly. In
biological systems, two genes can respond to an external
perturbation coherently or incoherently in microarray assay.
For such cases, the spin-glass model is then more relevant to
account for such competing interactions. Recently, the spin-
glass problem has been studied on the small world network
proposed by Watts and Strogatzf11g through both the replica
method and the cavity methodf12g. Since SF networks are
ubiquitous in nature, here we study the spin-glass model on
SF networks.

The spin-glass problem in the Euclidean space has been
studied for a long time by various methodsf13–16g. Most of
the studies for spin glasses have concentrated on regular lat-
tices or the infinite-range interaction model on fully-
connected graphs, for example, the Sherrington-Kirkpatrick
sSKd model f17g. To achieve our goal here, we follow the
study of thedilute Ising spin-glass model with infinite-range
interactions, first performed by Viana and BraysVBd
f18–23g, because the model is equivalent to the Ising spin-
glass problem on the random graph proposed by Erdős and
Rényi sERd f24,25g. The ER random graph may be con-
structed as follows. The number of verticesN is fixed and
assumed to be sufficiently large. Each vertexi si
=1,2, . . . ,Nd is assigned a weightpi, which is given aspi

=1/N, independent of the indexi for the ER model. Two
vertices i and j are selected with probabilitiespi and pj,
respectively, and ifi Þ j , they are connected with an edge
unless the pair is already connected, which we call the fer-
mionic constraint. This process is repeatedNK/2 times. In
such networks, the probability that a given pair of vertices
si , jd si Þ jd is not connected by an edge, denoted by 1−f ij , is
given by s1−2pipjdNK/2.exps−NKpipjd, while the connec-
tion probability is

f ij = 1 − exps− NKpipjd. s1d

Since pipj =1/N2 for the ER graph, the fraction of bonds
present becomesf ij <K /N and the average number of con-
nected edges isNK/2. SoK is the mean degree, and corre-
sponds top of Ref. f18g.

The SF network can be constructed through a generaliza-
tion of the above to the case where the vertex weights are
given by

pi =
i−m

zNsmd
, s2d

where m is a control parameter in the rangef0, 1d, and
zNsmd;o j=1

N j−m<N1−m / s1−md. Then the resulting network

PHYSICAL REVIEW E 71, 056115s2005d

1539-3755/2005/71s5d/056115s13d/$23.00 ©2005 The American Physical Society056115-1



is a SF network with a power-law degree distribution,
Pdskd,k−l, with l=1+1/m. The model is called the static
model, where the name “static” originates from the fact that
the number of vertices is fixed from the beginningf26g. This
model has the advantage that many of its theoretical quanti-
ties can be calculated analyticallyf27g. Note that since
NKpipj ,N2m−1/ si j dm for finite K, when 0,m,1/2 sl.3d,

f ij < NKpipj , s3d

however, when 1/2,m,1 s2,l,3d, f ij does not neces-
sarily take the form of Eq.s3d, but it is given as

f ij < H1 when i j ! N2−1/m,

NKpipj when i j @ N2−1/m.
J s4d

This is due to the fermionic constraint that at most one edge
can be attached to a given pair of vertices. The mean degree
of a vertexi is NKpi and the mean degree of the network is
K f27g.

In this work, we study the Ising spin glass model defined
on the static model. In Sec. II, we introduce the Hamiltonian
of the spin glass system on the static model and derive the
free energy by using the replica method. We also introduce
physical quantities such as the magnetization, and the spin
glass order parameters in a modified form. In Sec. III, we
present the replica-symmetric solutions by using the SK-type
approximation, from which the phase diagram including the
Almeida-Thouless line and the critical behavior of the spin
glass order parameters are derived. In Sec. IV, we use the
perturbative approach to derive the phase diagram and the
critical behaviors of the order parameters, and compare them
with those obtained from the SK method. The final section is
devoted to the conclusions and discussion.

II. THE SPIN-GLASS MODEL

We consider the Ising-type Hamiltonian,

H = − o
si,jdPG

Jijsisj ssi = ± 1d, s5d

defined on a graphG realized by the static model.Jij is
nonzero only when the verticesi and j are connected inG.
The network ensemble average for a given physical quantity
A is taken as

kAlK = o
G

PKsGdAsGd, s6d

where PKsGd is the probability ofG in the ensemble and
k¯lK the average over different graph configurations. For the
static model we consider here, it is given that

PKsGd = p
si,jdPG

fij p
si,jd¹G

s1 − f ijd s7d

with f ij =1−exps−NKpipjd, pi being given in Eq.s2d.
In the spin-glass problem, the coupling strengthshJijj are

also quenched random variables. We assume in this paper
that eachJij is given as +J or −J with probability r and 1
−r, respectively, so that the coupling strength distribution is
given as

PrshJijjd = p
si,jdPG

frdsJij − Jd + s1 − rddsJij + Jdg. s8d

The case ofr =1 sr =1/2d is pure ferromagneticsfully frus-
tratedd one, and we considerr in the range of 1/2ø r ø1
throughout this work. The average of a quantityA with re-
spect toPrshJijjd is denoted askAlr. Thus the free energy is
evaluated as −bF=kkln ZlrlK with Z being the partition func-
tion for a given distribution ofhJijj on a particular graphG.

In this paper, the replica method is used to evaluate the
free energy, i.e., −bF=limn→0fkkZnlrlK−1g /n. To proceed,
we evaluate thenth power of the partition function,

kkZnlrlK = TrhsajKKexpSb o
si,jdPG

Jij o
a=1

n

si
asj

aDL
r

L
K

= Trhsajp
i, j
Hs1 − f ijd + f ijKexpSbJij o

a=1

n

si
asj

aDL
r

J
= Trhsaj expFo

i, j

lnH1 + f ijXKexpSbJij o
a=1

n

si
asj

aD
− 1L

r

CJG , s9d

where the trace Trhsaj is taken over all replicated spinssi
a

= ±1, a=1, . . . ,n is the replica index, andb=1/T. We men-
tion that the disorder averages overPKsGd and PrshJijjd can
be done simultaneously since both types of disorders are
independently assigned to each edge of the fully connected
graph of orderN. The part inside the exponential in Eq.s9d
can be written in the form

o
i, j

lnH1 + f ijXKexpSbJij o
a=1

n

si
asj

aD − 1L
r

CJ
= o

i, j

NKpipjKexpSbJij o
a=1

n

si
asj

aD − 1L
r

+ R, s10d

whereR stands for the remainder which are of higher order
in K. It is shown in Appendix A that for finiteK, Eq. s10d is
OsNd while R is at mostOs1d for l.3 andOsN3−l ln Nd for
2,l,3, so that it can be neglected in the free energy cal-
culation.

