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Abstract

We study the e.ect of external harmonic forcing on a one-dimensional complex Ginzburg–
Landau equation (CGLE). For a su3ciently large forcing amplitude, a homogeneous state with
no spatial structure is observed. As the forcing amplitude decreases, the state becomes unstable,
forming a spatially periodic “stripe” state via a supercritical bifurcation. An approximate phase
equation is derived, and an analytic solution for the stripe state is obtained. As the forcing
amplitude decreases even further, the system undergoes a depinning transition into the state
where the average phase has a non-zero velocity.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Nonequilibrium pattern formation is widely observed in many physical, chemical
and biological systems. Signi>cant progresses have been made in the >eld during the
last few decades. For example, it has been found that nonequilibrium patterns can be
grouped into a few universality classes [1–3]. In many cases, such a system is in
constant interaction with its environment, and understanding the e.ect of extrinsic per-
turbation is of great theoretical and practical importance. In particular, it is interesting
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to study the deformation of an existing pattern or the formation of a new pattern under
an external forcing. Our understanding in such a direction is far from complete.
Petrov et al. and later Lin et al. studied the light sensitive Belousov–Zhabotinsky

(BZ) reaction in an oscillatory regime in the presence of a periodic modulation of
the intensity of illumination [4,5]. They observed “entrainment bands” in which the
system is frequency locked. Di.erent spatial patterns—stationary fronts, standing waves
of labyrinth and more complex shapes—are observed within the bands. In a similar BZ
reaction setup, Vanag et al. studied spatial patterns and transitions among them in detail,
and observed localized irregular=standing clusters as well as the above patterns [6,7].
Continuum models of forced pattern forming systems can be grouped into ones

based on a kinetic model or on an amplitude equation. In the >rst group, an unforced
system is modeled by a coupled kinetic model, such as the Brusselator, Oregonator
or FitzHugh–Nagumo model, and parameters in the model are modulated to simulate
the e.ect of external forcing (e.g. Refs. [5,8]). On the other hand, near a bifurcation
onset of a pattern, small di.erences among systems become irrelevant, and they are
all described by one of a few universal equations. If the bifurcation is supercritical
and oscillatory, and if the most unstable wavenumber is zero, the complex Ginzburg–
Landau equation (CGLE) is the equation for the class of systems. In the presence of an
external periodic modulation, it is shown that the CGLE with an additional forcing term
becomes the appropriate equation [3,9]. There exist a few studies on forced CGLE,
and diverse behaviors are observed depending on several factors, such as the spatial
dimension, the mode of the frequency locking, and the behavior of the corresponding
unforced system [3,9–16]. However, we do not even know what behaviors are possible,
let alone understand them.
Even the simplest case of the 1:1 locking in one dimension displays a wide variety

of behaviors. At large amplitude of the forcing, a homogeneous state with no spatial
structure is stable. ChatNe et al. found that the homogeneous state becomes unstable
to a periodic “stripe” or “kink-breeding” state as the forcing amplitude decreases, and
“turbulent synchronized” state—chaotic with its average phase is locked to that of the
forcing—can appear, as the amplitude decreases further [13].
In this paper, we study in detail the homogeneous and stripe states of one-dimensional

forced CGLE around the 1:1 locking. There are two borders regarding the homoge-
neous state: (1) the stability border, below which the state loses its stability, and (2)
the existence border, below which a homogeneous solution does not exist. In general,
the existence and stability borders do not coincide. It is known that the stability border
of the homogeneous state lacks a reOection symmetry around the � = � line. Here,
� is the di.erence between the natural and external frequency, and � is a non-linear
detuning parameter. We >nd the asymmetry can be explained by the linear stability
of the state. Also, the condition under which the existence and stability borders of
the homogeneous state coincide is found. The stability border of the stripe state also
lacks a reOection symmetry. An approximate phase equation is derived from the forced
CGLE, and it is found that its qualitative behavior is identical to that of the original
equation, at least in the region of present interest. An analytic expression of the stripe
state for the phase equation is obtained, which is used to explain the asymmetry of
the border of the stripe state.
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As the forcing amplitude decreases even further, the average phase of the system
starts to Ouctuate, then acquires a non-zero average velocity, which is called “depin-
ning”. The quantitative behavior near the transition, for a certain range of parameters,
can be described by an argument involving the type-I intermittency [17].

