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Spin-glass phase transition on scale-free networks
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We study the Ising spin-glass model on scale-free networks generated by the static model using the replica
method. Based on the replica-symmetric solution, we derive the phase diagram consisting of the paramagnetic
(P), ferromagnetidF), and spin glas$SG) phases as well as the Almeida-Thouless line as functions of the
degree exponeri, the mean degrek, and the fraction of ferromagnetic interactionsTo reflect the inho-
mogeneity of vertices, we modify the magnetizationand the spin-glass order parametewith vertex-
weights. The transition temperatufg (Ty) between the P-EP-SG phases and the critical behaviors of the
order parameters are found analytically. When®R< 3, T. andT, are infinite, and the system is in the F phase
or the mixed phase for>1/2, while it is in the SG phase at=1/2. m and g decay as power-laws with
increasing temperature with differentdependent exponents. Whep> 3, theT; and T are finite and related
to the percolation threshold. The critical exponents associated wigmd q depend on\ for 3<A <5 (3
<A<4) at the P-HP-SG boundary.
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[. INTRODUCTION The spin-glass problem in the Euclidean space has been
studied for a long time by various methdds8-16. Most of
Recently, considerable effort has been devoted to undethe studies for spin glasses have concentrated on regular lat-
standing complex systems by means of netwdfks4]. An tices or the infinite-range interaction model on fully-
emerging phenomenon in real-world complex networks is &onnected graphs, for example, the Sherrington-Kirkpatrick
scale-free(SP behavior in the degree distributio®y(k)  (SK) model[17]. To achieve our goal here, we follow the
~k™, where the degrek is the number of edges connected §tudy 01_‘ thedllgte Ising spin-glass quel with infinite-range
to a given vertex andl is the degree exponeffi]. Due to the ~ Interactions, first performed by Viana and BrayB)

; : 18-23, because the model is equivalent to the Ising spin-
heterogeneity of degree, many physical problems on SF neE- )
works exhibit distinct features from those in Euclidean%lg‘rs]si peroF%Ie[rg 402nﬂth_e}hr2ng%mrgrzggrr;prcr)gorsleg]:)bﬁeaign_
space. For example, the critical behavior of the ferromag- y f "’ X h f graph f.y
netic Ising model on SF networks exhibits an anomalousStrUCtEOI as follows. T _e_number of vertichisis |xeo! an_d
behavior depending on the degree exponeft—10. While éslsuzmed ;O. be .suff&uently. Iarge.h.Ehaf:h .vertex (i
the critical behaviors are of the mean field type for5, —~ 5" N) is assigned a weigh, which is given asp;

they exhibit an anomalous scaling fox3\ <5. Moreover, :1/.N’ iqdepsndent of Ithe igde'g(:]or thte) Elﬁ'model.dTwo
the magnetizationn, decreases with increasing temperaturevert'ces’_I and | are selected with probabilities, and p,
respectively, and ifi# j, they are connected with an edge

asm~ T Y@ for 2<\ <3, and so 01i7,8]. The Ising spin I he nair is alread 4. which I the §
system on the complex networks, besides being of theoreticdl! €SS the pair 1S already conne_cte » WHICh we ca the fer-
nionic constraint. This process is repeat¢l/2 times. In

interest, can be used to describe various real world phenon‘nh o ! . .
ena. For example, the two Ising spin states may represer (.:h petyvqus, the probability that a given pair of vertices
two different opinions in a society. Depending on the inter-{ 1) (i #]) is not coNanected by an edge, denoted byfil, s
action strength between neighbors, the overall system can §iven by (1-2pp;) =exp(~NKppy), while the connec-
in a single or mixed opinion state, corresponding to the ferfion probability is
romagnetic or paramagnetic phase, respectively. fij = 1 - exd— NKpp). (1)

In complex systems, such a description with only ferro- ]
magnetic interactions may not be sufficient in certain cir-Since pipj=1/N? for the ER graph, the fraction of bonds
cumstances. In social systems, for example, the relationshiprésent becomes; ~K/N and the average number of con-
between two individuals can be friendly or unfriendly. In Nected edges iBIK/2. SoK is the mean degree, and corre-
biological systems, two genes can respond to an extern&POnds top of Ref.[18]. _
perturbation coherently or incoherently in microarray assay. 1he SF network can be constructed through a generaliza-
For such cases, the spin-glass model is then more relevant #9n of the above to the case where the vertex weights are
account for such competing interactions. Recently, the spindiven by
glass problem has been studied on the small world network @
proposed by Watts and StrogaiiZ] through both the replica pi = m
method and the cavity methdd2]. Since SF networks are NIA
ubiquitous in nature, here we study the spin-glass model owhere w is a control parameter in the rang6, 1), and
SF networks. gN(M)EEJ-N:lj‘“le'“/(l—,u). Then the resulting network

(2)
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is a SF network with a power-law degree distribution, 1) = o _ i

Py(k) ~k™, with A\=1+1/u. 'pl'he model is ?:alled the static P = (iEG[r‘S(J” IrE-nad+Il®
model, where the name “static” originates from the fact that

the number of vertices is fixed from the beginn[@$]. This  The case of =1 (r=1/2) is pure ferromagneti¢fully frus-
model has the advantage that many of its theoretical quantirateg one, and we considar in the range of 1/&r<1
ties can be calculated analyticallg7]. Note that since throughout this work. The average of a quantitywith re-
NKpip; ~ N4/ (ij)* for finite K, when 0<.<1/2(A>3),  spect toP,({J;}) is denoted agA),. Thus the free energy is

s _ evaluated as BF=((In Z),)x with Z being the partition func-
fij = NKpp;, ® : e :
tion for a given distribution ofJ;;} on a particular grapks.
however, when 1/2 u<1 (2<\<3), f; does not neces-  |n this paper, the replica method is used to evaluate the
sarily take the form of Eq(3), but it is given as free energy, i.e., BF=lim,_o[((Z",)x—1]/n. To proceed,
1 when ij < N2"Ue, we evaluate theth power of the partition function,
" [NKpp; when ij > N*k, @ n
This is due to the fermionic constraint that at most one edgef{{Z"nk = Tr{sa}<<exp(,8 PIENIDS Siasja)> >
can be attached to a given pair of vertices. The mean degree (i)eG ezl r/ K
of a vertexi is NKp, and the mean degree of the network is n
K [27] = Tr{sa}H (1 - f”) + f” GX%BJ” E Sasja>
In this work, we study the Ising spin glass model defined i< a=1 r
on the static model. In Sec. Il, we introduce the Hamiltonian n
of the spin glass system on the static model and derive the = Trig explz In3 1 +fij( eXP(BJijE Sasja)
free energy by using the replica method. We also introduce i< a=1
physical quantities such as the magnetization, and the spin
glass order parameters in a modified form. In Sec. lll, we -1 ) ] (9)
present the replica-symmetric solutions by using the SK-type . '