OnceR in Eq. s10d can be neglected, we can proceed as in
VB f18g. By using the relation

KexpSbJij o
a=1

n

si
asj

aDL
r

= Kp
a

†coshsbJijdf1

+ si
asj

a tanhsbJijdg‡L
r

, s11d

in Eq. s10d and applying the Hubbard-Stratonovich identity,
Eq. s9d is reduced to the form
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kkZnlrlK =E dq exph− Nnbfsqdj. s12d

The intensive free energyfhqjs;F /Nd in the thermodynamic
limit sN→`d then becomes

nbfhqj =
KT1

2 o
a

qa
2 +

KT2

2 o
a,b

qab
2 +

KT3

2 o
a,b,g

qabg
2 + ¯

−
1

N
o

i

ln Trhsi
aj expXi , s13d

where

Xi = NKT1pio
a

qasi
a + NKT2pi o

a,b

qabsi
asi

b

+ NKT3pi o
a,b,g

qabgsi
asi

bsi
g + ¯ s14d

and

T lsTd ; kcoshn bJij tanhl bJijlr →
n→0

fr + s− 1dls1

− rdgtanhl bJ sl = 1,2, . . .d. s15d

Trhsi
aj is the trace over the replicated spins at vertexi and the

N→` limit is to be implicitly understood to the expression
s1/Ndoi. The elements of a sethqj, qa, qab, qabg, etc., de-
fined as

qa = o
i

piksi
ali, qab = o

i

piksi
asi

bli ,

qabg = o
i

piksi
asi

bsi
gli, etc. s16d

are the order parameters of the spin glass system, called the
magnetization, the spin glass order parameter, and so on. The
average is evaluated throughkAli ;Trhsi

ajA expXi /
Trhsi

aj expXi. Note that unlike the case of the ER random
graph, the order parameters are summed with weighthpij in
Eq. s16d due to the inhomogeneity of the SF networks. For
the ER case however,pi =1/N and it becomes thatq̄a

=oiksi
ali /N, q̄ab=oiksi

asi
bli /N, q̄abg=oiksi

asi
bsi

gli /N, and so
on f18g. To distinguish, we use bar notation for the un-
weighted cases.

Here we consider the replica symmetrysRSd in which
spins with different replica index are indistinguishable, and
we invoke two methods to determine the phase boundaries of
the ferromagneticsFd, paramagneticsPd, and spin-glasssSGd
phases and the temperature dependences of the order param-
eters. The first is the approach similar in spirit to SK in
which higher-order terms thanqab in Eqs.s13d and s14d are
neglected. In this method, the remaining two order param-
eters as well as the Almeida-Thouless line can be obtained
for all temperatures. The second is the perturbative approach
used in VB. In this case, we expand the term of ln Tr expXi
in Eq. s13d up to appropriate orders, and the order parameters
qa, qab, qabg andqabgd are explicitly calculated. Through the
perturbative approach, we can find that the contributions by
higher order terms such asqabg are negligible compared with

those byqa and qab near the phase transition points. Thus,
the two methods produce identical results for the phase
boundaries and the same critical behaviors near the transition
points for the two order parameters,qa andqab.

III. THE SHERRINGTON-KIRKPATRICK APPROACH

A. The replica symmetric free energy

We first study the RS solutionf17g and obtain the phase
boundaries of P, F, and SG. For simplicity, the RS magneti-
zation and the RS spin glass order parameter are denoted as
ms=qad and qs=qabd, respectively, and the free energy ex-
pression Eq.s13d is truncated at the order ofq. Then the RS
free energy is rewritten as

nbfsm,qd =
KT1

2
nm2 +

KT2

2

nsn − 1d
2

q2 −
1

N
o

i

ln Zi

s17d

with

Zi = Trhsi
aj expHNKT1pimo

a

si
a + NKT2piq

soa
si

ad2 − n

2
J .

s18d

By using the Hubbard-Stratonovich identity,Zi can be re-
written as

Zi = expH−
n

2
NKT2piqJ E Dzf2 coshhiszdgn, s19d

where eDz¯ ;s1/Î2pde−`
` dz e−z2/2

¯ and hiszd
;NKT1pim+zÎNKT2piq. Then in the limit ofn→0, the RS
free energy becomes

bfsm,qd =
1

2
KT1m

2 +
1

2
KT2q −

1

4
KT2q

2

−E Dz
1

No
i=1

N

lnf2 coshhiszdg. s20d

By applying s]f /]md=0 and s]f /]qd=0 to the free en-
ergy, Eq.s20d, we obtain the coupled self-consistent equa-
tions for m andq to be

m=E Dzo
i=1

N

pi tanhsNKT1pim+ zÎNKT2piqd, s21d

and

q =E Dzo
i=1

N

pi tanh2sNKT1pim+ zÎNKT2piqd. s22d

In Eqs.s21d ands22d, we can see thatq cannot be zero unless
both m and q are zero, whilem can be zero even whenq
Þ0 which defines the SG phase.

B. The phase boundaries

The P-FsP-SGd phase boundary is given as the tempera-
ture, the Curie temperatureTc sthe spin-glass phase transition
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temperatureTgd, wherem sqd starts to be nonzero. We first
consider the case ofl.3. Whenm andq are small, the free
energy, Eq.s20d, is written as

bfsm,qd =
1

2
KT1S1 − NKT1o

i

pi
2Dm2

−
1

4
KT2S1 − NKT2o

i

pi
2Dq2 + higher order terms.

s23d

It is known that asK increases, the static model undergoes
the percolation transition at

Kp =
1

Noi
pi

2
=

sl − 1dsl − 3d
sl − 2d2 . s24d

SinceNoipi
2=skk2lK−kklKd / kklK

2 with kklK=K and kk2lK de-
noting the first and the second moments of the degree for a
given mean degreeK, respectively, Eq.s24d is equivalent to
the conditionkk2lK=2kklK f27–29g. Thus one obtains that