2. Forced complex Ginzburg–Landau equation

2.1. Complex Ginzburg–Landau equation

Near the stability border of a homogeneous state of an extended pattern forming
system, the time evolution in a large spatial and temporal scale is given by one of
a few universal equations [1–3]. If the instability is oscillatory and supercritical, and
the wavenumber of the most unstable mode is zero, the complex Ginzburg–Landau
equation (CGLE),

@tA= A− (1 + i�)|A|2A+ (1 + i�)∇2A (1)

is the governing equation. Here, A is complex amplitude, and �; � are real constants.
The behavior of the CGLE is relatively well understood, especially in one and two
dimensions [18–20]. It has plane wave solutions, which are stable only if 1 + ��¿ 0.
Otherwise, the Benjamin–Feir instability sets in, making the solutions unstable. Near the
unstable side of the stability border (1 + ��= 0 line), “phase turbulence” is observed,
which is characterized by disordered cellular structure and the absence of a defect
(|A|=0). “Defect turbulence” is observed further in the unstable region, where constant
creation and annihilation of defects is observed [21,22]. In this paper, the value of
�=− 3

4 , � = 2 is mainly used, which is in the phase turbulence region.

2.2. Homogeneous state

Consider the case that a sinusoidal forcing is applied to the system of Eq. (1). It
was shown that an additional forcing term should be included, and its form can be
determined from the conditions of the spatial and temporal translation invariance [9].
For a harmonic forcing (near the 1:1 tongue), the resulting equation is

@tA= (1 + i�)A− (1 + i�)|A|2A+ (1 + i�)∇2A+ B ; (2)

where � is the di.erence between the natural and forcing frequency, and B is related
to the amplitude of the forcing.
We >rst seek for the homogeneous solution of Eq. (2). In polar coordinates (A =

R exp(i�)), the equation becomes

@tR= R− R3 + B cos�+ Rxx − �R�xx − 2�Rx�x − R�2
x ;

R@t�= �R− �R3 − B sin�+ �Rxx + R�xx + 2Rx�x − �R�2
x : (3)
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Fig. 1. (a) The existence and stability borders of the homogeneous state for the harmonically forced CGLE
Eq. (2) with �=− 3

4 and �=2. The stability border of the stripe state is also shown. Note that the stability
borders are not symmetric to the �= � line. (b) Corresponding borders for the phase equation Eq. (9) with
� =− 3

4 , � = 2, and R0 = 1.

For a su3ciently large B, the system is expected to lock to the forcing. Its homogeneous
solution is

B cos�0 =−R0(1− R2
0) ;

B sin�0 = R0(�− �R2
0) ; (4)

which can have 1 or 3 roots depending on the parameters. For the 3 roots case, only
the one corresponding to the largest R0 is stable. The region of the parameter space in
which a locked homogeneous solution exists is shown in Fig. 1(a).
We apply the linear stability analysis to the homogeneous solution [13], where the

behavior of a small deviation from the solution r=R−R0 and �=�−�0 is studied.
The growth rate of the mode with wavenumber k is found to be

�(k) = 1− 2R2
0 − k2 +

√
(1 + �2)R4

0 − (�− 2�R2
0 − �k2)2 ; (5)
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which has the maximum value of

�max = 1− 2R2
0 −

1
�
[�− (2�+

√
(1 + �2)(1 + �2))R2

0] (6)

at k = kmax, corresponding to the most unstable mode, which is given by

�k2max = �−
(
2�+

√
1 + �2

1 + �2

)
R2
0 : (7)

The stability border Bs of the homogeneous solution is obtained by solving numerically
�max = 0, which is also shown in Fig. 1(a).
A distinct feature of the stability border is that it is not symmetric to the � = �

line. As shown in the >gure, the di.erence between the existence and stability border
is smaller at the �¡� side. Moreover, the di.erence vanishes for �6 �c with �c �
−1:067. This feature can be understood from the � dependence of kmax, which is
given by Eq. (7). It is found that kmax is an increasing function of �: it is zero for
�6 �c = (2� +

√
(1 + �2)=(1 + �))R2

0, and proportional to
√
�− �c slightly above �c.

