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We study the origin of scale invariance (SI) of the degree distribution in scale-free (SF) networks
with a degree exponent v under coarse graining. A varying number of vertices belonging to a
community or a box in a fractal analysis is grouped into a supernode, where the box mass M
follows a power-law distribution, P,,,(M) ~ M ~". The renormalized degree k' of a supernode scales
with its box mass M as k' ~ M?. The two exponents 1 and § can be nontrivial as  # v and
0 < 1. They act as relevant parameters in determining the self-similarity, i.e., the SI of the degree
distribution, as follows: The self-similarity appears either when v < 7 or under the condition
0 = (n—1)/(y — 1) when v > 7, irrespective of whether the original SF network is fractal or
non-fractal. Thus, fractality and self-similarity are disparate notions in SF networks.
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I. INTRODUCTION

Kadanoff’s block spin and coarse-graining (CG) pic-
ture is the cornerstone of the renormalization-group
(RG) theory [1]. A system is divided into blocks of equal
size and is described in terms of the block variables that
represent the average behavior of each block. Scale in-
variance at the critical point under this CG enables one
to evaluate the critical exponents. From a geometric
point of view, scale invariance implies the presence of
fractal structures, and their fractal dimensions are asso-
ciated with the critical exponents [2]. For example, the
magnetization and the singular part of the internal en-
ergy for the critical Ising model are such scale invariant
quantities, which are manifested as the fractal geometric
forms of the area of spin domains and the length of the
spin domain interface, respectively.

The fractal dimension dg of a fractal object is mea-
sured by using the box-covering method [3], in which the
number of boxes, Ng({p), needed to tile the object with
boxes of size £g follows a power law,

Np(lg) ~ 5", (1)

This relation is referred to as fractal scaling hereafter. A
fractal object is self-similar in the sense that it contains
smaller parts, each of which is similar to the entire object

[3).
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While the notions of CG and self-similarity are well
established when an object is embedded in Euclidean
space, it is not clear how to extend and apply them use-
fully to objects not embedded in Euclidean space. In
the former case, the number of vertices within each box,
equivalent to the block size in RG terminology and re-
ferred to as the group mass for future discussion, is al-
most uniform, and the fractal objects are self-similar and
vice versa. In the latter case, however, the group mass
is extremely heterogeneous so that it follows a power-
law distribution. This case can happen in scale-free (SF)
networks; then, one needs to establish the way of CG
and the notion of self-similarity in a new setting, which
is a goal of this paper. A SF network [4] is a network
whose distribution Py (k) of degree k, the number of edges
connected to a given vertex, follows a power-law form:
Py(k) ~ k=7 with the degree exponent . The scale in-
variance of the degree distribution under CG is defined
as the self-similarity in SF networks.

Most SF networks in the real world contain functional
groups or communities within them [5]. In general, the
distribution of the group mass M, the number of vertices
within each group follows a power law asymptotically [6,

7:

P (M)~ M™", (2)
When such groups are formed within networks, it would
be more natural to take each group as a unit to form a su-
pernode in CG because the vertices within each group are
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Fig. 1. (Color online) (a) The protein interaction network of the budding yeast and (b) its coarse-graining. Group masses
{M.}, detected by the box covering, are heterogeneous. The node size in (b) is taken as ~ /M, for visualization.

rather homogeneous in their characteristics, such as func-
tionality or working division, and are connected densely.
In other CG procedures, groups may not necessarily rep-
resent functional modules in bio-networks and commu-
nities in social networks; they can be taken arbitrarily in
a theoretical perspective, for example, being artificially
composed or boxes introduced in the fractal analysis [8-
11]. Supernodes are connected if any of their merging
vertices in different communities are connected. This
CG method is different from the standard ones in view
of extremely heterogeneous group masses as shown in
Figure 1. We show below that the exponent 7 plays a
central role in determining the self-similarity.

So far, several endeavors to achieve a RG transforma-
tion for SF networks have been carried out. However,
their methods remain in the framework of the standard
RG method, ignoring the heterogeneity of the group-
mass distribution. For example, Kim [12, 13] applied
CG to a SF network generated on a FEuclidean space
[14], including long-range edges. Taking advantage of the
underlying Euclidean geometry, the number of vertices
within each block is uniform and increases in a power law
as the block lateral size increases, so that the real-space
RG method can be naturally applied. In Refs. [15] and
[16], the decimation method was applied to a few deter-
ministic SF networks, which were constructed recursively
starting from each basic structure. Those determinis-
tic models restore their shapes under CG achieved by
decimating the vertices with the smallest degree at each
stage. We discuss this case in detail later.