T1sTcd = Kp/K for P-F, and s25d

T2sTgd = Kp/K for P-SG, s26d

whereT1sTd=s2r −1dtanhsJ/Td andT2sTd=tanh2sJ/Td. Note
that whenK /Kp,1, there is no solution of Eqs.s25d and
s26d, implying that the system is always in the P state. This is
because the network has an infinite component only forK
.Kp. When r =1/2, T1=0 and the phase diagram is rather
simple. The P-F transition does not occur, and the system is
either in P or SG phase whose boundary is given by Eq.s26d.
Figure 1sad is the phase diagram in thesK /Kp,T/Jd plane for
the fully frustrated casesr =1/2d for l.3. When 1/2, r
,1, both the F phasesmÞ0,qÞ0d and the SG phasesm
=0,qÞ0d appear. Figure 1sbd is the phase diagram for a
partially frustrated case withr =2/3 andl=4.5, which is a
prototypical case of 1/2, r ,1 and l.3. For K /Kp,1,
only the P phase appears, but forK /Kp.1, several phases
exist. There exists a multicritical pointsK* /Kp,T* /Jd, where
the P-SG-F phases merge, which is determined to be

SK*

Kp
,
T*

J
D = S 1

s2r − 1d2,
1

tanh−1s2r − 1dD s27d

by setting T1sT*d=T2sT*d=Kp/K* . For Kp,K,K* , the P
phase goes into the SG phase, while it goes into the F phase
for K.K* as temperature is lowered. Asr →1, the multi-

FIG. 1. The phase diagram in thesK /Kp,T/Jd plane forl=4.5s.3d with r =1/2 sad andl=4.5s.3d with r =2/3 sbd, and the same in the
sK ,T/Jd plane forl,3 with r =1/2 scd andl=2.5s,3d with r =2/3 sdd. Note thatKp=0 for 2,l,3 in the thermodynamic limit.
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critical point converges tos1, 0d, indicating that only the P-F
phase transition occurs. Asr →1/2, it shifts tos` ,`d, indi-
cating that only the P-SG phase transition occurs as shown in
Fig. 1sad.

Besides the P, F, and SG phases, the mixedsMd phase is
present, which is defined as the reentrant SG phase with
nonzero macroscopic ferromagnetic order, located below the
F phase as temperature is loweredf15,16g. The SG-M phase
boundary is determined as the vertical straight line from the
multicritical point toT/J=0 f30g. The F-M phase boundary
is determined by the so-called Almeida-ThoulesssATd line
f31g,

sKT2d−1 =E Dzo
i=1

N

Npi
2 sech4sNKT1pim+ zÎNKT2piqd,

s28d

which is obtained easily by multiplying vertex-weights to the
AT line formula of the SK model.m and q above are the
solutions of Eqs.s21d and s22d. We determineT satisfying
Eq. s28d numerically. The F-M boundary in Fig. 1sbd exhibits
a fat-tail behavior, implying that the M phase persists for
large K. This AT line is the phase boundary between the
replica symmetric phase and the replica-symmetry-broken
one. Thus Eq.s28d indicates the region where the replica-
symmetric solution derived in the following sections is valid.
We also check the P-SG boundary from Eq.s28d, which is
the same as Eq.s26d.

Next we consider the case 2,l,3. In this range,Kp
,N−s3−ld/sl−1d→0 as N→` and consequentlyTc and Tg
→`. Thus the wholesK ,T/Jd plane is covered with the or-
dered states. Figure 1scd is the phase diagram for the fully
frustrated casesr =1/2d for l,3. The P phase appears only
for K=0, and the SG phase is located in the regionK.0.
Figure 1sdd deals with the case of 1/2, r ,1 andl,3. The
P phase appears only atK=0, but for K.0 the F and M
phases appear and the F-M boundary is given by the AT line
fEq. s28dg. As r →1, the M phase disappears and only the F
phase appears in the region ofK.0.

We also consider the phase diagram in thesr ,T/Jd plane
for given l andK in Fig. 2. The phase diagram is schemati-
cally similar to the one for the SK model. In the original
paper of the SK modelf17g, a new coupling constantJ0 of
the F interactions was introduced and the ratioJ0/J plays a
similar role of the parameterr here. Accordingly, the phase
diagram in thesr ,T/Jd plane here corresponds to the one in
the sJ0/J,T/Jd plane in the work of the SK model. Figure
2sad shows the phase diagram forl.3. The formulae of the
phase boundaries of P-SG and P-F are easily derived from
Eqs.s25d ands26d. The P-SG phase boundary is constant as
1/ tanh−1ÎKp/K, independent of the parameterr and the P-F
phase boundary is determined asT/J=1/ tanh−1(Kp/Ks2r
−1d). The multicritical point is determined as

Sr* ,
T*

J
D = SÎKp/K + 1

2
,

1

tanh−1 ÎKp/K
D . s29d

The SG-M phase boundary is given by the vertical line as
before. The F-M boundary is obtained from Eq.s28d, finding

numerically that the region of the M phase shrinks asl in-
creases, and eventually it remains on the line spanning from
the multicritical point toT=0 for a givenK, while it exhibits
a fat-tail behavior in the direction of the parameterK.

We plot the phase diagram in thesr ,T/Jd plane for l
,3 with a givenKs.1d in Fig. 2sbd. Note that asl→3 for
a givenK, r* approaches 1/2, whileT* /J diverges to infinity.
Thus, for 2,l,3, the SG phase can exist only whenr
=1/2. For 1/2, r ,1, the F and M phases exist and the F-M
boundary is given by the AT linefEq. s28dg.

C. The SG order parameter

In the SG phasesm=0,qÞ0d, the SG order parameterq
is determined by

q =E Dzo
i=1

N

pi tanh2szÎNKT2piqd. s30d

Note that Eq.s30d is independent ofr but valid for 1/2ø r
, r* , r* being the value ofr at the multicritical point.

In this section, we determine the critical behavior ofq
near the SG transition. The right-hand side of Eq.s30d in-
volves a sum of the type

FIG. 2. The phase diagram in thesr ,T/Jd plane forK=5 with
l=4.5s.3.0d sad andl=2.5s,3.0d sbd.
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Ssyd =
1

N
o
i=1

N

F„Npiy/s1 − md… s31d

with y=s1−mdKT2qz2 andFsxd=x tanh2Îx. Wheny is small
in Ssyd, a singular termyl−1 competes with other regular
terms. General expressions for smally expansions are de-
rived in Appendix B. When Eq.sB7d is used and the Gauss-
ian integration overz is performed, Eq.s30d becomes

q/s1 − md =
l − 1
Îp

2l−1GSl −
3

2
DDsldQ8l−2 −

l − 1

3 − l
Q8

+ 2
l − 1

4 − l
Q82 + OsQ83d, s32d

where

Dsld ; 5E0

`

dx x3−2l tanh2 x for 2 , l , 3,

−E
0

`

dx x3−2lsx2 − tanh2 xd for 3 , l , 4,6
s33d

and Q8=s1−mdKT2q=sl−2dKT2q/ sl−1d. Equating the
right-hand side of Eq.s32d with Q8 / s1−md2KT2, one sees
that Q83−l,KT2,T−2 for 2,l,3, s1/Kp−1/KT2d
,Q8l−3 for 3,l,4, and s1/Kp−1/KT2d,Q8 for l.4.
Here Kp is given by Eq.s24d and thel-dependent positive
coefficients are neglected. Therefore, asT→` s2,l,3d or
eg;sTg−Td /Tg→0 sl.3d, q behaves as

q , 5T−2sl−2d/s3−ld for 2 , l , 3,

eg
1/sl−3d for 3 , l , 4,

eg for l . 4.
6 s34d

Whenl=3, use of Eq.sB8d yields

q , T2 exps− 2T2/KJ2d asT → `, s35d

while, whenl=4,

q , eg/ln eg
−1 aseg → 0. s36d

For general temperatures,q can be obtained numerically
from Eq. s30d. The behavior ofq for variousl are shown in
Fig. 3.

