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Universal mechanism for hybrid 
percolation transitions
Deokjae Lee1, Wonjun Choi1, J. Kertész2,3 & B. Kahng1

Hybrid percolation transitions (HPTs) induced by cascading processes have been observed in diverse 
complex systems such as k-core percolation, breakdown on interdependent networks and cooperative 
epidemic spreading models. Here we present the microscopic universal mechanism underlying those 
HPTs. We show that the discontinuity in the order parameter results from two steps: a durable critical 
branching (CB) and an explosive, supercritical (SC) process, the latter resulting from large loops 
inevitably present in finite size samples. In a random network of N nodes at the transition the CB 
process persists for O(N1/3) time and the remaining nodes become vulnerable, which are then activated 
in the short SC process. This crossover mechanism and scaling behavior are universal for different HPT 
systems. Our result implies that the crossover time O(N1/3) is a golden time, during which one needs to 
take actions to control and prevent the formation of a macroscopic cascade, e.g., a pandemic outbreak.

Percolation is a prototypical model of disorder, which is often used to illustrate the emergence and the resilience 
of a giant cluster as links between individuals are added and deleted one by one, respectively1. A giant cluster at 
a transition point in the mean field limit is to good approximation a critical branching (CB) tree with unit mean 
number of offspring2, 3. The giant cluster of recovered nodes at a transition point of a simple epidemiological 
model, the so-called susceptible/infective/removed (SIR) model2, one of such percolating clusters grown in the 
CB processes. Percolation transition is known as a robust continuous transition4.

In a number of systems, however, the situation is more complex: Hybrid percolation transitions (HPTs) occur 
showing features of both second and first-order phase transitions at a transition point5–8. In these transitions, the 
order parameter m(z) exhibits the behaviors simultaneously as
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where m0 and r are constants and β is the critical exponent of the order parameter, and z is a control parameter. 
Examples include the k-core percolation9–12, and the cascading failure (CF) model on interdependent networks13–16.  
In those systems, as nodes or links are removed one by one above the transition point, the order parameter, the 
relative size of the giant component decreases continuously, approaches a nonzero value in a critical way at the 
transition point, where it finally collapses to zero: A HPT occurs. Is there a universal mechanism behind this 
phenomenon? Can it be formulated in terms of branching processes? Even though these questions are simple and 
fundamental, there has been no clear answer yet.

Recently we showed on the example of the CF model that there are two kinds of critical phenomena related 
to the HPT17. One is carried by the behavior of the finite cascades and the other one by the order parameter (the 
relative size of the giant cluster). We have to distinguish between “finite” and “infinite” avalanches (the latter hav-
ing the size of the giant cluster). Once an infinite avalanche occurs, the order parameter falls into an absorbing 
state. Therefore, occurrence of an infinite avalanche is a distinct feature of a HPT, whereas such infinite avalanche 
is absent for a second-order percolation transition. Thus we need to investigate what happens in the system while 
an infinite avalanche proceeds.

We recall the results of previous studies on k-core percolation12 and in interdependent networks18 about the 
temporal evolution of the giant cluster. The order parameter decreases rapidly in the early time regime, exhibits a 
plateau for a long time in the intermediate time regime, and decreases rapidly in the late time regime. Moreover, it 
was found that infinite avalanches proceed in the form of a CB process for a long time, followed by a supercritical 
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process. There has been considerable effort to explain the mechanism leading to this scenario for specific models18–20.  
In particular, refs 19 and 20 pointed out the importance of large loops in the creation of the supercritical process 
for an epidemic model. However, it is still unclear whether there is a universal mechanism, which explains why, 
how and when such SC processes occur in the late time regime. Here we address these questions and show that 
there indeed exists such a universal mechanism, which governs the generally observed crossover behavior in a 
large class of HPT models.

In this paper, we first investigate the mechanism of the crossover behavior from the CB to SC processes using a 
simple epidemic model with two-step contagion processes21 that exhibits a HPT. After explaining the mechanism 
of the HPT on this model, we will show that the same mechanism occurs in other models. We will consider k-core 
percolation, the threshold model, and the CF model on interdependent networks.