approximation, from which the phase diagram including the

Almeida-Thouless line and the critical behavior of the spin,here the trace Téy is taken over all replicated spirg
glass order parameters are derived. In Sec. IV, we use the, ; _4 nis tr}1e replica index, ang=1/T. We men-

perturbative approach to derive the phase diagram and the ; )
critical behaviors of the order parameters, and compare thergzn(jgsé tzsm(ﬂﬁg:]iiruz:;er;gg: %ﬁ(?;pznsd E}E(g]ig}grg:?s are
with those obtained from the SK method. The final section is )

. . . independently assigned to each edge of the fully connected
devoted to the conclusions and discussion.

graph of ordelN. The part inside the exponential in E®)

Il THE SPIN-GLASS MODEL can be written in the form

We consider the Ising-type Hamiltonian, s { (< p( En:
Iny 1+f;{ \ expl BI; 2 §'s’ ) -1
H=- 2 ‘]IJSSJ (SZ il), (5) i<j a=1 ! r
(ij)eG n
defined on a graplG realized by the static model; is = > NKpp, exp(,BJijE s,“sf) -1) +R, (10
nonzero only when the verticésand j are connected ifG. i<j a=1 r
The network ensemble average for a given physical quantity
A is taken as whereR stands for the remainder which are of higher order
in K. It is shown in Appendix A that for finit&, Eq. (10) is
(A= 2 P(G)A(G), (6)  O(N) while Ris at mostO(1) for A>3 andO(N3™ In N) for
G

2<\ <3, so that it can be neglected in the free energy cal-
where P (G) is the probability ofG in the ensemble and culation.
(-+*) the average over different graph configurations. For the OnceRin Eq.(10) can be neglected, we can proceed as in
static model we consider here, it is given that VB [18]. By using the relation

PK(G): H f” H (1_f|]) (7) n
(i)eG (ij)eG exp| B3, Y w7 ) ) = <1—[ [cosH3;)[1
with f;; =1-exg-NKppy), p; being given in Eq(2). o=l ro\a
In the spin-glass problem, the coupling strendthg are + si“sj“ tanr(,&]ij)]]> , (11
also quenched random variables. We assume in this paper )

that eachJ; is given as 4 or -J with probability r and 1
—r, respectively, so that the coupling strength distribution isin Eq. (10) and applying the Hubbard-Stratonovich identity,
given as Eq. (9) is reduced to the form
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those byq, andq,z near the phase transition points. Thus,
<<Zn>r>K=qu exp{— Nngf(q)}. (12 the two methods produce identical results for the phase
boundaries and the same critical behaviors near the transition
The intensive free enerdyq}(=F/N) in the thermodynamic points for the two order parameters, andq,.
limit (N— o) then becomes
Ill. THE SHERRINGTON-KIRKPATRICK APPROACH

KT
> q<21B+ T?’ > Qiey“‘ A. The replica symmetric free energy

npria) =15 v 12
2 « 2
“ «p aspsy We first study the RS solutiofiL7] and obtain the phase

1 boundaries of P, F, and SG. For simplicity, the RS magneti-
- N; In Tr{s.“} expX;, (13) zation and the RS spin glass order parameter are denoted as
m(=q,) and q(=q,p), respectively, and the free energy ex-
where pression Eq(13) is truncated at the order of Then the RS
N . free energy is rewritten as
X = NKT 1P 2 08+ NKT5p 2 087
a a<p KT KT,n(n-1 1
nBf(m,q) = ——=nn? + —quz -=> Inz
+NKT3p 2 Gop,Sisls? + - (14) 2 2 2 N7
a<p<y (17)
and with
n—0
T)(T) = (cosh BJ; tanH BJ;), — [r + (- D'(1 (Ea sH2-n
“nltant gl (1=1,2, ..). (15 %= Trgyexp) NKTipm2 "+ NKTopg—— ——
Tr{sla} is the trace over the replicated spins at veitexd the (18)

N—co limit is to be implicitly understood to the expression

(1/N)S;. The elements of a S&4}, G, Qugr Gag, ELC., de- By using the Hubbard-Stratonovich identitg; can be re-
" ’ ar a3 afyr "y

fined as written as
a a n
o= 2 P Gap= 2 PSS, %= eXp{— ENKsziq} J D72 coshnp(2)]",  (19)
I 1
_ N where  [Dz---=(1/\2m)[*.dzeZ%-- and (2
Qapy= 2 PSS, ete. 16 _ NKT ;pim+2z/NKT,pq. Then in the limit ofn— 0, the RS

free energy becomes
are the order parameters of the spin glass system, called the

magnetizati_on, the spin glass order parameter, and so on. The Bf(m,q) = }KTlmz T }KTzq _ }KT2q2

average is evaluated through(A) = TrisA expX;/ 2 2 4

Triss €xpX;. Note that unlike the case of the ER random 1 N

graph, the order parameters are summed with weightin - f Dz=> In[2 coshzi(2)]. (20
Eqg. (16) due to the inhomogeneity of the SF networks. For Ni=1

the ER case howevep,=1/N and it becomes that, By applying (4f/ém)=0 and (3f/dq)=0 to the free en-

=Zi(sHi/N, mﬁ:;i@_asﬂﬁ%m' mﬁw/zzi@aﬁﬂsﬂy?i“\" and S0 o4y Eq.(20), we obtain the coupled self-consistent equa-
on [18]. To distinguish, we use bar notation for the un-ions form andq to be
weighted cases.