Since the wavenumber of the most unstable mode is zero for �6 �c, and since the
solution Eq. (4) with the largest R0 is stable to a zero wavenumber perturbation, the
existence of the homogeneous solution guarantees its stability.
As will be discussed later, an approximate phase equation is derived from Eq. (2),

which gives an additional insight on the stability border. The origin of the instability
of the homogeneous state of the phase equation can be traced to a Laplacian term,
whose coe3cient is a decreasing function of �, and becomes negative at ��c . Thus, the
homogeneous state is stable for �6 ��c , and it becomes more unstable as � increases.

2.3. Stripe state

The behavior below the stability border is investigated numerically. The forced CGLE
in one dimension is integrated using a pseudo-spectral method for various � and B [23].
The spatial resolution Sx and timestep St used is 0:1 and 0:01, respectively. Also, a
periodic boundary condition is used. For most cases, the linear size of the system is
chosen to be 4096, and the time interval of 2× 104 is used. Larger systems for longer
intervals are also studied, and no change in the behavior is observed.
The numerical integrations con>rm the prediction that the homogeneous state is

stable above the stability border. It is found that the state undergoes a supercritical
bifurcation to a spatially periodic static “stripe” state as B decreases below the border,
and the modulation amplitude of the state, de>ned as ��=

√〈(�− 〈�〉x)2〉x, behaves
as

√
Bs − B close to the border (Fig. 2(a)). The wavenumber of the stripe state is found

to agree very well with kmax of Eq. (7), especially near the border. In order to check
how the nature of the transition depends on the unforced dynamics, the transition from
a homogeneous state is examined for four di.erent values of (�; �): (−2; 2), (−1:11; 1),
(−2; 0) and (−0:75; 0:5). It is found that a supercritical transition to the stripe state is
observed for the >rst two cases belonging to the Benjamin–Feir (BF) unstable region,
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Fig. 2. (a) The modulation amplitude �� of the stripe solution of the forced CGLE Eq. (2) is shown against
B for �=−0:75. Also shown is a square root >t D

√
Bs − B with D=1:25 and Bs = 0:02101. (b) �� of the

stripe solution of the phase equation Eq. (9) is shown for �=−0:75. Analytic expression Eq. (15) with the
coe3cients given by Eq. (17) is found to be a good approximation.

while a transition to a disordered structure is observed for the other two cases belonging
to the BF stable region.
As B decreases further, the stripe state becomes unstable to a Ouctuating stripe or

“kink-breeding” state, depending on � [13]. The stability border of the stripe state is
determined, and plotted in Fig. 1(a). Again, the border is not symmetric to the �= �
line. The region of the stripe state is much broader on the �¿� side. Moreover, it
extends to the region where a locked homogeneous state does not exist. The origin
of the asymmetry will be discussed using a phase equation, and is found to be very
di.erent from the case of the homogeneous state.

2.4. Depinning transition

As B decreases below the stability border of the stripe solution, the average phase of
the system starts to Ouctuate in time. As B decreases even further, the time-averaged
velocity of the average phase � ≡ limT→∞ (1=T )〈�(x; T )−�(x; 0)〉x becomes non-zero,
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Fig. 3. The velocity of the average phase � is plotted against B for �=−0:5. The dashed line shows square
root >tting E

√
B1 − B with E = 0:0384 and B1 = 0:1817 for small B. The dotted line shows the type-I

intermittency based expression—F exp(−G=
√
Bc − B) with F = 1:55, G = 0:7651 and Bc = 0:1547.