Results
Two-step contagion model.  We consider the epidemic model introduced in ref. 21, which is a generaliza-
tion of the so-called susceptible (symbolized as S)-infected (I)-removed (R) (SIR) model by adding a weakened 
state (W) between susceptible and infected states. This model is referred to as the SWIR model. Various aspects of 
the model were studied in refs 22–26. Besides the usual reactions S + I → 2I and I → R of the SIR model we have 
the additional reactions: S + I → W + I and W + I → 2I. The reaction rate from W to I is larger than the rate from 
S to I. Specifically, we start the dynamics on Erdös-Rényi (ER) random graphs of N nodes with all nodes in state S 
but one node that is in state I. At time step n, a node in state I (denoted as In, where subscript represents genera-
tion) is selected randomly, the states of all its neighbors are checked one by one. If the state of a neighbor is S, then 
this state changes either i) to In+1 with probability κ or ii) to W with probability μ. If the state of a neighbor is W, 
then the state W changes to In+1 with probability ν. We repeat the above process for all nodes in state In and then 
the state In changes to R for each associated node. Then all dynamics at time step n are completed and we move to 
the next time step n + 1. This dynamics continues until the system reaches an absorbing state in which no more 
infectious nodes remain in the system. The order parameter m(κ) is defined as the fraction of nodes in state R. 
Under the given reaction probabilities, a HPT occurs if the mean degree µ µν µ> + −z 2/( 4 )2  and otherwise 
a continuous transition occurs. This condition is the same as that obtained in ref. 27. The transition point is 
κc = 1/z. The detailed derivations of the transition point and the condition for the HPT are presented in 
Supplementary Information.

At the transition point κc, a single infected node can trigger an infinite avalanche of size O(N) with a certain 
probability P∞. With the remaining probability, finite avalanches occur and their sizes are o(N). When an infinite 
avalanche occurs, as shown in Fig. 1(a), the order parameter remains almost zero (o(N)) for long time up to 
the characteristic time nc(N), beyond which it increases rapidly and reaches its final, O(N) value in a short time 
period. To see how an infinite avalanche proceeds at a microscopic level, we trace an infection dynamics in the 
view of branching processes as shown schematically in Fig. 2. At the step n = 0, a single infectious seed is present. 
At each time step, infected and weakened nodes are generated following the aforementioned rule. Because the 
probability to generate an infectious node per each edge is 1/z and the mean number of edges outgoing from the 
infected parent node is z, a single infected node can be generated on average. There is some probability that a 
weakened node is created. Thus a CB tree of recovered nodes is generated. We notice that, although during the 
CB process many W nodes are created, there are very few nodes produced from them in state I (consequently 
nodes in state R) through the reaction W + I → I + I as shown in Fig. 1(b). However, as the dynamics proceeds and 
approaches nc(N), the reaction W + I → I + I occurs more frequently and the branching ratio to generate a node in 
state I through this reaction becomes non-negligible.

In order to determine the crossover point between CB and SC we recall that the size of the largest cluster at 
the critical average degree zc of ordinary percolation of the ER graph is O(N2/3)28, 29. The giant cluster at critical-
ity has the topology of a CB tree such that the branching process persists up to the steps O(N1/3) beyond which 
finite-size effects appear in the form of short-range and long-range loops28 (see also Supplementary Information). 
In the epidemic models on ER networks the average degree is above the percolation threshold (z > zc, otherwise 
global spreading would be trivially impossible), however, the reaction probability κc = 1/z assures just the critical 
branching probability by which the infection proceeds. Thus the growing cluster of R nodes can be considered as 
if a critical ER cluster would develop on the ER supercritical graph. In accordance with this picture the probability 
distribution of the generation at which a loop is formed in CB processes shows a peak at a characteristic gener-
ation nc(N) ~ O(N1/3) (Fig. 3). This means that long-range loops begin to form mostly when a CB tree is grown 
up to nc(N). Based on this, we conclude that before nc the I-state nodes are almost entirely generated through 
the CB tree and the W-state nodes accumulate to an extent of O(N2/3) because the number of W-state nodes is 
proportional to that of I-state nodes. Around nc(N) the loops become important, and due to the long range links 
the reaction W + I → I + I occurs over the entire system, with W-state nodes having been generated at all times 
to O(N1/3) (see Supplementary Information). The accumulated population of W-state nodes and the possibility of 
long-range loop formation lead to an increase of the number of infected offspring above the critical value result-
ing in the SC process and eventually in the jump of the order parameter. We remark that up to the characteristic 
generation nc(N), the population of recovered nodes in state R is less than or equal to O(N2/3), sublinear to the 
system size O(N), whereas beyond nc(N), the population suddenly increases to O(N). Thus, we regard the charac-
teristic generation nc(N) as the so-called golden time, during which one needs to take some actions to control and 
prevent a pandemic outbreak. We also remark that the formation of long-range loops needed for a discontinuous 
percolation transition was first observed and conjectured in a model of two interacting epidemics19, 20. However, 
the connection between the length scale of long loops and finite-size scaling of the ordinary percolation was miss-
ing, so that the scale of golden time could not be predicted.
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k-core percolation.  k-core percolation is known as a prototypical model that exhibits a HPT. The k-core 
subgraph is identified on a graph (here the ER graph with mean degree z) as follows. One starts with removing 
all nodes that have degree less than k. These removals may decrease the degrees of remaining nodes. If degrees 
of some nodes become less than k, then those nodes are removed as well. This process is repeated until no more 
node is removed. For z > zc, a k-core subgraph remains after the pruning process and its size is O(N). The order 
parameter is the relative size of the k-core subgraph.