Here we consider the replica symmettRRS) in which f N
m=

DZE p; tanNKT ;pm+ zyNKT,p,q), (21

spins with different replica index are indistinguishable, and =~
=

we invoke two methods to determine the phase boundaries of

the ferromagneti¢F), paramagneti¢P), and spin-glaséSG  and

phases and the temperature dependences of the order param-

eters. The first is the approach similar in spirit to SK in _
which higher-order terms tham, in Egs.(13) and(14) are a=
neglected. In this method, the remaining two order param-

eters as well as the Almeida-Thouless line can be obtaineth Egs.(21) and(22), we can see that cannot be zero unless
for all temperatures. The second is the perturbative approadboth m and q are zero, whilem can be zero even whem
used in VB. In this case, we expand the term of In Tr¥xp # 0 which defines the SG phase.

in Eq. (13) up to appropriate orders, and the order parameters
Jas Aapr ey @NAd,s,s are explicitly calculated. Through the
perturbative approach, we can find that the contributions by The P-F(P-SQ phase boundary is given as the tempera-
higher order terms such agg, are negligible compared with  ture, the Curie temperatuiig (the spin-glass phase transition

N

Dz, p; tanf(NKT ;pm + zyNKT,piq).  (22)
i=1

B. The phase boundaries
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FIG. 1. The phase diagram in tli&/K, T/J) plane forx=4.5>3) with r=1/2 (a) and\=4.5>3) with r=2/3 (b), and the same in the
(K,T/J) plane forh <3 with r=1/2 (c) and\=2.5<3) with r=2/3 (d). Note thatK,=0 for 2<\ <3 in the thermodynamic limit.

temperaturely), wherem (q) starts to be nonzero. We first Ty(Ty =Ky/K for P-SG, (26)
consider the case of>3. Whenm andq are small, the free
energy, Eq(20), is written as whereT 4(T)=(2r-1)tanHJ/T) and T,(T)=tani¥(J/T). Note

that whenK/K,<1, there is no solution of Eq$25 and
1 (26), implying that the system is always in the P state. This is
Bf(m,g) = —KTl(l —NKle pi2>m2 because the network has an infinite component onlykfor
2 i >Kp. Whenr=1/2,T,=0 and the phase diagram is rather
1 simple. The P-F transition does not occur, and the system is
- ZKT2<1 - NKTzZ p.z) g?+ higher order terms.  either in P or SG phase whose boundary is given by(E).
' Figure 1a) is the phase diagram in th&/K,,T/J) plane for
(23 the fully frustrated casér=1/2) for A>3. When 1/Xr
It is known that a¥K increases, the static model undergoes_< 1, both the F phagém#O,q_#O) and the S.G phasem
the percolation transition at —O,q¢0) appear. Figure (b) is the phase dlagrgm _for a
partially frustrated case with=2/3 and\=4.5, which is a

1 0 -D-3) prototypical case of 1/2r<1 and\>3. For K/K <1,

K.= = ) (24)  only the P phase appears, but #fK,>1, several phases
P N> p? (A -2)7? exist. There exists a multicritical poifK”/K,, T"/J), where
the P-SG-F phases merge, which is determined to be
Since NZ;p?= (K3 = (k) /(K with (k) =K and (k%) de- (K* T*) ( 1 1 )
. : = — = —— 27
noting the first and the second moments of the degree for a K, J (2 - D% tanhi2r - 1) (27)

given mean degrel, respectively, Eq(24) is equivalent to
the condition(k?)x=2(k)x [27-29. Thus one obtains that  py setting T(T)=Ty(T)=K,/K". For K,<K<K", the P
phase goes into the SG phase, while it goes into the F phase
T1(Ty) =K//K for P-F, and (25) for K>K" as temperature is lowered. As—1, the multi-
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critical point converges tél, 0), indicating that only the P-F 6 S
phase transition occurs. As—1/2, it shifts to(e,o0), indi- -

cating that only the P-SG phase transition occurs as shown in 5r 1
Fig. 1(a). "

Besides the P, F, and SG phases, the mikégphase is 4r Para 1
present, which is defined as the reentrant SG phase with 1
nonzero macroscopic ferromagnetic order, located below the 23+t 1
F phase as temperature is lowefé8,16. The SG-M phase -
boundary is determined as the vertical straight line from the 2+ Ferro .
multicritical point toT/J=0 [30]. The F-M phase boundary - ]
is determined by the so-called Almeida-Thouléa3) line 1+  Spin Glass .
[31], | M

N 0 —_— —_———
_ —_— 0.5 0.6 0.7 0.8 0.9 1.0

(KT, 1:fz>z§‘, Np? secH(NKT pim+ zyNKT,p;q), r

i=1

(28) ° ' ' S b))
which is obtained easily by multiplying vertex-weights to the 5t .
AT line formula of the SK modelm and g above are the Spin Glass
solutions of Egs(21) and (22). We determinel satisfying 4t .
Eq. (28) numerically. The F-M boundary in Fig(h) exhibits
a fat-tail behavior, implying that the M phase persists for 2 3} .
large K. This AT line is the phase boundary between the Ferro
replica symmetric phase and the replica-symmetry-broken 2t .
one. Thus Eq(28) indicates the region where the replica- ]
symmetric solution derived in the following sections is valid. 11 .
We also check the P-SG boundary from E28), which is
the same as Eq26). 0 . L . L

Next we consider the case< <3. In this range K, 0.5 0.6 o7 08 0.9 1.0

~N@MOD_0 asN—o and consequenthT, and T,
— o0, Thus the wholgK,T/J) plane is covered with the or- FIG. 2. The phase diagram in tlie, T/J) plane forK=5 with
dered states. Figure(d is the phase diagram for the fully A=4.5>3.0) (@) andA=2.5<3.0) (b).
frustrated casér=1/2) for A <3. The P phase appears only
for K=0, and the SG phase is located in the regior0.  numerically that the region of the M phase shrinks\ais-
Figure 1d) deals with the case of 1Rr<1 and\<3. The creases, and eventually it remains on the line spanning from
P phase appears only Kt=0, but for K>0 the F and M the multicritical point toT=0 for a givenK, while it exhibits
phases appear and the F-M boundary is given by the AT lin@ fat-tail behavior in the direction of the parameler
[Eq. (28)]. Asr—1, the M phase disappears and only the F We plot the phase diagram in the,T/J) plane for\
phase appears in the region 0. <3 with a givenK(>1) in Fig. 2(b). Note that as\ — 3 for