which will be termed as “depinning” transition. Depending on the value of �, there
are a few possibilities of depinning. One is “depinning due to kink-breeding”, where
the average velocity is determined by the properties of the kink, such as its nucleation
rate and average velocity. Around � = �, the kink-breeding is no longer present, and
depinning occurs when a part of the system Ouctuates and its phase advances (or
jumps) by an amount close to 2�, and other part of the system follows it. In this
regime, the average velocity will be determined by the “jump” rate. We >nd that the
average velocity � near the transition is well described by the expression based on
the type-I intermittency—exp(−G=

√
Bc − B) [17] (Fig. 3). For very small value of B,

the phase does not advance by jumps, but by smooth and constant increases. In this
regime, � is well >tted by a “mean >eld” result of

√
B1 − B, which is also plotted in

Fig. 3.

3. Phase equation

3.1. Derivation

An approximate phase equation can be derived from Eq. (2) as follows. De>ne small
variables r = R − R0 and � = � − �0, and assume that the time scale for � is much
larger than that for r. The variable r is then slaved to �. Starting from Eq. (3), it can
be shown

r =
R0

3R2
0 − 1

[
(1− R2

0) +
B
R0

cos(�0 + �)− ��xx − �2
x

]
; (8)

where additional terms higher than the second order in � are ignored, and B is assumed
to be small. Substituting this to the phase part of Eq. (3),

R0@t�=�R0−�R3
0−B

√
1+a2 sin(�0+�+�)+b�2

x+c�xx+d�xxxx+e ; (9)
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where a; b; c; d; e; � are constants depending on �; �; � and R0. Since R0 is 1 at � = �,
and is a slowly varying function of �, it is expected that setting R0=1 does not change
the qualitative behavior of the equation. On the other hand, the constants are simpli>ed
to

a= �− (�− �)=2 ;

b= �− � − (�− �)=2 ;

c= 1 + �� − �(�− �)=2 ;

d=−�2=2 ;

e= 0 ;

�= tan−1(a) : (10)

For the remainder of the paper, R0 will be set to 1 in the equation. Note that Eq. (9) is
a generalized version of the phase equation obtained by Coullet and Emilsson, which
is derived for the special case of � � � [9]. Also, �xxxx term is added for the stability
of the solution in the phase and defect turbulence regions.

3.2. Homogeneous state

The phase equation is studied in a way parallel to the analysis of the forced CGLE.
Homogeneous states, given by

�0 = sin−1
(

�− �

B
√
1 + a2

)
− � (11)

exist for B¿ (� − �)=
√
1 + a2. There exist two solutions, �s

0 and �u
0, in the [0; 2�]

interval satisfying Eq. (11) as shown in Fig. 4. The �s
0 solution is stable under homo-

geneous perturbation, while the �u
0 solution is unstable. A linear stability analysis of

the stable homogeneous state shows that the maximum growth rate is

��
max =−B

√
1 + a2 cos(�0 + �)− c2=4d (12)

for the mode with wavenumber k�
max =

√
c=2d (if c6 0). The state is found to be

linearly stable above the stability border B�
s , which is given as

B�
s =

√
(c2=4d)2 + (�− �)2

1 + a2
: (13)

The existence and stability borders are plotted in Fig. 1(b) for �=− 3
4 , �=2. Note that

the shape of the borders are qualitatively the same as those of the forced CGLE: the
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stability border is asymmetric to the �= � line, and the two borders meet for �6 ��c .
Since the wavenumber of the most unstable mode should be zero at �=��c , one arrives
at

��c =
2 + 3��

�
: (14)

For the above values of � and �, ��c =− 5
4 , which is comparable to the value of �c for

the forced CGLE.
The simple structure of the phase equation makes its interpretation simple. The

reason for the instability is that c can be negative, while the �xxxx term always tries
to suppress such an instability. The value of c remains positive for �¡��c , and the
homogeneous state is stable. As � increases further, c becomes negative. Since c is
a decreasing function of �, the instability becomes stronger with increasing �, which
explains the fact that the di.erence between the existence and stability border increases
with �.