In this paper, we perform the CG of SF networks in
three different ways: (i) random grouping, (ii) box cov-
ering in fractal analysis, and (iii) identifying community
structure with clustering algorithms. The groups are (i)
artificially composed, (ii) taken as boxes introduced in
the fractal analysis, and (iii) taken as communities em-
bedded within the network, in respective cases. For all

cases, the group-mass distribution follows the power law,
Eq. (2). We identify the criteria for self-similarity in
terms of the exponents 1 in Eq. (2) and 6 which will be
introduced below in Eq. (6). Such a self-similarity con-
dition holds for non-fractal, as well as fractal real-world
networks.

II. CG BY RANDOM GROUPING

The model enables us to obtain the renormalized de-
gree exponent +' analytically by using the generating
function technique, showing that, indeed, ' depends on
7. The model is constructed as follows: (i) We construct
a SF network through the static model of Ref. [17]. We
choose the degree exponent 7 = 3 and the mean degree
(k) = 4. (ii) N individual vertices are grouped randomly
into N’ groups with sizes {M,} (e =1,...,N"), follow-
ing the distribution function in Eq. (2). The exponent 5
is tuned. We consider three cases of n: (a) n =2 (< 7),
(by n =3 (=) and (¢c) n =4 (> ~). (iii) We perform
the CG by replacing each group with a supernode and
connecting them if any of their merging vertices in dif-
ferent groups are connected. A renormalized network is
constructed. A schematic snapshot of a constructed net-
work is shown in Figure 2. Next, the degree distribution
P(k') ~ k'~ of the renormalized network is measured.
The result is as follows: v/ = n =2 # ~ for p = 2 (a),
v'=y=3forn=3(b)and y' =~y =3 forp =4 (c), as
shown in Figure 3.

The numerical result is understood analytically as fol-
lows: Since the vertices are grouped randomly, every
vertex has an equal probability to connect to vertices
in other groups per edge, so the total probability is pro-
portional to the degree of each vertex. This leads to the

relation k;, ~ 3, k;, where a is the index of the group.
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Fig. 2. (Color online) Schematic snapshot of a random SF
network with random grouping.

Then, the degree distribution Pj(k') of the renormalized
network is written as

[e%s} M
Py = Y Pu(M) Y ] Palky)
M=1 k1,ka,....kn j=1

M

x6(> k; — k'), (3)
j=1

¢ denoting the Kronecker delta. By using the generating
function technique, one can find the relation Pj(z) =
Pm(Pa(z)), where P4(z) is the generating function of
P,(k) and so forth. The P4(z) is obtained to be

Pa(z) =1— (k)1 —2)+a(l—2)""+0((1-2)?),
(4)
where (k) = )", kP4(k) and a is a constant. The gener-

ating function P, (w) is also derived in a similar form to
Eq. (4). Then, one can find immediately that

UL

as long as both v and 7 > 2. Thus, self-similarity holds
when v < 77 and we can confirm that the exponent 7 plays
a key role in determining the exponent 4’. In the formu-
lation, the relation k, =~ > ;. k; was crucial. When
the relation no longer holds, the derivation of the de-
gree exponent 7' is more complicated. This can happen
for fractal and some non-fractal networks, and also for
clustered networks, which we discuss next.

for v <,

5
for v > 1. %)

III. CG BY BOX COVERING

Recently, it was discovered [8] that fractal scaling,
Eq. (1) holds in some SF networks, such as the world-
wide web (WWW), the metabolic network of Escherichia
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Fig. 3. (Color online) Degree distributions of a renor-

malized network of the static model for v = 3 under CG.
The group masses are preassigned to follow a power law
P, (M) ~ M™" with n = 2(0), 3 (O) and 4(4A). The de-
gree distribution of the original network is also drawn (e).
The dashed and the dotted lines with slopes of 2.1 and 3.0,
respectively, are drawn as guidelines.

coli, and the protein interaction network of Homo sapi-
ens. Groups are formed by covering the networks by
boxes that contain nodes whose mutual distances are less
than a given box size. The group-mass distribution fol-
lows the power law of Eq. (2), even though the boxes’
lateral sizes are fixed as £p for all boxes. Thus, the frac-
tal networks are good objects for our study.