We also consider the phase diagram in thel'/J) plane 3 givenK, r* approaches 1/2, whil€ /J diverges to infinity.
for given\ andK in Fig. 2. The phase diagram is schemati- Thus, for 2<\ <3, the SG phase can exist only when
cally similar to the one for the SK model. In the original =1/2. For 1/2<r <1, the F and M phases exist and the F-M

paper of the SK moddl17], a new coupling constarky of  boundary is given by the AT linfEq. (28)].
the F interactions was introduced and the rat6J plays a

similar role of the parametear here. Accordingly, the phase

diagram in the(r,T/J) plane here corresponds to the one in C. The SG order parameter

the (Jo/J,T/J) plane in the work of the SK model. Figure | the SG phasém=0,q+ 0), the SG order parameter
2(a) shows the phase diagram for>3. The formulae of the 5 determined by
phase boundaries of P-SG and P-F are easily derived from

Egs.(25 and(26). The P-SG phase boundary is constant as

1/tanh‘1\s"Kp/K, independent of the parameteand the P-F _
phase boundary is determined I&éJ:l/tanh‘l(Kp/K(Zr a=
—1)). The multicritical point is determined as

N

Dz, p; tantf(zVNKT ,p;q). (30)
i=1

LT v"Kp/K +1 1 Note that Eq.(30) is independent of but valid for 1/2<r
oy )= 2 tanhi KK/ (2 <r", r" being the value of at the multicritical point.

In this section, we determine the critical behavior ¢pf
The SG-M phase boundary is given by the vertical line asear the SG transition. The right-hand side of E{) in-
before. The F-M boundary is obtained from Eg8), finding  volves a sum of the type
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——SF -25)

N
1
Sy) = NE_ F(Npy/(1 - ) (31 L --- SF(2=3.5)
- 04 ONC
with y=(1-u)KT,q2 andF(x)=x tan#\x. Wheny is small SN ——-ER
in S(y), a singular termy** competes with other regular 03F SN
terms. General expressions for smglexpansions are de- o | \
rived in Appendix B. When Eq(B7) is used and the Gauss- o2l AN
ian integration ovee is performed, Eq(30) becomes
A1 3 A-1 0.1F
q(l-p)=—— 2“'11“<>\ - —)D()\)Q”“Z— —Q’ i N
N 2 3-A\ o N
0.0F Ve -
2+ 0(Q9), (32 ° R °
where FIG. 3. The behavior of| in Eq. (30) for N=5000 andK=2 for
1/2<r<r".
dx X" tantf x for 2<\<3,
JO =[] eNP®R®R =[] coshNpQrl[ (1 +mror) (37)
D(N) = R R R

—f dx X2 (x> -tanifx) for 3<\ <4,

0 with 7y=tanhNpQg. Our perturbative approach is to ex-

(33)  pandIlg(1+7z0R) and keep only the terms up to given order.

: In the ER limit A — o, we anticipate that,~ -, 7,5~ €
and Q' =(1-wKT,g=(\—-2)KT,q/(A\—1). Equating the » Tap ™" €0 )
right-hand side of Eq(32) with Q'/(1-u)?KT,, one sees Sg;{ﬁrg VB[18], wheree;=(T.-T)/ T, is the reduced tem
13-\ _ — 2 - )
ti'atm_%f 3ET)\2<I cfjor1/|<2<)£/<|<?', (l“,(% 1/;2—2) Using the properties that Trg=0, Trogog =0 for R
Q or and ( o)~ Q' for # R’ and so on, the first few terms relevant to our discussion
Here K, is given by Eq.(24) and the\-dependent positive below are
coeff|C|ents are neglected. Therefore,Tas « (2<\<3) or

=(Ty-T)/T4—0 (A\>3), q behaves as

T_Z(}\_Z)/(s_)\) for 2< A< 3, nﬁf - E Q 2 QaB 2 Qa’ﬁy
2KT1 ~ 2KT2a<B 2KT3Q<B<,/
q~|e®? for 3<\<4, (34) )
& for N> 4. > Qs E > IncosNp.Qg)
. 2KT4a<ﬂ<'}/<5 i R
When\ =3, use of Eq(B8) yields
q~ T?exp- 2T?KJ?) asT — =, (35) - _2 D TaTgTapt 2 TaTpTyTapy
i a<f a<f<y

while, whenk =4,
> (TaTaTpyTay + ToTyTapTay * TyTaTapTpy)

g~ ¢fine’ ase;— 0. (36) apy

For general temperatures, can be obtained numerically + <2/3< TapTpyTay T <B§ <5TaTBTyTéTa,876

from Eq.(30). The behavior ofj for various\ are shown in Py ey

Flg' 3. + 2 (TaBTy§+ TayTB§+ TasTBy) TaBys
a<pB<y<éd

IV. THE PERTURBATIVE APPROACH S Tt TeTes (39)
a, yiydlad |-

a<pB<y<éd

In this section, we use the perturbative approach to evalu-
ate the free energy and to obtain the order parameter behav- The result of Appendix B with(x) =In coshx gives
iors near the transitions. For simplicity, we use the notations

defined through Q,=KT10,, Qu=KTxlss Qupy

=KT30apy Qupys=KT4lupys and so on. Let Rrepresenta = |n coshN A\ 2 2 _ %44 +0(08
subset of the répllca |nd|cé{& 2,...n}. Then it is conve- E HNRQR) = AR ZQR 12QR (Qr),

nient to denote the s¢Q,, Q.. ...} as{QR}. We also write (39)
or=I1,.rs*=+1. With these notations, Eq14) becomes

X;=2gNpQror where the sum is over all subsets of

{1,2, ... n} except the null set, and where
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.
=M ("
O\——l)’"z dx X In coshx for 2< A <3,
0
AL 1
A\ =4 E)\——lik‘zf dx x‘x(ln coshx — 5x2> for 3<\<5, (40)
0
A-2ML [~ 1 1
E)\——l;"'zf dx x"‘(ln coshx — 5X2+ 1—2x4> for 5<\<7,
. 0
[
and The phase boundary of the P-F transition is determined as
8= (= 2\ = D Hn =1 -1] (41) the same obtained in the SK approach. Whem\2< 3, since

A(\) is nonzero and positive, the transition temperaflge
The last sums in Eq:38) can be represented as integrals asbecomes infinity so that the system is always in the F phase
whenr>1/2. Forr=1/2, howeverb, =%, andM? has to be
1 * ) D
NE et = (A = 1)f dz 7* tanhzQf tanhzQ, - - zero. Then the system is in the SF phase.
i 1

(42) B. The P-F transition and the order parameters

. , We first consider the P-F transition. In the F phase, all the
with Qp=(A-2)Qr/(A~1). four order parameters remain nonzero. The behaviors of each

A. The replica symmetric free energy order parameter within leading order are discussed below
and listed in Table I.

We derive the RS solution of the order parameters up to (i) When 2<\ < 3, the leading order terms in free energy
the fourth order with the notations d®@,=M, Q,z=Q, Bf are

Qep,=Qz andQ,z,5=Qq, respectively. Then the terms in Eq.