IV. THE PERTURBATIVE APPROACH

In this section, we use the perturbative approach to evalu-
ate the free energy and to obtain the order parameter behav-
iors near the transitions. For simplicity, we use the notations
defined through Qa;KT1qa, Qab;KT2qab, Qabg

;KT3qabg, Qabgd;KT4qabgd, and so on. Let R represent a
subset of the replica indicesh1,2, . . . ,nj. Then it is conve-
nient to denote the sethQa ,Qab , . . .j as hQRj. We also write
sR;paPRsa= ±1. With these notations, Eq.s14d becomes
Xi =oRNpiQRsR where the sum is over all subsets of
h1,2, . . . ,nj except the null set, and

eXi = p
R

eNpiQRsR = p
R

coshNpiQRp
R

s1 + tRsRd s37d

with tR; tanhNpiQR. Our perturbative approach is to ex-
pandpRs1+tRsRd and keep only the terms up to given order.
In the ER limit l→`, we anticipate thatta,ec

1/2, tab,ec,
etc. from VBf18g, whereec;sTc−Td /Tc is the reduced tem-
perature.

Using the properties that TrsR=0, TrsRsR8=0 for R
ÞR8 and so on, the first few terms relevant to our discussion
below are

nbf =
1

2KT1
o
a

Qa
2 +

1

2KT2
o

a,b

Qab
2 +

1

2KT3
o

a,b,g

Qabg
2

+
1

2KT4
o

a,b,g,d

Qabgd
2 −

1

N
o

i
o
R

ln coshsNpiQRd

−
1

N
o

i
F o

a,b

tatbtab + o
a,b,g

tatbtgtabg

+ o
a,b,g

statbtbgtag + tbtgtabtag + tgtatabtbgd

+ o
a,b,g

tabtbgtag + o
a,b,g,d

tatbtgtdtabgd

+ o
a,b,g,d

stabtgd + tagtbd + tadtbgdtabgd

+ o
a,b,g,d

tabtbgtgdtadG . s38d

The result of Appendix B withFsxd=ln coshx gives

1

N
o

i

ln coshsNpiQRd = AsldQR
l−1 +

a2

2
QR

2 −
a4

12
QR

4 + OsQR
6d,

s39d

where

FIG. 3. The behavior ofq in Eq. s30d for N=5000 andK=2 for
1/2ø r , r* .
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Asld ;5
sl − 2dl−1

sl − 1dl−2E
0

`

dx x−l ln coshx for 2 , l , 3,

sl − 2dl−1

sl − 1dl−2E
0

`

dx x−lSln coshx −
1

2
x2D for 3 , l , 5,

sl − 2dl−1

sl − 1dl−2E
0

`

dx x−lSln coshx −
1

2
x2 +

1

12
x4D for 5 , l , 7,

6 s40d

and

al = sl − 2dl/fsl − 1dl−1sl − 1 − ldg. s41d

The last sums in Eq.s38d can be represented as integrals as

1

N
o

i

tRtR8 ¯ = sl − 1dE
1

`

dz z−l tanhzQR8 tanhzQR8
8 ¯

s42d

with QR8 ;sl−2dQR/ sl−1d.

A. The replica symmetric free energy

We derive the RS solution of the order parameters up to
the fourth order with the notations ofQa=M, Qab=Q,
Qabg=Q3 andQabgd=Q4, respectively. Then the terms in Eq.
s42d take the form of

Bn1,n2,n3,n4
; sl − 1dE

1

`

dz z−l tanhn1 zM8 tanhn2 zQ8

3tanhn3 zQ38 tanhn4 zQ48, s43d

where M8;s1−mdM =sl−2dM / sl−1d, n1, . . . ,n4 are inte-
gers, and other primed quantities are similarly defined.

The RS free energyfsM ,Q,Q3,Q4d in the limit of n→0
is then written as

bf =
b1

2
M2 −

b2

4
Q2 +

b3

6
Q3

2 −
b4

8
Q4

2 +
a4

12
M4 −

a4

24
Q4 +

a4

36
Q3

4

−
a4

48
Q4

4 − AsldFMl−1 −
1

2
Ql−1 +

1

3
Q3

l−1 −
1

4
Q4

l−1G
+

1

2
B2,1,0,0−

1

3
fB3,0,1,0+ 3B2,2,0,0+ B0,3,0,0g

+
1

4
fB4,0,0,1+ 3B0,2,0,1+ B0,4,0,0g, s44d

wherebl ;sKT ld−1−a2 for l =1, 2, 3 and 4. Note that 1/a2 is
nothing butKp for l.3 given in Eq.s24d, while it is nega-
tive for 2,l,3.

The RS solutions ofM, Q, Q3 and Q4 are obtained by
solving the self-consistent equations,

]f/]M = ]f/]Q = ]f/]Q3 = ]f/]Q4 = 0. s45d

When M, Q, Q3 andQ4 are small,Bn1,¯,n4
are small. Their

leading order behaviors are calculated in Appendix C.

The phase boundary of the P-F transition is determined as
the same obtained in the SK approach. When 2,l,3, since
Asld is nonzero and positive, the transition temperatureTc

becomes infinity so that the system is always in the F phase
whenr .1/2. Forr =1/2,however,b1=`, andM2 has to be
zero. Then the system is in the SF phase.