We first apply a box-covering algorithm to the WWW.
Our box-covering algorithin is slightly modified from the
original one introduced by Song et al. [8], and the details
of the algorithm is presented in Ref. [9]. Both algorithms
[8,9] are identical in spirit and the box size £p we use
is related linearly to the corresponding one fg in Ref.
[8]. Next, each box is collapsed into a supernode. Two
supernodes are connected if any of their merging vertices
in different boxes are connected. The degree distribution
P} (k") of the renormalized network is examined.

The distribution of box masses is measured and found
to follow a power law asymptotically, P, (M) ~ M™"
[Figure 4 (a)]. The exponent 7 is found to depend on
the box size £g. For small /g = 1 or 2, n =~ 2.2
is measured, which is close to 4. On the other hand,
as £p increases, we expect 1 to approach the exponent
7 =7/(y — 1), describing the power-law behavior of the
cluster-size distribution of the branching tree [18]. We
find that n ~ 7 ~ 1.8 for /g = 5. This result can be
understood as follows: The WWW contains a skeleton
[19], a spanning tree based on the betweenness centrality
or load, which can represent the original network in the
box-covering [20]. For small ¢p, the lateral dimension of
the box is not large enough to see the asymptotic frac-
tal behavior of the spanning tree, so that the number of
vertices in a given box scales similarly to the largest de-
gree within that box. Thus, n = . As £p increases, on
the other hand, the asymptotic fractal behavior of the
spanning tree becomes dominant. Thus, the exponent
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Fig. 4. (Color online) Box-mass distribution for (a) the
WWW and (c) the fractal model network of Ref. [20]. Data
are for g = 2 (o) and {p = 5 (H). The solid lines are
guidelines with slopes of —2.2 and —1.8, respectively, in both
(a) and (c). The degree distributions of the original network
(A) and the renormalized networks with £p = 2 (e) and ¢ =
5 (M) for (b) the WWW and (d) the fractal model network.
The fractal model has a system size N &~ 3 x 10°. (c) and (d)
are adopted from Ref. [11].

1 becomes the same as the exponent 7 asymptotically,
which was observed in the case of {g = 5. The case of
7 # -y was not considered in Ref. [8]. The origin of the
self-similarity is nontrivial as we show below.

The CG process involves two steps. The first is the
vertex renormalization, i.e., merging of vertices within a
box into a supernode, and the second is the edge renor-
malization, merging of multiple edges between a pair of
neighboring boxes into a single edge. The second step
can yield a nonlinear relationship between the renormal-
ized degree k' and box mass Mg, although the total num-
ber of inter-community edges from a given box is linearly
proportional to its box mass [9]. Thus, we propose that
there exists a power-law relation between the average
renormalized degree and the box mass:

(K')(Mp) ~ Mp,. (6)

The power-law relation Eq. (6) is tested numerically
for the WWW, as shown in Figure 5(a). For {p = 2, we
estimate 6 ~ 1.0 + 0.1. Thus, the linear relation holds.
For /g = 3 and 5, however, # ~ 0.8 £0.1 and 0.5 £+ 0.1,
respectively, implying the nonlinear relationship, Eq. (6).
One may doubt the nonlinear behavior due to the scat-
tered data shown in Figure 5(a). To confirm this result,
we recall a previous study [11] for the fractal model with
v = 2.3 introduced by Goh et al. [20], where we can re-
duce the data noise by taking an ensemble average over
network configurations. We obtained similar results as
shown in Figure 5(b). The data for the fractal model are
averaged over 10 different network configurations, so the
nonlinear relationship could be seen more clearly.

10°

Fig. 5. (Color online) Plot of the average renormalized
degree (k') versus box mass Mg for (a) the WWW and (b)
the fractal model network of Ref. [20]. Data are for box
sizes {p = 2 (o), {p = 3 (M) and £ = 5 (A). The solid
lines, guidelines, have slopes of 1.0 (e), 0.8 (H) and 0.6 (A),
respectively, for both (a) and (b). (b) is adopted from Ref.
[11].
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Fig. 6. (Color online) (a) Box-mass distribution and (b)
average renormalized degree (k') versus box mass Mg of the
Internet at the AS level. Here, the lateral box size is taken
as £p = 2 for both. The solid lines, drawn for reference, have
slopes of (a) —1.8 and (b) 0.7.
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Fig. 7. (Color online) Renormalized degree distributions of real-world, (a)-(c) and (e)-(h), and model, (d) and (i), networks

under successive CG transformations with a fixed box size {5
) and the second (V) iterations. The networks of (a)-(c) are fractals, and those of (d)-(i)

renormalized networks after the first (

= 2. Symbols represent the original network (o), and the

are non-fractals. The networks of (a)-(f) are self-similar while those of (g)-(i) are not.