Here we remove a randomly chosen node from the k-core subgraph and repeat the pruning process once 
again. Near zc, this process can remove all nodes (infinite avalanche of size O(N)) or a fraction of nodes (finite 
avalanche of size o(N)) from the k-core subgraph, each of which contributes to a discontinuous or continuous 
change of the order parameter in the thermodynamic limit, leading to a first-order or second-order transition, 
respectively30. As it was shown earlier in ref. 30 the critical exponents of the k-core percolation model are of two 
kinds: those associated with the order parameter and those with finite avalanches. This is the typical behavior at 
hybrid percolation transitions induced by cascade dynamics.

We focus on the infinite avalanches at zc from the perspective of branching processes. Let us consider a k-core 
subgraph configuration at zc in which each node has at least k degree and the deletion of node i leads to the col-
lapse of the entire system. The node i is regarded as an infectious seed node (I). We check the degrees of neighbors 
of the node i. If a neighbor of i has degree k, it is regarded as a susceptible node (S), and changes its state to I 
because it will be deleted after node i gets deleted. If a neighbor has degree > k, then it is regarded as a general-
ized weakened node and denoted as −W k. Now its state changes to Wl−k−1. The subscript − k refers to the 
threshold and decreases as the neighbors of that node are deleted. When it becomes zero during an avalanche, the 
state −W k becomes W and the node has the same role as weakened nodes in the SWIR model. This node gets 
infected when it contacts an I-state node once more. In analogy with the process in the SWIR model the infective 
state in the n-th generation or branching step is denoted by In. Once the dynamics in n-th step is completed, the 
nodes in state In are deleted. A schematic illustration for a specific example of the avalanche dynamics is presented 
in Supplementary Information.

Figure 4(a) shows the branching ratio as a function of branching step n for an infinite avalanche of k-core 
percolation. We find again that the CB process continues up to the characteristic step nc(N) when it changes to 
the SC process. By the crossover time nc large number of nodes get their degrees reduced to k so that they become 

Figure 1.  Evolution of the fractions of nodes in each state and of each reaction type. (a) Plot of the fraction 
of nodes in states R (blue, solid curve), W (green, dashed curve) and I (red, dotted curve) as a function of 
generation n. Inset: Plot of the maximum slope of the curve R(n) vs N (•) (left vertical axis). The maximum 
slopes are independent of N. Plot of the characteristic time nc(N) vs N (Δ) (right vertical axis). The fitted straight 
line has slope 0.35. (b) Plot of the branching ratios as a function of generation n for several types of reactions. 
Here A (B) represents the mean number of offspring that change their state from S to I (W) by the their parents 
in state I each reaction S + I → 2I (S + I → W + I). C represents the mean number of offspring that change their 
state from W to I by the reaction W + I → 2I. For both (a,b), data are obtained from a single realization of an 
infinite avalanche on an ER network with mean degree z = 8 of system size N = 5.12 × 106 using the coefficients 
κ = 1/8, μ = 1/16 and ν = 0.9.
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Figure 2.  Schematic picture of the epidemic spreading process in the SWIR model. (a) The process begins from 
an infectious node. (b) It can infect a susceptible node among its neighbors and change the state thereof from S 
to I and can also change the state of another neighbor from S to W. This type of process persists for a long time 
and the critical branching tree is constructed. After a long O(N1/3) time passes, an infectious node can contact a 
node in state W that was created much earlier and change its state from W to I in (d). In addition, (d) the I-node 
in (c) infects a susceptible neighbor and changes its state to I. Thus, a SC process occurs, leading to the jump in 
the order parameter.

Figure 3.  Distributions of loop lengths for different system sizes. Scaling plot of the probability PnI
 of the 

generation nI at which a loop is formed in critical branching processes on ER networks. Data for different 
system sizes are well collapsed onto a single curve with the scaling form of P Nn

1/3
I

 as a function of nI/N1/3. Data 
are obtained from ER network with mean degree z = 8 far away from the transition point zc = 1.
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W-nodes. The SC process is again driven by the meeting of an old W node with a new I node, W + I → I + I. Such 
a reaction sets up the rapid SC process and the entire collapse of the k-core subgraph.