B. The P-F transition and the order parameters

We first consider the P-F transition. In the F phase, all the
four order parameters remain nonzero. The behaviors of each
order parameter within leading order are discussed below
and listed in Table I.

sid When 2,l,3, the leading order terms in free energy
bf are

bf . − AsldMl−1 +
b1

2
M2 + S1

2
Asld − C2,0−

1

3
C3,0+

1

4
C4,0

+ ¯ DQl−1 −
b2

4
Q2 −

1

3
AsldQ3

l−1 +
b3

6
Q3

2 +
1

4
AsldQ4

l−1

−
b4

8
Q4

2 +
1

2
C2,1M

l−2Q −
1

3
C3,1M

l−2Q3 +
1

4
C4,1M

l−2Q4

s46d

from Table III with Cn,p given in Eq.sC6d.
By applying Eq.s45d to the free energy, we obtain the

self-consistent equations for the four order parameters. Note
that from the definition ofbl ;sKT ld−1−a2, we find thatbl

,Tl asT→`. All other coefficients such asAsld andhCn,pj
are independent ofT. From ]f /]M =0, we obtain that −sl
−1dAsldMl−2+b1M =0, leading to that M ,fsl
−1dAsld /b1g1/s3−ld,T−1/s3−ld. From]f /]Q=0, we obtain that
fAsld−2C2,0+¯ gsl−1dQl−2+C2,1M

l−2−b2Q=0. Since the
second term is more dominant than the first, we obtain that
Q,C2,1M

l−2/b2,T−s4−ld/s3−ld. Fortunately, the coefficient of
Ql−1 is not needed to determine the leading order behavior of
Q. Similarly, we obtain thatQ3,T−s7−2ld/s3−ld and Q4
,T−s10−3ld/s3−ld. Subsequently, we obtainm,q,q3,q4
,T−sl−2d/s3−ld, where

m= M/KT1, q = Q/KT2, q3 = Q3/KT3,
s47d

q4 = Q4/KT4.

It is noteworthy that the behavior ofm is different from that
of the unweighted magnetization,m̄,T−1/s3−ld, where m̄
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=s1/Ndoiksil as previously studied in Refs.f7,8g. This is
becausem̄,M to the leading order.

sii d When l.3, the transition temperatureTc is deter-
mined by

b1sTcd = 0, i.e., a2KT1sTcd = 1, s48d

which is the same as Eq.s25d. When 3,l,4, the leading
order terms inbf are

bf .
b1

2
M2 − AsldMl−1 −

b2

4
Q2 +

1

2
C2,1M

l−2Q +
b3

6
Q3

2

−
1

3
C3,1M

l−2Q3 −
b4

8
Q4

2 +
1

4
C4,1M

l−2Q4. s49d

Note thatAsld,0 for 3,l,5. The most leading term is
sb1/2dM2 and the transition temperatureTc is determined by
b1=0. Just belowTc, b1,0 and ub1u,Osecd, whereec=sTc

−Td /Tc. From ]f /]M =0, we obtain that −sl−1dAsldMl−2

+b1M =0, leading to thatM ,ec
1/sl−3d. From ]f /]Q=0, we

obtain thatC2,1M
l−2−b2Q=0. Sinceb2 is constant nearTc,

we obtain thatQ,Ml−2,ec
sl−2d/sl−3d. Similarly, it is ob-

tained that Q3,Ml−2,ec
sl−2d/sl−3d and Q4,Ml−2

,ec
sl−2d/sl−3d. Unlike the case of 2,l,3, m,M, q,Q,

q3,Q3, andq4,Q4. Such relations hold for alll.3.
siii d When 4,l,5, the free energy is written as

bf .
b1

2
M2 − AsldMl−1 −

b2

4
Q2 +

a3

2
M2Q +

b3

6
Q3

2

−
1

3
C3,1M

l−2Q3 −
b4

8
Q4

2 +
1

4
C4,1M

l−2Q4. s50d

Following the same step as used in 3,l,4, we obtain that
M ,ec

1/sl−3d, Q,M2,ec
2/sl−3d and Q3,Q4,Ml−2

,ec
sl−2d/sl−3d.
sivd When 5,l,6, the free energy is written as

bf .
b1

2
M2 +

a4

12
M4 −

b2

4
Q2 +

a3

2
M2Q +

b3

6
Q3

2 −
a4

3
M3Q3

−
b4

8
Q4

2 +
1

4
C4,1M

l−2Q4. s51d

Following the same steps as before, we obtain thatM ,ec
1/2,

Q,ec, Q3,ec
3/2, andQ4,ec

sl−2d/2.
svd Whenl.6, the free energy is written as

bf .
b1

2
M2 +

a4

12
M4 −

b2

4
Q2 +

a3

2
M2Q +

b3

6
Q3

2 −
a4

3
M3Q3

−
b4

8
Q4

2 +
a5

4
M4Q4. s52d

Using the same step as before, it is obtained thatM ,ec
1/2,

Q,ec, Q3,ec
3/2 andQ4,ec

2.
It is interesting to note that asl increases, the order param-
eters progressively acquire the classical mean field behavior
Qn,ec

n/2 starting from the lower order ones.

C. The P-SG transition and the order parameters

Here we consider the P-SG transition. In the SG phase,M
and Q3 are always zero for all temperatures. Thus, the free
energy becomes simpler compared with that in the F phase.
Using the same method as used in the P-F transition, we
obtain the P-SG transition temperature and the order param-
etersQ and Q4 in various region ofl, which is listed in
Table II.

For more details, we first determine the P-SG phase
boundary. When 2,l,3, since Asld, the coefficient of

TABLE I. The l-dependent critical behaviors of the four order parameters and their scaled quantitiesfEq.
s47dg under the P-F transition. Hereec;sTc−Td /Tc is the reduced temperature.

Order parameters 2,l,3 3,l,4 4,l,5 5,l,6 l.6

M ,T−1/s3−ld ,ec
1/sl−3d ,ec

1/sl−3d ,ec
1/2 ,ec

1/2

m ,T−sl−2d/s3−ld ,ec
1/sl−3d ,ec

1/sl−3d ,ec
1/2 ,ec

1/2

Q ,T−s4−ld/s3−ld ,ec
sl−2d/sl−3d ,ec

2/sl−3d ,ec
1 ,ec

1

q ,T−sl−2d/s3−ld ,ec
sl−2d/sl−3d ,ec

2/sl−3d ,ec
1 ,ec

1

Q3 ,T−s7−2ld/s3−ld ,ec
sl−2d/sl−3d ,ec

sl−2d/sl−3d ,ec
3/2 ,ec

3/2

q3 ,T−sl−2d/s3−ld ,ec
sl−2d/sl−3d ,ec

sl−2d/sl−3d ,ec
3/2 ,ec

3/2

Q4 ,T−s10−3ld/s3−ld ,ec
sl−2d/sl−3d ,ec

sl−2d/sl−3d ,ec
sl−2d/2 ,ec

2

q4 ,T−sl−2d/s3−ld ,ec
sl−2d/sl−3d ,ec

sl−2d/sl−3d ,ec
sl−2d/2 ,ec

2

TABLE II. The l-dependent behaviors of the two order param-
eters and their scaled quantities in Eq.s47d under the P-SG transi-
tion, whereeg;sTg−Td /Tg.