3.3. Stripe state

The behavior of the phase equation below the stability border is studied numeri-
cally. As one crosses the border, the homogeneous state goes through a supercriti-
cal bifurcation to a stripe state, and the modulation amplitude �� =

√〈(�− 〈�〉x)2〉x
behaves as

√
B�
s − B close to the border. A typical dependence of �� on B is shown in

Fig. 2(b), where �=−0:75. As B decreases further, the stripe state becomes unstable.
The stability border of the stripe state determined numerically is plotted in Fig. 1(b).
Again, the border is not symmetric to the � = � line, and even extends below the
existence border of the homogeneous state. Although the phase equation is simpler
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than the forced CGLE, their qualitative behaviors are essentially the same, at least for
the homogeneous and stripe states.
The simple structure of the phase equation allows an analytic expression for the

stripe solution. The solution may be expanded in terms of harmonic functions

�(x) = �1 + S1 sin k0x + C1 cos k0x + S2 sin 2k0x + C2 cos 2k0x ; (15)

where higher harmonics are ignored. k0 is the wavenumber of the most unstable mode,
and the coe3cient C1 can always be set to 0 by choosing an appropriate origin. Sub-
stituting it to Eq. (9), we >nd

S2 = 0 ;

sin(�0 + �1 + �) =
�− �+ (S2

1 + 4C2
2 )bc=4d

B
√
1 + a2(1− (S2

1 + C2
2 )=4)

;

S2
1 = 4C2

−B
√
1 + a2 cos(�0 + �1 + �) + 2c2=d

B
√
1 + a2 sin(�0 + �1 + �)− bc=d

;

C2 = 2
−B

√
1 + a2 cos(�0 + �1 + �)− c2=4d

B
√
1 + a2 sin(�0 + �1 + �) + 2bc=d

; (16)

which can be solved numerically for S1, C2 and �1. Near the stability border B�
s , an

approximate analytic solution can be obtained, which is

S1˙
√

B�
s − B ;

C2˙ S2
1 ;

�1 � 1

4B
√
1 + a2 cos(�0 + �)

(
�− �+

bc
d

)
S2
1 ; (17)

where the proportionality constants are rather complex except for the case of �1. The
analytic solution agrees well with the results using numerical integration: as shown in
Fig. 2(b), the modulation amplitude �� vs. B curve obtained from the above expression
is in good agreement with the corresponding numerical values.
Not only the analytic solution con>rms the square root dependence of A1, it also

provides an explanation for the asymmetry of the stability border of the stripe solu-
tion. There are two homogeneous solutions—stable �s

0 and unstable �u
0—of the phase

equation with B a little below the stability border. As B decreases from the homo-
geneous toward the stripe region, the modulation amplitude around �s

0 increases with
decreasing B. For su3ciently small B, �(x) at certain x approaches the unstable >xed
point �u

0, which then makes the stripe solution unstable. Note that �1 in Eq. (17) is
non-zero—it is negative when � is not very di.erent from �. Thus, the average phase of
a stripe state is shifted toward a value smaller than �s

0. The average phase of the stripe
solution measured using numerical integration is also con>rms the shift. As shown in
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Fig. 4, the shift moves the stripe solution toward (away from) �u
0 for �¡� (�¿�),

resulting in the asymmetry (a related argument is given in Ref. [15]). The situation is
entirely similar for the forced CGLE: the average phase is shifted toward (away from)
the unstable solution for �¡� (�¿�).

4. Conclusion

Despite its simplicity, the forced CGLE displays a large variety of phenomena. The
homogeneous and stripe states are mainly discussed here, and the phase equation is
found to be very useful in understanding the stability borders of the forced CGLE.
For a su3ciently large forcing amplitude, a homogeneous state with no spatial struc-
ture is observed. The state becomes unstable to a spatially periodic stripe state via a
supercritical bifurcation as the forcing amplitude decreases. We obtained an analytic
solution for the stripe state of the phase equation, through which an argument for the
asymmetry of the stability border of the state is formulated. As B decreases further,
the system undergoes a depinning transition into the state where the average phase
has a non-zero velocity. We found a few types of depinning, including “depinning by
kink-breeding” or one based on the type-I intermittency.
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