The threshold model.  The threshold model was introduced in ref. 31 for understanding the spread of fads, 
cultural traits, the diffusion of norms, and innovations, on social networks. In this model, each node i is assigned 
its threshold value qi and exists in one of two states, either active or inactive state. An inactive node i with mi active 
neighbors among ki total neighbors (degree) becomes active when its fraction of active neighbors, mi/ki exceeds 
its threshold value qi. This threshold model is known to exhibit a hybrid phase transition when mean degree z 
is sufficiently large. Here we show that the mechanism underlying this hybrid phase transition is the same as we 
observed in the previous instances.

To illustrate how the universal mechanism works in the threshold model, we reconsider the rule of the thresh-
old model in the perspective of the SWIR model in the following way: We match up active nodes in the threshold 
model with either infectious I or recovered R nodes in the SWIR model. Among the active nodes, an I-state node 
is the node that becomes active at the preceding step. The other active nodes are regarded as R-state nodes. 
Inactive nodes are matched up with either susceptible S or weakened W nodes in the SWIR model: (i) A node 
satisfying kiqi < 1 from the beginning is regarded as susceptible node. (ii) A node satisfying kiqi > 1 is regarded as 
a generalized weakened node and denoted as 



−

W k q mi i i
 similarly to the k-core percolation case. Then the dynamics 

proceeds following the same way as in the k-core percolation.

Figure 4.  Evolution of each reaction type for several models. (a) For k-core percolation with k = 3, plot of the 
branching ratios as a function of generation n for each type of reactions during an infinite avalanche. A 
represents the ratio of removed nodes with original degree z = 3 (z > 3), which corresponds to the reaction 
S + I → 2I for the SWIR model. B does the ratio of the reaction Wk−l>0 + I → W + I, which corresponds to the 
ratio of generating weakened nodes denoted by W. C does the ratio of nodes changing their degrees to z = k = 3 
(W + I → 2I). A + C represents the total branching ratio of I. Data are obtained from a network with 
N = 5.12 × 106 at a transition point. (b) For the threshold model, a similar plot. A and B represent the mean 
number of I and W offsprings generated by the reactions S + I → 2I and + → +



−

W I W Ik q mi i i
, respectively. C 

does the ratio of nodes of I by the reaction corresponding to W + I → 2I. The sum of the mean I offspring from 
A and C represents the total branching ratio of I. Data are obtained from a network with N = 5.12 × 106 at a 
transition point. (c) For the CF model, a similar plot. A represents the ratio for S + I → 2I. B is the mean number 
of new W-state nodes (kA or kB becomes unity for the first time). C is the mean number of I-state nodes 
transformed from W nodes (W + I → 2I). A + C represents the total branching ratio of I. Data are obtained from 
a network with N = 5.12 × 106 at a transition point.
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We performed simulations with a single threshold value mi = 0.16 for all nodes on ER networks with mean 
degree zc = 7.47707 which is the transition point for the given threshold value. At this point, the cascade dynamics 
becomes critical, so that the avalanche size distribution follows a power law.

We obtain the branching ratios as a function of dynamic step (generation) n for several types of reactions for 
the threshold model, which is shown in Fig. 4(b). Here we also find a crossover from a CB to SC process similar to 
that of the SWIR model. Again the accumulation of a sufficient number of weakened nodes during the CB process 
and their activations through long-range loops are the underlying mechanism of the SC behavior.

The CF model on interdependent networks.  We consider here ER interdependent networks in the sin-
gle layer representation of ref. 32. In this picture we have a single ER graph but with two types of links (A and 
B), for each having the average degree z. The order parameter is the relative size of the giant mutually connected 
cluster (GMCC), in which every pair of nodes are connected following each type of links. The CF model exhibits 
a HPT at the transition point zc

15, 17.
As with k-core percolation, the removal of a node from the GMCC can induce further removal of nodes from 

the GMCC. This avalanche can be infinite or finite, each of which contributes to the discontinuity of the order 
parameter or the critical behavior of the HPT, respectively17. Here we focus on the infinite avalanches at zc which 
leads to the collapse of the entire GMCC.

We consider the avalanche process in the view of a branching process of removed nodes15. To describe the 
avalanche process in terms of the SWIR model, we determine the effective degrees kA(j) and kB(j) of each node j 
for each type of links. The effective degree kA(j) (kB(j)) is defined as the number of A-type (B-type) of links of the 
node j following which one can reach O(N) nodes. Each node in the GMCC has kA ≥ 1 and kB ≥ 1. We explain how 
to determine the effective degrees of each node in simulations in Supplementary Information.