42) take the f f b 1 1 1
(42) take the form o Bf = —A()\)Mh_l"'_1M2+(EA()\)‘62,0‘563,0*‘104,0

o0 2
Ba nonen, = (N = 1)J dz 7Z* tanH: zM’ tanH2 zQ
e : e - B Lanaits Bz anay
xtanH's zQ, tant“ zQ;, (43 )
1 1 1
where M’ =(1-u)M=(A-2)M/(\-1), n,,...,n, are inte- - 2Q2+ =, MM2Q - =C5 MM 2Q5 + =Cy MM 2Q,
. i - - 8 2 3 4
gers, and other primed quantities are similarly defined.
The RS free energ§(M,Q,Q3,Q,) in the limit of n—0 (46)

is then written as from Table Il with C, , given in Eq.(C6).

By applying Eq.(45) to the free energy, we obtain the
Q5 self-consistent equations for the four order parameters. Note
that from the definition ob,=(KT,)"*-a,, we find thatb,
~T' asT—co. All other coefficients such a&(\) and{C, ,}
are independent of. From ¢f/dM=0, we obtain that &\
-1DANMM2+b;M=0, leading to that M~[(\
+ 132 oo 1[33 010t 382200+ Bosod —1AN) /b, JHCEM ~ T-1EN  Fromaf/ 9Q=0, we obtain that
2 =3 T o o [AN)—2C, g+ - J(A =) QN2+C, ;MM 2-b,Q=0. Since the
1 second term is more dominant than the first, we obtain that
+ 2[34,0,0,1‘* 3Bo,2,0,1+ Boaod, (44 Q~Cy M 2/by~T 4 NIEM Fortunately, the coefficient of
Q" tis not needed to determine the leading order behavior of
whereb = (KT,)1-a, for I=1, 2, 3 and 4. Note that &4 is Q. Similarly, we obtain thatQs~T 7"2/GN and Q,
nothing butk,, for A>3 given in Eq.(24), while it is nega- ~T "3/, Subsequently, we obtaim~q~ds;~a,
tive for 2<\<3. ~T-(-2/GN where

The RS solutions oM, Q, Q; and Q, are obtained by _ _ _
solving the self-consistent equations, m=M/KTy, q=Q/KT2  ds=Qy/KTs,

ay

,Bf:ﬁMz—&Q2+@Q§—EQ2+a4M4—% -

& 44
2 4 6 84 12 24Q

_ﬂ 4 _ )\—l_l A1 } >\—1_E \—1
48Q4 AN M 2Q +3Q3 44

(47)
IfIoM = 9f19Q = df19Q5 = df19Q, = 0. (45) 04 = Q4KT,.
WhenM, Q, Qz andQ, are small,3, ..., are small. Their Itis noteworthy that the behavior af is different from that
leading order behaviors are calculated in Appendix C. of the unweighted magnetizatiom~ T-Y3M  where m
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TABLE I. The N\-dependent critical behaviors of the four order parameters and their scaled quéitjties
(47)] under the P-F transition. Heg= (T.—T)/ T, is the reduced temperature.

Order parameters 2A<3 3<\<4 4<\<5 5<A<6 A>6
M TN ~ 1/0\ 3 NGi’("'?’) ~el? ~el?
m ~T-(-21(3-N) _ 1/(>\ 3 -3 M2 2

C C

Q ~T-(4N)/(3) <A°2>/<x 3) N 65/<A—3> ~ ~
C C

q ~T-(=2/(3-N) (x 2)/(\-3) N 5/@—3) ~¢ ~ ¢
C C

Qs ~T~(7=20/(3-N) (>\ 2)/(\=3) (xCZ)/(x 3 ~ 32 ~ &2
C C

s ~T-(-21(3-)) (x 2)/(\-3) <x 2)/(\-3) 3/2 32
C

Q4 NT(10—3>\)/(3—)\) ()\ 2)/[(\-3) ()\ 2)/(\-3) ()\ 2)/2 ~62
C

—(\— - 2)/[(\-3 2)/(\-3 2)/2 2

Qs ~T~(A=2/(3-N) O\ )/(A=3) (h )/(N=3) (>\ ) ~é

=(1/N)Z(s) as previously studied in Ref$7,8]. This is

by o 81,4 D2, 2 M3
becausem~ M to the leading order. =M OME- QS Q+ Q3 M"Q3
(i) When A>3, the transition temperatur€. is deter- b L
mined by - R+ 20 M Q. (51
84" 4
by(T)=0, ie., aKTy(T)=1, (48)  Following the same steps as before, we obtain Mat €2,

Q~e., Qs~ 3/2 . andQ,~ ()\ 212
o ) (v) When)\>6, the free energy is written as
which is the same as E¢R5). When 3<\ <4, the leading

order terms ingf are b a, b a b ay
Bf = 51M2+ M- ZZQ2+ E3M2Q+ E3Q§— IMQ;
b b 1 b b
B = 5 MZ = AWM= Z2Q7+ 2C, MMRQ+ Q3 -5 Qi+ —TM“Q4- (52