Order parameters 2,l,3 3,l,4 l.4

Q ,T−2/s3−ld ,eg
1/sl−3d ,eg

1

q ,T−2sl−2d/s3−ld ,eg
1/sl−3d ,eg

1

Q4 ,T−s8−2ld/s3−ld ,eg
sl−2d/sl−3d ,eg

2

q4 T−2s2−ld/s3−ld ,eg
sl−2d/sl−3d ,eg

2
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Ql−1 is nonzero for allT, the spin glass transition tempera-
ture Tg is infinity, and no P phase exists for allT. Whenl
.3, the transition pointTg is determined by the formula

b2sTgd = 0, i.e., a2KT2sTgd = 1, or KT2sTgd = Kp

s53d

which is the same as derived in the SK method. In the SG
phase, the order parameter behaves as follows.

sid When 2,l,3, the leading order terms ofbf read off
from Table III with M =Q3=0 are

bf . S1

2
Asld −

1

3
C3,0+

1

4
C4,0+ ¯ DQl−1 −

b2

4
Q2

+
1

4
SAsldQ4

l−1 −
b4

2
Q4

2 + 3C2,1Q
l−2Q4D . s54d

By applying ]f /]Q=]f /]Q4=0, we obtain that Q
,T−2/s3−ld and Q4,Ql−2/T4,T−s8−2ld/s3−ld. Using the rela-
tion Q=KT2q and Q4=KT4q4, we obtain that q,q4
,T−2sl−2d/s3−ld. The result ofq is the same as the one derived
through the SK method, Eq.s34d. Note that the coefficient of
Ql−1 in the perturbative approach is in the form of infinite
series while the same is obtained in a closed form in Eq.
s32d.

sii d When 3,l,4, the free energy is

bf . −
b2

4
Q2 + fAsld/2 −C3,0/3 +C4,0/4gQl−1 −

b4

8
Q4

2

+
3

4
C2,1Q

l−2Q4. s55d

We note that the coefficientb2,−eg with eg;sTg−Td /Tg.
Then we obtainQ,eg

1/sl−3d Similarly, from ]f /]Q4=0, we
obtainQ4,Ql−2,eg

sl−2d/sl−3d with b4 being constant.
siii d Whenl.4, we have

bf . −
b2

4
Q2 −

a3

3
Q3 −

b4

8
Q4

2 +
3

4
a3Q

2Q4. s56d

By following the same step above, we obtain thatQ,eg and
Q4,eg

2.

V. CONCLUSIONS

We have studied the spin-glass phase transition on SF
networks through the static model. The model contains ge-
neric vertex weights in it, and edges between two vertices are
connected with the probability given in Eqs.s1d ands2d. The
static model enables one to study the spin-glass problem us-
ing the replica method by generalizing the dilute Ising spin-
glass model with infinite-range interactions. Here we ob-
tained the replica-symmetric solutions through the two
methods, the Sherrington-Kirkpatrick approach and the per-
turbative approach. We also found the phase diagram consist-
ing of the paramagneticsPd, ferromagneticsFd, spin-glass
sSGd, and mixedsMd phases in the space of temperatureT,
the mean degreeK, the fraction of the ferromagnetic interac-
tions r, and the degree exponentl. The AT line was also
obtained numerically. The phase diagram is shown in the
sK ,Td andsr ,Td planes, which are presented in Figs. 1 and 2,
respectively. The critical temperaturesTc andTg for the P-F
and P-SG phase transitions are simply related to the perco-
lation thresholdKp in Eqs.s25d ands26d. We obtain the same
results in the two approaches. ThusTc and Tg are infinite
when 2,lø3. The magnetization and the spin-glass order
parameter are modified to account for the inhomogeneity of
vertex degrees asm=oipiksi

ali andq=oipiksi
asi

bli, wherepi is
the weight of vertexi. Such quantities depend on the degree
exponentl. When 2,l,3, due to the fact thatTc=` and
Tg=`, m andq decay as power laws for largeT as shown in
Tables I and II, which is different from the patterns ofm̄ and
q̄, defined withpi =1/N. When l.3, the order parameters
exhibit continuous phase transitions acrossTc andTg, and the
associated exponents depend onl, which are listed in Tables
I and II. As Q3,Q4, . . . are ofhigher orders, the SK approach
in Sec. III, and the perturbative one in Sec. IV give the
identical results form andq to the leading order. We find the
critical exponents for the P/SG transition are nonclassical in
the range 3,l,4, corresponding to 3,l,5 for the P/F
one f7g. We have not presented our results at integer values
of l in Sec. IV for simplicity. At the borderline cases ofl,
the logarithmic corrections as given in Eqs.sB8d, sC3d, and
sC7d should be considered explicitly. We mention that the
finite-size effect is an important issue especially for 2,l
ø3 which we leave for a further study.

It is noteworthy that the method we developed here can be
applied to other problems in equilibrium statistical physics

TABLE III. The leading order terms of Eq.s43d. Here Cn,p;fsl−2dl−1/ sl−1dl−2ge0
`dx x−l+p tanhn x,

which converges in the region ofp+1,l,n+p+1 andal =sl−2dl / fsl−1dl−1sl−1−ldg.