The cascading dynamics proceeds in the following way: An avalanche is initiated by removing a node chosen 
randomly from the GMCC. During an avalanche, we identify removed nodes at each time step, then the effective 
degrees of the neighbors may decrease. As a result one or both type of the effective degrees of some neighbors can 
become zero. Then, they are removed from the GMCC at the next time step, i.e., they are infected and removed 
at the next time step. Such avalanche process propagates to all neighbors of those infected nodes recursively until 
no more node is removed.

If a node is removed at a time step, it is regarded as an I-state node and it becomes R-state node at the next time 
step. If one or both effective degrees of a node is unity from the beginning, the node is regarded as a S-state node 
because it can be infected (i.e., removed) by contacting an infected node (i.e., losing the unit effective degree). If 
one or both effective degrees of a node become unity during an avalanche, we identify the state of that node as W 
because the node became vulnerable as a result of contacting infected nodes. This view enables us to understand 
the correspondence between the cascading dynamics of the CF model and the dynamics of the SWIR model. A 
specific example of the avalanche dynamics is presented in Supplementary Information.

Figure 4(c) shows the branching ratio as a function of branching steps n for an infinite avalanche of the CF 
model. We find that a CB process persists and the generating ratio of the weakened nodes is constant with some 
fluctuations. The number of infected offspring from weakened nodes is negligible up to the characteristic step 
nc(N), beyond which it increases rapidly. Thus the generation ratio of infected offspring exceeds unity beyond 
nc(N): a collapse of the giant MCC takes place.

Discussion
We disclosed the universal mechanism of the HPT induced by cascade dynamics on ER networks. We have shown 
that during the CB processes, the order parameter sustains up to the time step of O(N1/3), and W-state nodes accu-
mulate to an extent of O(N2/3). In the SWIR model the nodes are in W state if they have already got into contact 
with infected node but only partial infection (or weakening of the immune system) took place. The corresponding 
(generalized) weakened state in k-core percolation is that of a node, which has already lost some neighbors but 
the number of alive neighbors is still above k. In the CF model the nodes with reduced effective degrees (but larger 
than zero) correspond to the generalized weakened nodes. Finally, for the threshold model the nodes having 
infected (active) neighbors but less than required by the threshold criterion are the weakened ones. Those nodes 
may be thought of as powder keg in explosive percolation. After the CB processes, those W-state nodes change 
their state to state I in the way of a SC process. Such reactions are achieved along long-range loops of length 
O(N1/3) presented in finite systems. As a consequence, infected nodes are generated abundantly in a short time, 
leading to a discontinuity of the order parameter. This explains that the SWIR model and k-core percolation do 
not exhibit discontinuous transitions in low dimensional Euclidean space because of the absence of long-range 
connections in such space. Moreover, we showed that the mechanism is universal for diverse systems such as the 
multi-stage contagion models including the SWIR model and the threshold model, k-core percolation and the 
CF model on the interdependent networks. We expect more models also to belong to this category. Finally, we 
regarded the characteristic generation nc(N) ~ O(N1/3) as the golden time during which one can control a pandemic 
outbreak of macroscopic disaster, using for instance the explosive percolation idea33. Because, for n < nc(N), the 
number of damaged nodes is sublinear as O(N2/3) to the system O(N), while for n > nc(N), it is linear as O(N).
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I. ANALYTIC RESULTS FOR THE HPT OF THE SWIR MODEL

A. Transition point

In an absorbing state, each node is in one of three states, the susceptible S, weakened W and recovered R states.
We consider the probability PS(`) that a randomly selected node is in state S when it contacts ` neighbors in state
R. This probability means that the node remains in state S even though it has been in contact ` times with those `
neighbors in state I before they change their states to R. Thus we obtain

PS(`) = (1− κ− µ)`, (1)

where κ(µ) is the reaction probability of S becoming I(W) by single attack. Next, PW(`) is similarly defined as the
probability that a randomly selected node is in state W after it contacts ` neighbors in state I before they change
their states to R. The probability PW (`) is given as

PW (`) =

`−1∑
n=0

(1− κ− µ)nµ(1− ν)`−n−1, (2)

where ν is the probability of W becoming I by single contact with neighboring I. Finally, PR(`) is the probability
that a node is in state R when it contacts ` neighbors in state R in the absorbing state. Using the relation PS(`) +
PW (`) + PR(`) = 1, one can determine PR(`) in terms of PS and PW .