Using the same step as before, it is obtained Mat 61/2,

1 b 1
- 5(33,1M”'2Q3 - §4Qi + ZC4,1|V|A_2Q4- (49 Q~e, Qu~e2andQ,~ &
It is mterestlng to note that asincreases, the order param-
eters progressively acquire the classical mean field behavior
Note thatA(\) <0 for 3<A<5. The most leading term is Q,~ startlng from the lower order ones.
(b;/2)M? and the transition temperatuTe is determined by
b,=0. Just belowT,, b, <0 and|b,|~ O(e,), where e.=(T,
-T)/T.. From 9f/dM=0, we obtain that G\ —1)A(\)M*~2 Here we consider the P-SG transition. In the SG phisise,
+b;M=0, leading to thaM ~ ¢'*"®. From 4f/9Q=0, we  andQ; are always zero for all temperatures. Thus, the free
obtain thatC, ;M*2-b,Q=0. Slncebz is constant neaff,,  energy becomes simpler compared with that in the F phase.
we obtain thatQ~ M2~ (x 2I0-3 " Similarly, it is ob- Using the same method as used in the P-F transition, we
tained that Qz~M2~ (A 200-3) and Q,~M)2  obtain the P-SG transition temperature and the order param-
NG(CA—Z)/(A—S)_ Unlike the case of ZA<3, m~M, q~Q, etersQ and Q, in various region of\, which is listed in
~Qs, andg,~ Q,. Such relations hold for al > 3. Table II. _ _ ,
(iii) When 4<\ <5, the free energy is written as For more details, we fII’.St determine the PSG phase
boundary. When &\ <3, since A(\), the coefficient of

C. The P-SG transition and the order parameters

by o1 D2 az, , 2 TABLE Il. The A-dependent behaviors of the two order param-
Bt = EM ~AMMTE - ZQ Y Q+ EQ3 eters and their scaled quantities in E47) under the P-SG transi-
tion, whereey=(Ty—T)/T,.

1 B b 1 _
- 3CaM Q- FQI+ 2C MM RQ (50

Order parameters 21<3 3<A<4 A>4

_T-2/(3-)\) __1(\-3) 1

. , i Q T 6? €
Following the same step as used ir 8 <4, we obtain that q ~T2A-2)/G-M) ~6g/(”‘3> ~€
M~ ;’(” ¥, Q~M2~&™Y  and  Qy~Qu~MM2 Qs LTE20EN 00y 2
ADr0- 3) o e 3

Qs T 2(2-N)/(3-N) ~E§)\ 2)/(\=-3) ~€é

(|v) When 5<A\ <6, the free energy is written as
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TABLE IIl. The leading order terms of Eq43). Here C,,=[(A\=2)*"1/(\=1) 2] [7dx x**P tanH'x,
which converges in the region pi+1<A<n+p+1 anda=(A-2)"/[(A=1)'"Y(A-1-1)].

Integrals 2X\<3 3<A<4 4<\<5 5<\<6 A>6
B2,1,0,0 CpaMM2Q CpaMM2Q aM?Q aM?Q aM?2Q
Bs0.1,0 C31M*2Qs C31M Qg C31M Q4 ayM3Q, aM3Q;
B32,0,0 Co Q! Co MA3Q? Co MM3Q? ayM?Q? ayM?Q?
Bo,3,0,0 Cy ot Ca ot agQ? agQ® a;Q*
B4.0,0,1 CsMM2Q, CsMM2Q, C4aMM2Q, CaMM2Q, asM*Q,
Bo,2,0,1 C21Q"%Q, C21Q"%Q, a3Q?Q, a3Q?Q4 a3Q?Q,
Bo,4,0,0 Cpo? Ca ot Ca gt a,Q* a,Q*

Qs nonzero for allT, the spin glass transition tempera-

ture Ty is infinity, and no P phase exists for dll When\
>3, the transition poinT is determined by the formula

by(Ty) =0, ie., aKTy(Ty)=1, orKT,(Ty =K,

(53)

which is the same as derived in the SK method. In the S

phase, the order parameter behaves as follows.
(i) When 2<\ <3, the leading order terms @ read off
from Table Il with M=Q5=0 are

1 1 1 b
Bf = (§A()\) - 503,0*' ZCA,O"' B )Qx_l - ZZQZ
1 b
- Z(A(A)Qﬁ‘l - ;‘Qi + scz,lQh'ZQzl) . (54

By applying of/0Q=0f/9Q,=0, we obtain that Q

~T28°N and Q,~ Q" 2/ T4~ T-8-2)/B-N  Using the rela-

tion Q=KT,q and Q,=KT,q,, we obtain thatq~q,

~T-20-2/3-M_The result ofy is the same as the one derived
through the SK method, E¢B4). Note that the coefficient of

Q"' in the perturbative approach is in the form of infinite
series while the same is obtained in a closed form in Eq

(32.
(i) When 3<\ <4, the free energy is

b,

pf=- %QZ +[AOI2 =C3d/3 +C4 /410" - Q4

3
+ Zcz,lQ}\_sz (59

We note that the coefficiertt,~ —€; with €,=(Ty—T)/T,.
Then we obtairQ~ell(*_3) Similarly, from df/9Q,=0, we

obtainQ,~ Q" 2~ NRIND) iy b, being constant.
(iii) When\ >4, we have

b a b 3
Bi=-F Q- Q-5+ ja"u  (56)

By following the same step above, we obtain tQat €, and

Q~ e,

V. CONCLUSIONS

We have studied the spin-glass phase transition on SF
networks through the static model. The model contains ge-
neric vertex weights in it, and edges between two vertices are
connected with the probability given in Eq4) and(2). The
static model enables one to study the spin-glass problem us-

