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Effective trapping of random walkers in complex networks
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Exploring the World Wide Web has become one of the key issues in information science, specifically in view
of its application to the PageRank-like algorithms used in search engines. The random walk approach has been
employed to study such a problem. The probability of return to the origin (RTO) of random walks is inversely
related to how information can be accessed during random surfing. We find analytically that the RTO probability
for a given starting node shows a crossover from a slow to a fast decay behavior with time and the crossover time
increases with the degree of the starting node. We remark that the RTO probability becomes almost constant in
the early-time regime as the degree exponent approaches two. This result indicates that a random surfer can be
effectively trapped at the hub and supports the necessity of the random jump strategy empirically used in the
Google’s search engine.
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I. INTRODUCTION

In the information era, the number of Web pages increases
drastically at a rate of approximately one million pages per
day. Accordingly, it becomes challenging to find a page
appropriate to one’s interest in a short time. Thus it is
desirable to develop more efficient PageRank-like algorithms.
The PageRank algorithm currently used in the Google search
engine [1–3] is based on the random walk (RW) approach.
The PageRank algorithm assigns a score to each page, which
is proportional to the number of visits to a given node by a
random surfer as it continues to step on one of the neighbors
indefinitely. Since the World Wide Web is a scale-free network
[4], the physical properties of RWs in complex networks [5]
can provide some ways to improve the PageRank algorithm.

In the Euclidean space and self-similar spaces, as RWers
start from a certain node and travel to others randomly, the
number of accessible sites S(t) [6] in a random walk of t steps
increases as

S(t) ∼ tds/2, (1)

where ds is the spectral dimension. The accessible sites are
meant by the notion that the walker may find itself anywhere
within the set of accessible sites after t steps. This quantity is
inversely proportional to the probability of return to the origin
(RTO), denoted as R(t) [6–9]. That is,

R(t) ∼ 1

S(t)
∼ t−ds/2. (2)

When a RWer starts from one node s and travels randomly
in complex networks, the RTO probability enables us to
understand how much information is accessible by indefinitely
clicking hyperlinks on pages via the relation (2). The RTO
probability is defined conventionally as R(t) ≡ ∑

s pss(t)/N ,
where pss(t) is the return probability of the RWer to the starting
position s after t steps and N denotes the total number of
nodes in the network. Whereas R(t) and pss(t) behave in the
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same manner in the Euclidean space, they can be different
in scale-free networks. In this paper, we analytically show
that when the node s has a large degree such as the hub,
pss(t) decays much slower than R(t) in the small t regime, but
behaves in the same manner as R(t) in the large t regime. The
crossover time increases with the degree of the starting node.
Thus, random surfers may need a long time to escape from the
hub.

The paper is organized as follows: In Sec. II, we introduce
the effective network by RWers and find the RTO probability
follows power laws with crossover behavior. In Sec. III,
numerical results of the RTO probability are presented and
compared with the analytical solutions. We summarize our
findings and discuss their implications in Sec. IV.

II. EFFECTIVE NETWORK BY RANDOM WALKS

We begin by recalling the convention of an RW problem in
uncorrelated scale-free networks. A network is composed of
N nodes and L links, and the degree of each node follows a
power-law distribution D(k) ∼ k−γ for large k with the degree
exponent γ . A RWer starts from a node s at time t = 0 and
hops to a randomly selected neighbor node at each time step.
The transition rate from node j to i is given as Aij/kj , where
Aij is the element of the adjacency matrix A and kj = ∑

i Aij .
The occupation probability pis(t) of the RWer starting from

a node s at time t = 0 to find itself at a node i after t steps is
given as

pis(t) =
∑

j∈n.n.(i)

1

kj

pjs(t − 1), (3)

where n.n.(i) is the set of the nearest neighbor nodes of i. It is
well known that

pis(t → ∞) = ki

2L
(4)

in scale-free networks [5]. Analog to this formalism, we
express pis(t) at finite time steps in a similar fashion,

pis(t) = k̂i(t)

2L̂(t)
, (5)
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where k̂i(t) and L̂(t), called the effective degree of node i

and the effective number of links, respectively, are defined as
follows:

k̂i(t) =
∑

j∈n.n.(i)

Wij (t), (6)

where Wij (t), called the link accessibility of the RWs from
node j to i [6], is

Wij (t) ∝ 1

kj

pjs(t − 1), (7)

and

L̂(t) = 1

2

∑
i

k̂i(t). (8)

As the degree ki is the sum of Aij s over j , the effective degree
k̂i(t) is the sum of Wij (t) over j [Eq. (7)]. The effective degree
varies dynamically as the RWs proceed and so is the effective
number of links [Eq. (8)], which is analog to the formula
L = ∑

i ki/2. We remark that the link accessibility Wij may
differ from Wji even in undirected networks. Meanwhile,
Eq. (3) may be rewritten in terms of ris ≡ pis/ki as

ris(t) = 1

ki

∑
j∈n.n.(i)

rjs(t − 1), (9)

which is relaxed following the diffusion equation. Thus, we
call rij (t) the link-crossing probability of RWs.

In the following, we propose the proportional coefficient
of Wij (t) hypothetically and present the heuristic argument
behind it.