The order parameter m that a randomly chosen node is in state R after the system falls into an absorbing state is
given as

m =

∞∑
q=1

Pd(q)

q∑
`=1

(
q

`

)
r`(1− r)q−`PR(`), (3)

where Pd(q) is the probability that a node has degree q and r is the probability that an arbitrarily chosen edge leads
to a node in state R in the absorbing state. Using the local tree approximation, we define rn similarly to r but now
at the tree level n.

The probability rn+1 can be derived from rn as follows:

rn+1 =

∞∑
q=1

qPd(q)

z

q−1∑
l=0

(
q − 1

`

)
r`n(1− rn)q−1−`PR(`) ≡ f(rn), (4)

where the factor qPd(q)/z is the probability that a node connected to a randomly chosen edge has degree q. As a
particular case, when the network is an ER network having a degree distribution that follows the Poisson distribution,
i.e., Pd(q) = zqe−z/q!, where z =

∑
q qPd(q) is the mean degree, the function f(rn) is reduced as follows:

f(rn) = 1−
(

1− µ

κ+ µ− ν

)
e−(κ+µ)zrn − µ

κ+ µ− ν
e−νzrn . (5)

Eq. (4) reduces to a self-consistency equation for r for given reaction rates in the limit n→∞. Once we obtain the
solution of r, we can obtain the outbreak size m using Eq. (3). For ER networks, however, m becomes equivalent to r so
that the solution of the self-consistency equation Eq. (4) yields the order parameter. Thus we define F (m) ≡ f(m)−m
so that the order parameter satisfies the following equation

F (m) = 1− e−(κ+µ)zm
(

1− µ

κ+ µ− ν

)
− µ

κ+ µ− ν
e−νzm −m = 0. (6)

When m is small, the function F (m) is expanded as follows:

F (m) ≈ am+ bm2 + cm3 +O(m4), (7)

where

a = (κz − 1) (8)

b = −1

2
(κ2 + κµ− µν)z2 (9)

c =
1

6

(
κ3 + 2κ2µ+ κµ(µ− ν)− µν(µ+ ν)

)
z3 (10)
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with the mean degree z. m = 0 is a trivial solution of F (m) = 0. c is supposed to be negative.

We remark that although non-trivial solutions exist for appropriate values of a and b, some of them might be
physically irrelevant for a given initial condition. We can find out the relevancy by checking the stability of the fixed
points of rn+1 = f(rn). If we impose a small perturbation to the steady state solution r∗ of Eq. (4), we obtain the
recursive equation as

r∗ + δrn+1 ≈ f(r∗) +
df

dr

∣∣∣
r=r∗

δrn, (11)

which leads to

η ≡ δrn+1

δrn
=
df

dr

∣∣∣
r=r∗

. (12)

If η < 1 (> 1), then the steady state solution r∗ is stable (unstable). Note that η < 1(> 1) iff F (m∗) < 0(> 0).
If a < 0, the trivial solution m = 0 becomes stable so that other non-trivial solutions cannot be accessible. On the
other hand, since F (1) is always negative, the condition a > 0 guarantees the existence of a non-trivial solution that
is stable and physically accessible. This shows a = 0 at the transition point which implies κc = 1/z.

B. Condition for the occurrence of the discontinuous transition

The solution of F (m) = 0 within the order of m3 is m = 0 and m±∗ , where

m±∗ = − b

2c
±
√

b2

4c2
− a

c
. (13)

When a discontinuous phase transition occurs at a = 0, i.e., at κc = 1/z, −b/c is still positive. Since b = 0 at

κb =
−µ+

√
µ2 + 4µν

2
, (14)

and b < 0 for κ > κb, b has to be positive at κa as long as κa < κb. This is the condition for a discontinuous transition
to occur at κc with a nonzero order parameter m∗ = −b/c. The condition is rewritten in another form as

1

z
<
−µ+

√
µ2 + 4µν

2
. (15)
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II. SIZE AND LIFETIME DISTRIBUTIONS OF THE CRITICAL BRANCHING TREES

Here we check if the scaling features of O(N2/3) and O(N1/3) for the size and the lifetime, respectively, of a CB
tree at a transition point zc are valid even for any z � zc. We obtain the distributions of the size and the lifetime of
the critical branching trees on ER random networks with mean degree z = 8 and on fully-connected networks with
different system sizes, respectively. Performing numerical simulations with different systems of size N , we obtain that
the size distribution of CB trees follows a power law, ps ∼ s−τs exp(−s/s∗), where τs ≈ 3/2 and s∗ ∼ N2/3 (see Fig.
S1). The life time distribution also follows a power law p`(`) ∼ `−τ` exp(−`/`∗) with τ` ≈ 2 and `∗ ∼ N1/3 (see Fig.
S2). This numerical results are consistent with the analytic results using the generating function method for a CB
tree.