dng the replica method by generalizing the dilute Ising spin-

glass model with infinite-range interactions. Here we ob-
tained the replica-symmetric solutions through the two
methods, the Sherrington-Kirkpatrick approach and the per-
turbative approach. We also found the phase diagram consist-
ing of the paramagneti¢P), ferromagnetic(F), spin-glass
(SG), and mixed(M) phases in the space of temperatilite
the mean degrek, the fraction of the ferromagnetic interac-
tions r, and the degree exponekt The AT line was also
obtained numerically. The phase diagram is shown in the
(K,T) and(r,T) planes, which are presented in Figs. 1 and 2,
respectively. The critical temperaturgég and T, for the P-F
and P-SG phase transitions are simply related to the perco-
lation thresholK,, in Egs.(25) and(26). We obtain the same
results in the two approaches. Thilig and T, are infinite
when 2<\ <3. The magnetization and the spin-glass order
parameter are modified to account for the inhomogeneity of
vertex degrees as=23,;pi(s"); andq==p,(s*s?);, wherep; is
the weight of vertex. Such quantities depend on the degree
exponent\. When 2<\ <3, due to the fact that =« and
Ty=2, mandq decay as power laws for largeas shown in
Tables I and I, which is different from the patternsrofand
q, defined withp,=1/N. When\ >3, the order parameters
exhibit continuous phase transitions acrégandTg, and the
associated exponents depend\gnvhich are listed in Tables
I and Il. AsQ3,Qq, ... are ofhigher orders, the SK approach
in Sec. lll, and the perturbative one in Sec. IV give the
identical results fom andq to the leading order. We find the
critical exponents for the P/SG transition are nonclassical in
the range 3\ <4, corresponding to 8 A <5 for the P/F
one[7]. We have not presented our results at integer values
of A in Sec. IV for simplicity. At the borderline cases bf
the logarithmic corrections as given in E@BS8), (C3), and
(C7) should be considered explicitly. We mention that the
finite-size effect is an important issue especially for ®
=< 3 which we leave for a further study.

It is noteworthy that the method we developed here can be
applied to other problems in equilibrium statistical physics
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on SF networks. A novelty in this approach is that one need R, =
not rely on the local treelike structure of SF networks used,

e.g., in[7]. The result of the phase diagram and the behavior -
of the order parameters may be helpful in understandingn=2) are all bounded above by(N) quantities.
emerging patterns in various systems with competing inter- Firstlet us consideR’. SinceS; are independent df, we
actions such as social or biological systems. For example, ifePlaces; by their maximum valueSya,=max;|S;| to get
the region 2\ <3 where most real-world SF networks be- ,

long, it is known that the structural characteristic of the net- R'< S*“axg G1(NKppy)

work is so dominant that homogeneously interacting systems .

(A4)

2 fis]

i<j

are in the ordered state for all temperatures. Our result shows Sinax _

that it is also the case even when there are competing inter- = 2 .EJ: G1(NKppy) Gl(NKp%) ' (A5)
actions. Also for 2\ <3, the fact that a slight dominance '

of cooperative interaction@ =1/2) drives the system into Where

the ferromagnetically ordered or the mixed state suggests Gy(X) = x—-1+e™. (A6)

that most social and biological systems would be driven into
the majority statgferromagnetic or mixed statet equilib- Here we have addet:| terms fori=2 on the right-hand
rium. While the current study is meaningful as a first step ofside of Eq.(A5) for convenience. Sinc&;(x) is monotone
understanding thermodynamic property of the systems witlincreasing fox>0, the summands in EGA5) decrease ais
competing interactions, further studies have to be followedand] increase.
towards real-world systems where the signs of interactions We utilize the fact that, for a monotone decreasing con-
may be correlated with the degrees of vertices, or the intertinuous functionF(x), a finite sum is bounded above by an
action signs may change with time as in the prisoner’s diintegral as
lemma problem.

While preparing this manuscript, we have learned of a
recent report by Mooij and Kapp€l82], which addressed
the same issue. They used the Bethe approximation to obtain
a criterion forTy and applied it to thew== and\=3 cases APplying Eq. (A7) twice to Eq. (A5) and using p;
numerically. Our work gives analytic results foy as wellas =17/ {n(u), we have

N
1

N
D E() < f F(x)dx+ F(1). (A7)
i=1

physical ones such as the phase diagram and the behaviors of s, N N NK
the order parameters, which depend on the degree exponent. R < Tax f f Gl(g ( )zx"‘y"‘>dx dy
N
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APPENDIX A: EVALUATION OF THE REMAINDER N [[eNH G,(uv)
_ _ lp=(\-1ANe™)? f f ——-dudy, (A9)
In this Appendix, we show that e Jeo (w)
> In(1+£;S;)) = 2 NKpp;S; +R (A1)  with A=1+1/u and e=VKNY2%/{(u)~O(NY?). Note
i<j i< that in Eq. (A9) the upper limit of the integrals igN*
~ 3-N)/2(\-1 3-\
with R<O(N™ InN) for 2<A<3, R<O((INN)?) for A O(NBM20-1) and the front factor scales &N3™). We

=3 and R<O(1) for A>3. Here §;=(exp(8J;23-1S'S]) con_sidV?/rhthe Zthree %asgs)ofcs;eparately. 4
-1), is a quantity independent of the system gz o do so, (i) When 2<) <3, sinceG,(x) ~x asx— and~x" as

: ) ; x—0, the lower(uppe) limit of the double integral in Eq.
we expand the logarithm on the left-hand side of &) to (A9) can be expended to (2) to give a finite value and

write it as
hence
> In(1+£;S) = 2 NKpp;S; + 2 (fj — NKpp))S; o
= S e o |1<(>\—1)2(Na-1)2f f %dudwou\lﬂ).
* _1n+1 0 0
+22( S (A2) (A10)
n= i<j

N - i (i) When\=3, the upper limit of the double integral is
and show that the positive quantities defined by O(1) and the integrand near the lower limit behaves as
— -1 2
R=> (NKpp; - f)S, (A3) (uv)™. We use B<G;(x) <x</2 for x>0 to get
i<j l
<= -1)2 2 __ 2y
and I 2(N8 )“(In N)* ~ O((In N)9) (Al11)
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(iil) When\> 3, proceeding as in the case(d), we find

Ne® \?
—(7\ 1) ()\ 3) ~0(1). (A12)

The single integral in the bracket of E¢A8) is, by
change of variables,

l,=2(\— 1)N6”‘1J§N Gllj(xu)du,
)

(A13)

with §=KN*#/Z(u) ~ O(N#7%). Note that in Eq(A13) the
upper limit of the integrals i$N“~ O(NCM(A-D) and the

front factor scales a®(N3™). We proceed exactly the same

as in the case of the double integral and find that

(i) When 2<\<3, <2(A=1NS& [5Gy (u)/urdu
~O(N™).

(i) Whenx=3, 1,=<N&1InN~O(In N).

(i) When A>3, <(\-1)(\-3)"IN&?
~ O(N_()‘_?’)/()‘_l)).

Collecting these, we see thRt is bounded above as

ON*™)  if2<N\<3,
R <{0((InN)?» if =3, (A14)
0o(1) if A > 3.