Using Pj(k')dk' ~ Pn(Mp)dMp and k' ~ MY, we
obtain the degree exponent of the renormalized network
to be v/ =1+ (n—1)/6. In short, we argue that Eq. (5)
should be generalized to

for v <,

(7)

)7
T {1-|-(77—1)/0, for v > 1,
where 6 # 1. Accordingly, the self-similarity holds even
for v > n when

0=m-1/(y=1. (8)

For /g = 2, we found that 7 = v and 6 =~ 1; therefore,
v & v. For g = 5, even though 6 # 1, plugging 6 =~
0.5 ~ 0.6 and n =~ 1.8 into Eq. (7), we obtain 7' ~
2.3 ~ 2.6, which is in reasonable agreement with v ~ 2.3.
Thus, self-similarity also holds [Figure 4(b)]. We recall

the previous study for the fractal model with v = 2.3
[11], finding that the numerical results are the same as
those of the WWW, as shown in Figures 4(c) and (d).
The self-similarity condition in Eq. (8) is also fulfilled
for some non-fractal networks. The Internet at the au-
tonomous system (AS) level is a prototypical non-fractal
SF network. However, it exhibits self-similarity. We ob-
tain 7 &~ 1.8 and the nonlinear relationship in Eq. (6)
with 8 ~ 0.7, so that v ~ +' =~ 2.1(1) for {p = 2, as
shown in Figure 6, satisfying the condition in Eq. (8).
A few deterministic SF networks have been intro-
duced, which were constructed recursively starting from
each basic structure. The pseudofractal model [15] intro-
duced by Dorogovtsev et al., the geometric fractal model
introduced by Jung et al. [16], and the hierarchical model
[5] are such examples. These models restore their shapes
under the CG achieved by decimating the vertices with
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the smallest degree at each stage. Thus, they are self-
similar in shape. In those methods, the degree distri-
bution is scale invariant under the CG. However, they
are not fractal because fractal scaling, Eq. (1), is absent
and the fractal dimension cannot be defined. The three
deterministic models [5,15,16] satisfy the self-similarity
condition in a trivial manner: 5 = v and § = 1 un-
der the decimation. Here, the group-mass distribution
is measured as the distribution of the number of deleted
vertices connected to each coarse-grained vertex at each
decimation stage. Thus, 7' = ~, and the models are
self-similar, even though they do not follow the fractal
scaling, Eq. (1).

We also examine the change of the degree distributions
under successive CG transformations for the fractal and
some non-fractal networks in Figure 7. We confirm that
the self-similarity holds even for the non-fractal networks
(d)-(f). It is noteworthy that the relation in Eq. (6) is
linear for the first renormalization, but it becomes non-
linear for the second renormalization as 8 =~ 0.75 and
1 ~ 1.8 for the WWW. It is also interesting to note that
the static model with v = 2.3 is self-similar in Figure 7(d)
while that with v = 3.6 in Figure 7(i) is not. That is
due to the topological difference of the SF networks with
v>3and 2 <y<3 [9,19]. When + is small, the edges
are compactly concentrated around the hubs while as ~
grows the edges more globally interweave the network.
Consequently, when renormalization is performed on the
SF network with 2 < v < 3, only the nodes around each
hub in the original network are grouped into a supern-
ode in a coarse-grained network, and the supernode again
becomes a hub with a corresponding size. On the other
hand, when ~ > 3, the nodes far from the hubs in the
original network have more chances to be connected to
hubs via global edges, and the supernodes in the coarse-
grained network become far bigger hubs than those in
the original network. The result is more heavily-tailed
degree distributions in the coarse-grained networks, as
seen in Figure 7(i).

IV. CG BY COMMUNITY STRUCTURE

Most SF networks in the real world contain functional
modules or community structures within them, which are
organized in a hierarchical manner [21,22]. While the
group-mass distributions are known to follow a power
law in Eq. (2), for many cases, however, they exhibit a
crossover between two distinct power-law behaviors or
the power-law behavior appears only in a limited range
of mass. Also, they are sensitive to various clustering
algorithms [7]. Thus, it is not easy to find sufficiently
good examples of clustered networks with appropriate
clustering algorithms to test our argument.