(a)

Figure S1. Scaling plot of the size distribution of CB trees on (a) ER networks with mean degree z = 8 and (b) fully connected
networks with degree z = N − 1 for different system sizes. From a randomly selected seed, a branch is constructed to each
neighbor with probability 1/z. Repeatedly each of the offspring makes a branch to their neighbors with the same probability
1/z. We find for both cases that the size distribution of the tree decays a power-law way with the exponent τs ≈ 3/2 and there

exists a characteristic size s∗ ∼ N2/3 for the CB trees.

(a) (b)

Figure S2. Scaling plot of the lifetime distribution of CB trees on (a) ER networks with mean degree z = 8 and (b) fully
connected networks with degree z = N − 1 for different system sizes. From a randomly selected seed, a branch is constructed
to each neighbor with probability 1/z. Each of the offspring makes a branch to its neighbors with the same probability 1/z.
This process is repeated successively. We find that the lifetime distribution of the tree decays in a power-law way with the
exponent τ` ≈ 2 and there exists a characteristic size `∗ ∼ N1/3 for the CB trees.



6

III. LOOP-LENGTH DISTRIBUTION FOR THE REACTION W + I → 2I

Figure S3. Scaling plot of the distribution Pc(c) of the lengths c of loops (i.e., cycle) that are formed by the reaction W+I → 2I

for different system sizes. The scaling is in the form of Pc(c)N
1/3 vs c/N1/3. Here loop length is defined as one plus the sum of

the distances from the generations nI and nw to their last common ancestor. The nodes i and j are connected by the reaction
W + I → 2I and make a loop. Data are well collapsed onto a single curve and loop lengths are scaled by a characteristic scale
∼ N1/3.

IV. THE AVALANCHES IN k-CORE PERCOLATION

The avalanche processes of (k=3)-core percolation is schematically illustrated in Fig. S4. At the beginning, all
nodes are classified into the two types, susceptible nodes with degree k = 3 (green circles) and generalized weakened
nodes with k > 3 (dark blue circles). The dynamics proceeds in the following way: In (a), an infinite avalanche
process begins at a node with any degree k ≥ 3 (red circle). Here we take the case k = 3. This node corresponds
to an infectious seed for the SWIR model. In (b), when that triggering node is intentionally removed (black circle),
the degrees of its neighbors are decreased by one. If the degree of a neighbor becomes k < 3 (red), k = 3 (light
blue), and k > 3 (dark blue), the node is regarded as an infected node (corresponding to S + I → 2I) and is removed
next step (red), is regarded as a weakened (light blue), and remains as a generalized weakened node (dark blue),
respectively. In (c), the red node is removed and becomes black. The degree of its neighbor is again decreased by one.
If a degree becomes k < 3 (red), the susceptible neighbor becomes infected, which is to be removed next step. In (d),
the red node in (c) is removed and the degrees of its neighbors are decreased by one. Here the red node, whose degree
was originally four, now becomes infected by the contacts with previously two red nodes. Such reaction processes
correspond to S + I →W + I and W + I → 2I. This removal process is possible only when a loop is formed between
the light-blue node and the red node in (c). Loop length is shown rather short in this schematic figure but loops can
be long as much as O(N1/3) in an ER graph. The processes (a)-(d) continue until no more red node remains.
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Figure S4. Schematic illustration of an avalanche processes of (k = 3)-core percolation. At the beginning, if degree of a node is
k = 3 (k > 3), the node is represented by green (dark blue) circle, which corresponds to a susceptible (generalized weakened)
node for the SWIR model. If degree of a node becomes k = 3 during the dynamics, that node is regarded as a weakened node
(light blue). The number in each circle represents the degree of that node at respective step.

V. HOW TO DETERMINE EFFECTIVE DEGREES OF EACH NODE IN THE CF MODEL

As defined in the main text, to determine the effective degrees of each node for an infinite avalanche, we needed to
count the number of each type of links of a certain node i following which we can access O(N) nodes along only the
same type of links. Such links of the node i are called viable links. To implement this counting in finite systems, we
present a method at a certain graph with mean degree z.

First, we generate an ER graph with mean degree z for each type of links, then determine a GMCC. Second, to
determine the effective degree kA(i) of a node i for A-type links, we consider a network that consists of all nodes in
the GMCC and only A-type of links, which is denoted as A-GMCC. Next, to determine the viable links of a node i
in the A-GMCC, we suppose that the node i is removed, and determine an A-GMCC. If this removal does not break
the A-GMCC at all, then all A-type links of the node i are viable links of the node i. If the removal breaks A-GMCC
into more than one clusters, there may be a unique largest one. Then the links of the node that were connected to
the largest cluster are the viable links of type A of the node. One may suppose the case that two or more clusters are
of the same size; however, its probability would be negligible. Type B viable links are also determined in the same
way. This determination can be efficiently implemented using the algorithms in Refs. [Hwang et al., Phys. Rev. E
91, 022814] and [Holm et al., J. ACM 48, 723].