Integrals 2,l,3 3,l,4 4,l,5 5,l,6 l.6

B2,1,0,0 C2,1M
l−2Q C2,1M

l−2Q a3M
2Q a3M

2Q a3M
2Q

B3,0,1,0 C3,1M
l−2Q3 C3,1M

l−2Q3 C3,1M
l−2Q3 a4M

3Q3 a4M
3Q3

B2,2,0,0 C2,0Q
l−1 C2,2M

l−3Q2 C2,2M
l−3Q2 a4M

2Q2 a4M
2Q2

B0,3,0,0 C3,0Q
l−1 C3,0Q

l−1 a3Q
3 a3Q

3 a3Q
3

B4,0,0,1 C4,1M
l−2Q4 C4,1M

l−2Q4 C4,1M
l−2Q4 C4,1M

l−2Q4 a5M
4Q4

B0,2,0,1 C2,1Q
l−2Q4 C2,1Q

l−2Q4 a3Q
2Q4 a3Q

2Q4 a3Q
2Q4

B0,4,0,0 C4,0Q
l−1 C4,0Q

l−1 C4,0Q
l−1 a4Q

4 a4Q
4
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on SF networks. A novelty in this approach is that one need
not rely on the local treelike structure of SF networks used,
e.g., inf7g. The result of the phase diagram and the behavior
of the order parameters may be helpful in understanding
emerging patterns in various systems with competing inter-
actions such as social or biological systems. For example, in
the region 2,lø3 where most real-world SF networks be-
long, it is known that the structural characteristic of the net-
work is so dominant that homogeneously interacting systems
are in the ordered state for all temperatures. Our result shows
that it is also the case even when there are competing inter-
actions. Also for 2,lø3, the fact that a slight dominance
of cooperative interactionssr *1/2d drives the system into
the ferromagnetically ordered or the mixed state suggests
that most social and biological systems would be driven into
the majority statesferromagnetic or mixed stated at equilib-
rium. While the current study is meaningful as a first step of
understanding thermodynamic property of the systems with
competing interactions, further studies have to be followed
towards real-world systems where the signs of interactions
may be correlated with the degrees of vertices, or the inter-
action signs may change with time as in the prisoner’s di-
lemma problem.

While preparing this manuscript, we have learned of a
recent report by Mooij and Kappenf32g, which addressed
the same issue. They used the Bethe approximation to obtain
a criterion forTg and applied it to thel=` and l=3 cases
numerically. Our work gives analytic results forTg as well as
physical ones such as the phase diagram and the behaviors of
the order parameters, which depend on the degree exponent.
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APPENDIX A: EVALUATION OF THE REMAINDER

In this Appendix, we show that

o
i, j

lns1 + f ijSijd = o
i, j

NKpipjSij + R sA1d

with R,OsN3−l ln Nd for 2,l,3, R,O(sln Nd2) for l
=3 and R,Os1d for l.3. Here Sij =kexpsbJijoa=1

n si
asj

ad
−1lr is a quantity independent of the system sizeN. To do so,
we expand the logarithm on the left-hand side of Eq.sA1d to
write it as

o
i, j

lns1 + f ijSijd = o
i, j

NKpipjSij + o
i, j

sf ij − NKpipjdSij

+ o
n=2

`
s− 1dn+1

n o
i, j

f i j
nSij

n sA2d

and show that the positive quantities defined by

R8 ; Uo
i, j

sNKpipj − f ijdSijU sA3d

and

Rn ; Uo
i, j

f i j
nSij

nU sA4d

snù2d are all bounded above byosNd quantities.
First let us considerR8. SinceSij are independent ofN, we

replaceSij by their maximum valueSmax;maxi, juSij u to get

R8 ø Smaxo
i, j

G1sNKpipjd

ø
Smax

2 Fo
i,j

G1sNKpipjd − G1sNKp1
2dG , sA5d

where

G1sxd ; x − 1 +e−x. sA6d

Here we have addedi = j terms for i ù2 on the right-hand
side of Eq.sA5d for convenience. SinceG1sxd is monotone
increasing forx.0, the summands in Eq.sA5d decrease asi
and j increase.

We utilize the fact that, for a monotone decreasing con-
tinuous functionFsxd, a finite sum is bounded above by an
integral as

o
i=1

N

Fsid ø E
1

N

Fsxddx+ Fs1d. sA7d

Applying Eq. sA7d twice to Eq. sA5d and using pi
= i−m /zNsmd, we have

R8 ø
Smax

2 HE
1

NE
1

N

G1S NK

zNsmd2x−my−mDdx dy

+ 2E
1

N

G1S NK

zNsmd2x−mDdxJ . sA8d

The double integral in the bracket of Eq.sA8d is, by
change of variables,

I1 ; sl − 1d2sNel−1d2E
e

eNm E
e

eNm G1suvd
suvdl du dv, sA9d

with l=1+1/m and e=ÎKN1/2−m /zNsmd,OsN−1/2d. Note
that in Eq. sA9d the upper limit of the integrals iseNm

,OsNs3−ld/2sl−1dd and the front factor scales asOsN3−ld. We
consider the three cases ofl separately.

sid When 2,l,3, sinceG1sxd,x asx→` and,x2 as
x→0, the lowersupperd limit of the double integral in Eq.
sA9d can be expended to 0s`d to give a finite value and
hence

I1 ø sl − 1d2sNel−1d2E
0

` E
0

` G1suvd
suvdl du dv , OsN3−ld.

sA10d

sii d When l=3, the upper limit of the double integral is
Os1d and the integrand near the lower limit behaves as
,suvd−1. We use 0,G1sxd,x2/2 for x.0 to get

I1 ø
1

2
sNel−1d2sln Nd2 , O„sln Nd2

…. sA11d
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siii d Whenl.3, proceeding as in the case ofsii d, we find

I1 ø
1

2
sl − 1d2S Ne2

l − 3
D2

, Os1d. sA12d

The single integral in the bracket of Eq.sA8d is, by
change of variables,

I2 ; 2sl − 1dNdl−1E
d

dNm G1sud
ul du, sA13d

with d=KN1−m /zN
2smd,OsNm−1d. Note that in Eq.sA13d the

upper limit of the integrals isdNm,OsNs3−ld/sl−1dd and the
front factor scales asOsN3−ld. We proceed exactly the same
as in the case of the double integral and find that

sid When 2,l,3, I2ø2sl−1dNdl−1e0
`G1sud /uldu

,OsN3−ld.
sii d Whenl=3, I2øNdl−1 ln N,Osln Nd.
siii d When l.3, I2ø sl−1dsl−3d−1Nd2

,OsN−sl−3d/sl−1dd.
Collecting these, we see thatR8 is bounded above as

R8 ø 5OsN3−ld if 2 , l , 3,

O„sln Nd2
… if l = 3,

Os1d if l . 3.
6 sA14d

Next we considerRn with nù2. Similarly to Eq.sA5d, we
have

Rn ø Smax
n o

i, j

f i j
n ø

Smax
n

2 So
i,j

f i j
n − f11

n D . sA15d

Applying Eq. sA7d twice to Eq.sA15d,

Rn ø
Smax

n

2 HE
1

NE
1

N FG0S NK

zNsmd2x−my−mDGn

dx dy

+ 2E
1

N FG0S NK

zNsmd2x−mDGn

dxJ , sA16d

where G0sxd;1−e−x. At this point, we use the piecewise
linear upper bound forG0sxd by

G̃0 ; Hx for 0 , x ø 1,

1 for x . 1.
J sA17d

SinceG0sxdøG̃0sxd for x.0, we can write Eq.sA16d as

Rn ø
Smax

n

2 Hsl − 1d2sNel−1d2E
e

eNm E
e

eNm fG̃0suvdgn

suvdl du dv

+ 2sl − 1dNdl−1E
d

dNm fG̃0sudgn

ul duJ , sA18d

wheree andd are defined above. Now the integrations in Eq.
sA18d are elementary. Focusing only on theN dependences,
we find that

Rn ø5
OsN3−l ln Nd for 2 , l , 3,

O„sln Nd2
… for l = 3 andn = 2,

Os1d for l = 3 andn ù 3,

OsN2−nd for l . 3 and 2ø n , l − 1,

O„sln Nd2N2−n
… for l . 3 andn = l − 1,

OsN−nsl−3d/sl−1dd for l . 3 andn . l − 1.