Here, we choose the algorithm proposed by Clauset et
al. [23] and apply it to the cond-mat coauthorship net-
work [24]. The network data contain 13,861 vertices and
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Fig. 8. (Color online) When the coauthorship network
is clustered, (a) the box-mass distribution, (b) the average
renormalized degree (k') versus group mass M, and (c) the
degree distribution of the original (M) and renormalized (e)
networks are plotted. Groups are obtained by using the clus-
tering algorithm of Ref. [23]. The solid lines, drawn for
reference, have slopes of (a) —1.6, (b) 0.7 and (c) —1.8.

44,619 edges. Unfortunately, the degree distribution of
this network is not a power law. Nonetheless, the data
are clustered into 175 groups obtained at the point where
the modularity becomes maximum in the clustering algo-
rithm. The group-mass distribution is likely to follow the
power law in Eq. (2), and the exponent is estimated to be
n = 1.6 £ 0.2 in Figure 8(a). Next, the CG is carried out;
then, the degree distribution of the renormalized network
is examined. It shows a power-law behavior with expo-
nent 7' &~ 1.8 + 0.2. To check the formula of Eq. (7), we
measure the relationship of Eq. (6) between the renor-
malized degree and the group mass in Figure 8(b). The
exponent # is measured to be § ~ 0.7 £ 0.1. We plug
the numerical values of  and € into the formula, and
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obtain 7' &~ 1.9 £ 0.4, which is in reasonable agreement
with the measured value 7' &~ 1.8 + 0.2 in Figure 8(c).
The degree distribution of the original network is overall
skewed, while that of the renormalized network follows
the power law. Thus, self-similarity does not hold for
this case.

V. DISCUSSION AND CONCLUSIONS

For the fractal networks, Song et al. [8] showed that
in the box-covering method, the renormalized degree
k' scales as k' ~ s({p)km, where s(fg) ~ £5% with
dp, = dg/(y—1) and k,, being the largest degree in
a given box. This form is not directly applicable to
non-fractal networks, but a modified form of k], ~
(N'/N)/O "Dk ax can be applied for non-fractal but
self-similar SF networks, where k! .. (kmax) is the largest
degree in the entire renormalized (original) network and
N'(N) is the total number of nodes after (before) CG.
The above relation can be easily derived by using the
scaling of the natural cutoff of degree, kmax ~ N'/(7—1)
and k!, . ~ N'*/(v=1)_ Thus, for SF networks, it is more
general to formulate a scaling function in terms of the
ratio N'/N rather than the length scale {p.

Although, in this paper, we limited the notion of self-
similarity to the scale invariance of the degree distribu-
tion, one may wonder if other quantities, such as C(k)
and (knn)(k), are scale invariant under the CG. We find
that such quantities tend to obey the scale invariance for
the WWW in the box-covering method, but the statistics
from real-world networks are not sufficiently good to sup-
port this conclusion. That means, the self-similarity thus
defined does not imply any recursive topological identity
nor does it even guarantee that the degree distribution
within each group is identical from group to group. On
the other hand, the origin of fractality is understood by
the power-law relation between the length scale and the
size of the skeleton underlying the original network [9].
In such senses, it seems that the fractality describes an
important topological feature of SF networks at a funda-
mental level while the self-similarity does not. Moreover,
the results we obtained till now empirically show that all
the fractal networks are self-similar, but the converse is
not true. Thus, we conjecture that fractality implies self-
similarity.

In summary, we have studied the renormalization-
group transformation of the degree distribution, in par-
ticular, when the number of vertices within each block
follows a power-law distribution, P, (M) ~ M~"7. We
found that the average renormalized degree scales with
the box mass as (k')(Mp) ~ M%. The two exponents 7
and 0 can be nontrivial as 7 # v and 8 # 1. They act
as relevant parameters and are analogous to the scaling
exponents associated with the magnetization and the sin-
gular part of the internal energy in the renormalization
group theory. We obtained the degree exponent ' of a
remormalized network in terms of n and §. Many non-

fractal networks are self-similar. The notions of fractality
and self-similarity are disparate in SF networks, which is
counterintuitive in view of their equivalence in Euclidean
space.
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