The avalanche process is implemented straightforwardly with this definition of viable links. First, we obtain effective
degrees of each node in the GMCC, and then identify weakened or susceptible state of each node. To trigger an
avalanche, we remove a randomly chosen node, which serves as a seed of the avalanche. At the next time step, we
recalculate effective degrees of each neighbor of the seed. If there are neighbors whose one or both types of effective
degrees are zero, then we remove them. We repeat these processes with all neighbors of the nodes removed at the
previous time step. The repeated process continues until no more node is removed.
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VI. SCHEMATIC ILLUSTRATION OF THE AVALANCHES IN THE CF MODEL

Figure S5. Schematic illustration of an infinite avalanche process in the CF model

There exist two types of links represented by solid and dashed lines. Infinity mark (filled or empty ∞) on a link
(solid or dashed) represents that one can reach O(N) number of nodes through the links of that type. Links with
bar (|) mean that one can reach only o(N) nodes. Pair of numbers inside the circle of each node represent effective
degrees of respective node. Those are the number of solid links and dashed links in order that lead to O(N) number
of nodes. If a node loses all such links of any type, it is separated from the GMCC. For instance, the node with the
effective degree (1,1) at the middle of Fig.S5(a) is a member of the GMCC through its only solid link and the dashed
link connected to the red node.

Nodes with degree one for any type of links are colored by green, which correspond to susceptible nodes. Nodes
with degree more than one for any type of links are colored by dark blue, which corresponds to generalized weakened
state in k-core percolation. The cascading dynamics starts by removing a randomly selected node in any state in (a),
denoted by red circle, which is a seed. Then, the effective degrees of the neighbors of the red node are changed as
follows: the degree (2,2) change to (1,2), (1,1) to (1,0) and (3,2) to (2,2). After that, the red node becomes recovered
(denoted as black circle). The node with updated degrees as (1,2) in (b) changes its color from dark to light blue,
representing that the node now becomes weakened, because it can be infected by contacting one more infected node
via the solid line (i.e., losing the green neighbor). The node updated as (1,0) no longer belongs to the GMCC and
must be removed next step shown in (c). The red node in (b) is removed. Consequently, the node with effective
degree (2,1) in (b) changes to the degree (2,0) and shall be removed next step. The red node in (c) is removed. One
of its neighbors with degree (1,2) in (c) changes its degree to (0,2), which is to be removed next step in (d). This
corresponds to the reaction W + I → 2I. This reaction is possible through the long-range loop in (c).
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VII. STATISTICS FOR THE LOOP-FORMATIONS IN THE AVALANCHES IN THE CF MODEL

Figure S6. For the CF model, scaling plot of the probability distribution PnI of the generation nI at which a node in state
W becomes I for the finite avalanche case. Data for different system sizes are well collapsed onto a single curve with the
scaling form of PnIN

1/3 as a function of nI/N
1/3. This means that the loops of length O(N1/3) are abundant. This is actually

expected because finite size effect arises at the generation O(N1/3).

VIII. DISCUSSION

In statistical physics of critical phenomena, universality means that there is a class of systems for which (among
others) the critical exponents are the same. There are irrelevant parameters of these systems (e.g., lattice type),
which do not lead out of such a universality class and there are relevant ones (e.g., dimensionality), which do. The
situation is similar for the studied case. The ER graph belongs certainly in a different universality class than the
finite dimensional lattices, but ER graphs with different average degrees behave universally. This can be seen in the
derivation of the exponent 1/3 for the size dependence of the characteristic time nc. In the derivation the mapping
to the critical branching process played a pivotal role, where the fact that the underlying topology is an ER graph is
important. In finite dimensional lattices there are loops, which destroy the above mentioned mapping. Accordingly,
the reaction W + I → 2I can occur any time, and the weakened nodes are not accumulated. Then the HPT does not
occur in k-core and the CF model in finite dimensional lattice below a critical dimension. (It would be an interesting
theoretical question to investigate, whether there is a critical dimensionality, above which the ER result could be
obtained but this goes beyond the scope of this paper.) The average degree is irrelevant as the system is anyway
diluted to criticality, but merely changes the transition point. As we presented earlier, the transition point is given
as κc = 1/z.
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