6
sA19d

Putting these together, we finally have

uRu ø R8 + o
n=2

`
1

n
Rn ø 5OsN3−l ln Nd for 2 , l , 3,

O„sln Nd2
… for l = 3,

Os1d for l . 3.
6

sA20d

APPENDIX B: EVALUATION OF FINITE SUM IN
GENERAL FORM

In this Appendix, we derive a general expansion formula
for the sum

Ssyd =
1

N
o
i=1

N

F„Npiy/s1 − md… sB1d

for small ys.0d and N→` with pi = i−m /zN and l=1+1/m
.2 as before. We takeFsxd to be a positive monotone in-
creasing function which diverges slower thanx1/m as x→`
and has an expansionFsxd=on=0

` fnx
n. Converting the sum

into an integral as in Appendix A,Ssyd becomes, in theN
→` limit,

Ssyd = sl − 1dyl−1E
y

` Fsxd
xl dx. sB2d

We first letlÞ integer andm0,l,m0+1 for some integer
m0. Then we define

F̃sxd = Fsxd − o
n=0

m0−1

fnx
n sB3d

and divideFsxd into two parts

Fsxd = o
n=0

m0−1

fnx
n + F̃sxd. sB4d

Plugging Eq.sB4d into Eq. sB2d, the first finite sum can be
integrated term by term to give

Ssyd = sl − 1d o
n=0

m0−1
fn

l − n − 1
yn + sl − 1dyl−1

3FE
0

` F̃sxd
xl dx−E

0

y F̃sxd
xl dxG . sB5d

Here we use the fact thatF̃sxd,xm0 asx→0 and hence
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Isld ; E
0

` F̃sxd
xl dx sB6d

converges. The last term can now be integrated term by term

using the expression ofF̃. The result is

Ssyd = sl − 1dIsldyl−1 − sl − 1do
n=0

`
fn

n + 1 −l
yn. sB7d

Note thatF̃ depends onm0, the integer part ofl. When l
=m0+1 sintegerd, we setl=m0+1−e in the above formula
and lete→0+. In this way, the singular term obtains a loga-
rithmic factor. The result is

Ssyd = m0Ĩym0 − m0fm0
ym0 ln y − m0 o

n=0sÞm0d

`
fn

n − m0
yn,

sB8d

where

Ĩ =E
1

` F̃sxd
xm0+1dx+E

0

1 F̃sxd − fm0
xm0

xm0+1 dx. sB9d

A special caseFsxd=1−exps−xd has been treated inf27g.

APPENDIX C: THE LEADING ORDER ANALYSIS OF
Bn1,n2,n3,n4

Bn1,n2,n3,n4
is defined in Eq.s43d with M8=sl−2dM / sl

−1d andQ8=sl−2dQ/ sl−1d and so on. To see how the lead-
ing order behavior ofBn1,n2,n3,n4

is determined, consider for
simplicity the integral

Bn1,n2,0,0= sl − 1dE
1

`

dz z−l tanhn1 zM8 tanhn2 zQ8

sC1d

with the condition 1@M8@Q8.
Whenl is sufficiently large, the leading orders inM8 and

Q8 are given by the first terms of the expansion of tanhx
=x+¯ and we have

Bn1,n2,0,0. sl − 1dM8n1Q8n2E
1

`

dz zn1+n2−l = an1+n2
Mn1Qn2.

sC2d

EquationsC2d with al given in Eq.s41d holds as long asl
.n1+n2+1, but the integral in Eq.sC2d diverges whenl
,n1+n2+1 indicating appearance of the nonanalytic term as
the leading term.

When l=n1+n2+1, the next leading order in Eq.sC2d
cancels the divergence inan1+n2

to give

Bn1,n2,0,0< sl − 1dSl − 2

l − 1
Dsl−1d

Mn1Qn2 lns1/Md. sC3d

When n2+1,l,n1+n2+1, one scalesz→z/M8 in Eq.
sC1d to find

Bn1,n2,0,0= sl − 1dM8l−1HE
0

`

dz z−l tanhn1 z tanhn2szQ/Md

−E
0

M8
dz z−l tanhn1 z tanhn2szQ/MdJ . sC4d

The second term isOsMn1+n2+1−ld smaller than the first
whose leading contribution is

Bn1,n2,0,0. sl − 1dM8l−1sQ/Mdn2E
0

`

dz zn2−l tanhn1 z

= Cn1,n2
Ml−1−n2Qn2, sC5d

whereCn,p, defined as

Cn,p ;
sl − 2dl−1

sl − 1dl−2E
0

`

dx x−l+p tanhn x, sC6d

converges forp+1,l,n+p+1.
Whenl=n2+1, similarly to Eq.sC3d,

Bn1,n2,0,0< sl − 1dSl − 2

l − 1
Dsl−1d

Qn2 lnsM/Qd. sC7d

When 1,l,n2+1, one scalesz→z/Q8 in Eq. sC1d to write
it as

Bn1,n2,0,0= sl − 1dQ8l−1E
Q8

`

dz z−l tanhn2 z tanhn1szM/Qd.

sC8d

SinceQ!M !1, tanhszM/Qd<1 for all z except near the
origin where the contribution to the integral is negligible.
Thus we have

Bn1,n2,0,0. sl − 1dQ8l−1E
0

`

dz z−l tanhn2z= Cn2,0Q
l−1.

sC9d

The leading order terms ofBn1,n2,n3,n4
for variousl’s are

listed in Table III. For simplicity, we do not show thel
=integer cases in Table III. For the border line cases ofl
dividing the regions ofl with different expressions, a loga-
rithm correction appears as given in Eq.sB8d or sC3d or
sC7d, while for other integer values ofl, the expressions are
continuous.
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