Next we consideR, with n=2. Similarly to Eq.(A5), we
have

Ry < Sha fil <

i<j

(A15)

Srlnax(E fn — 0 )

Applying Eq. (A7) twice to Eq.(A15),

_{f J { (gN(mzx_”y_"ﬂndXdy
f ol

where Go(x)=1-e7*. At this point, we use the piecewise
linear upper bound foGy(x) by

(A16)

~ x forO<x=1,
Go= (A17)

1 forx>1.

SinceGO(x)séo(x) for x>0, we can write Eq(A16) as

Sj“ax (A = DN 1)2f f ¥ [Goluw)" (uv)]ndudu
(uo)*

N [Go U)]

+2(A - NSV f duf, (A18)

wheree and § are defined above. Now the integrations in Eq.

(A18) are elementary. Focusing only on tNedependences,
we find that

PHYSICAL REVIEW E 71, 056115(2005

p
ON*MnN)  for2<i<3,
O((In N)?) for A =3 andn=2,
0(1) for A\ =3 andn= 3,

Rﬂ = < 2-n
O(N“™) forn>3and2<sn<\-1,
O((INN)>N>™  for A>3 andn=\-1,

kO(N‘r‘(*‘@’(”‘”) for A\ >3 andn> A - 1.

(A19)
Putting these together, we finally have
© O(N>*InN) for2<\< 3,
IR<R +2> =R,<{0((INnN)®  for \=3,
n=2 " o(1) for A > 3.
(A20)

APPENDIX B: EVALUATION OF FINITE SUM IN
GENERAL FORM

In this Appendix, we derive a general expansion formula
for the sum

N
Sy)= = 3 F(Npy/(1- ) (BD)
i=1

for small y(>0) and N— o« with p;=i"#/{y and\=1+1/u
>2 as before. We tak&(x) to be a positive monotone in-
creasing function which diverges slower theh* asx—
and has an expansidf(x)==/_,fx". Converting the sum
into an integral as in Appendix AS(y) becomes, in thé\
— oo limit,

sy =0-0yt [ T (82

y

We first let\ # integer andmy<\ <my+1 for some integer
my. Then we define

mp—-1
FOO=F(x) = > fx" (B3)
n=0
and divideF(x) into two parts
my-1
FX) = > fox"+ F(x). (B4)
n=0

Plugging Eq.(B4) into Eq. (B2), the first finite sum can be
integrated term by term to give

mg-1

Sy)=(\ - 1)2 NPT AR Dyt
n=0

“F(x) YE(X)
X[JO X—i(dx— fo X_))‘(dX].

Here we use the fact thﬁt(x)~xr% asx— 0 and hence

(BS)

056115-11



KIM et al.

I\ = fm %dx (B6)

0

converges. The last term can now be integrated term by terr(b

using the expression . The result is

S f
Sy)=(A=-DZMVY" P -(A -1 —"

n. (B7
n=on+1—>\y (B7)

Note thatF depends ommy, the integer part oh. When\

=mp+1 (intege), we setA=my+1-¢ in the above formula

PHYSICAL REVIEW E 71, 056115(2005

(\-1)
ﬁ) M™Q™In(1/M). (C3)

Bnl,nz,o,oz (A - 1)(

Whenn,+1<A<n;+n,+1, one scaleg—z/M’ in Eq.
1) to find

Bn,n,00=(\ = 1)M’*‘1{f dz z* tanH" z tanH2(zQ/M)

0

M/
—f dz z* tanH‘lztanH‘Z(zQ’M)}. (C9
0

and lete— 0*. In this way, the singular term obtains a loga- The second term i©O(M"2*17)) smaller than the first

rithmic factor. The result is

oo fn

S(y) = meZy™ - mgf Y™ Iny —my y",
o n=0(#mg) n-mg
(B8)
where
~ (" F(x) 1F(x) - i X™
I= fl Xm0+1dX+ f de. (Bg)

A special casd-(x)=1-exg—x) has been treated {i27].

APPENDIX C: THE LEADING ORDER ANALYSIS OF

Bnl,nz,ns,n4

lSnlynZ’%n4 is defined in Eq.(43) with M'=(A-2)M/(\

—-1) andQ’=(A-2)Q/(A—1) and so on. To see how the lead-
is determined, consider for

ing order behavior of5
simplicity the integral

N3.N5.N3,N,

B n,00= (A = 1)J dz 7Z* tanH zM' tanH2 zQY
1

(C1)

with the condition >M’'>Q’.
When is sufficiently large, the leading orders h’ and

whose leading contribution is

o

B ny00= (A = DM HQIM)™ J dz 227 tanH z
0

— Cnl,nzM)\_l_annzv (C5)
whereC,, ,, defined as
=M (7
Cop= W i dx X MPtanH x, (C6)

converges fop+1<A<n+p+1.
When\=n,+1, similarly to Eq.(C3),

(A\-1)
m—) Q"In(M/Q). (C7)

By, n,00~ (N = 1)(
When 1<\ <n,+1, one scaleg— z/Q’ in Eq. (C1) to write
it as
Bn ny00= (A= 1Q™? w, dz Z* tanH2 ztanH'(zM/Q).
) (C9

SinceQ<M <1, taniizM/Q)~1 for all z except near the
origin where the contribution to the integral is negligible.

Q' are given by the first terms of the expansion of tanh 1hUS we have

=x+--- and we have

By n,00=M\-1)M'MQ"2| dzZr=a, ., MMQ"™.
1

(C2

Equation(C2) with g given in Eqg.(41) holds as long a&
>n,+n,+1, but the integral in Eq(C2) diverges whem

o)

r-llynzyo’o2 ()\ - 1)Q,)\_l dZ Z_)\ tanWZZ: an’oQ)\_l.
0

B

(C9

The leading order terms d$n1ﬁzﬁsﬁ4 for various\’s are
listed in Table Ill. For simplicity, we do not show the
=integer cases in Table Ill. For the border line cases of

<n;+n,+1 indicating appearance of the nonanalytic term aglividing the regions oh with different expressions, a loga-

the leading term.
When A=n;+n,+1, the next leading order in E4C2)
cancels the divergence m1+n2 to give

rithm correction appears as given in E@®8) or (C3) or
(C7), while for other integer values of, the expressions are
continuous.
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