Wij (t) ≡
1
kj

pjs(t − 1)〈
1
k�

p��(t − 2)
〉
�∈n.n.(s)

for j ∈ n.n.(i). (10)

The denominator of Eq. (10) was chosen to make Wij (t)
bounded in 0 < Wij (t) < 1 for any time t and any starting
node s. The proposed denominator represents the average
probability for an RWer starting from a node s and visiting
its neighbor node � at t = 1 to occupy the node s at time t

via the node � at time t − 1. The average is taken over all
neighbor nodes of s. This quantity can be interpreted as the
average probability to cross a link connected to the starting
node at time t − 1, which was crossed at the first time step. We
claim that this probability is the largest among those quantities
crossing any other links at time t − 1. Our claim is based on
the simple argument that the link-crossing probability over

a link connected to the starting node s is relaxed from the
initial value 1/ks to the saturated value 1/L by following the
diffusion equation, because the denominator can be viewed as
〈rs�(t − 1)〉�∈n.n.(s) under the condition that the RWer visited
a node � at t = 1. On the contrary, those quantities of other
links increase from zero to the saturated value 1/2L as RW
time steps proceed. Thus, the link-crossing probability of the
first-passed link is larger than any others at any time step.
Figure 1 facilitates understanding of the time evolution of the
RW link accessibility of each link schematically.

Using Eqs. (6), (8), and (10) and the derivation in
Appendix A, we obtain the effective number of links as

L̂(t) 
 〈k〉
2R(t − 2)

, (11)

for which we also used the relation
∑

i
1
kj

∑
j∈n.n.(i) pjs(t −

1) = ∑
i pis(t) = 1. Using the relation R(t) ∼ t−ds/2 in the

short-time regime and R(t) = 〈k〉/2L in the long-time regime
[5], we obtain the crossover behavior,

L̂(t) ∼
{

t
ds
2 for t � tx,

L for t � tx,
(12)

where tx scales as tx ∼ L2/ds at which L̂(tx) 
 L.
Next, we concern k̂i(t) in the numerator of Eq. (10),

particularly, for the case i = s, because we eventually want to
obtain the probability of return to the starting position pss(t).
To obtain k̂s(t), we need to know Ws�(t) for � ∈ n.n(s). It
is obvious that Ws�(t = 2) ∼ 1/ks and Ws�(t → ∞) ≈ const.
In the early-time regime, we show in Appendix B that Ws�

behaves as

Ws�(t) 
 κ�(t)

ks

+ o

(
1

ks

)
, (13)

where κ�(t) is a function independent of the starting node s.
Thus, the effective degree of the node s is simply expressed as

k̂s(t) 
 1

ks

∑
�

κ�(t) = 〈κ�〉� ≡ κ(t), (14)

which is independent of s within the leading order in the
early-time regime. We summarize the behavior of the effective
degree k̂s(t) for different time regimes as (i) k̂s(t) 
 κ(t) in the
early-time regime, and (ii, iii) k̂s(t) = ks in the intermediate-
and the long-time regimes. This result is confirmed numeri-
cally and shown in Fig. 2.

FIG. 1. (Color online) Link accessibility of random walks starting from a node (open circle) in short (a), intermediate (b), and long
(c) time regimes, which is represented by the thickness of each link.
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FIG. 2. (Color online) Effective degree k̂s(t) as a function of time
t for different ks in the (2,3) weighted flower network composed
of 11 720 nodes. The slope of the dashed line is ds/[2(γ − 1)] =
ln 2/ ln 6 [11]. The inset shows the plot of the estimated crossover
time tc(s) versus ks in double logarithmic scales, and the slope of the
solid line is 2(γ − 1)/ds = log 6/ log 2.

To obtain κ(t) and eventually pss(t), we consider the
effective degree distribution in the RWs starting from a node s.
We first recall that in the limit t → ∞, the link accessibilities
of each link is constant, and thus the effective degree k̂i(t)
of node i reduces to its degree, the number of connections
to it. Moreover, the probability to reach a node with degree
k following a randomly selected link, which is denoted as
DLN(k), is given as (k/〈k〉)D(k). In the early time regime,
however, a RWer does not visit all nodes in the system, but
does some nodes around a starting node. As a result, the
link accessibility of each link is no longer constant 1/L,
but can vary with time. For simplicity, we assume that the
link accessibilities are uniform for the links that have ever
been passed by the RWer, and thus the probability to reach
a node with degree k following a link becomes k1−γ for
the nodes ever visited. This assumption, a simplest way to
study the time-dependent behavior of RWs, is made on the
basis that the wandering pattern of RWs within the region
of the links ever passed is similar to the one over the entire
system in the limit t → ∞. However, since the number of
passed links is partial and increases with time, the proportional
coefficient of DLN(k; t) can differ from that in the limit
t → ∞. We consider a particular case that an RWer starts
from the hub node (i.e., s = h), for which the maximum
effective degree or the cutoff of DLN(k; t) is the effective
degree of the starting node, which is denoted as k̂h(t). The
natural cutoff k̂h(t) of DLN(k; t) is obtained from the relation∫ ∞
k̂h(t) DLN(k; t)dk ∼ k̂h(t)2−γ . Meanwhile, the effective degree

of the hub is given as k̂h(t)/L̂(t). Matching those quantities,
one can obtain that

k̂h(t) ∼ L̂(t)1/(γ−1) ∼
{

tds/2(γ−1) for t � tx,

L1/(γ−1) for t � tx.
(15)

Both k̂h(t) and L̂(t) increase with time and saturate to their
values kh and L at t 
 tx, respectively. The RTO probability
for the hub behaves as

phh(t) = k̂h(t)

2L̂(t)
∼

{
t−d

(hub)
s /2 for t � tx,

kh

2L
for t � tx,

(16)

where

d (hub)
s = ds

γ − 2

γ − 1
(17)

is called the local spectral dimension of the hub. When ds and
γ are finite, d (hub)

s < ds , and thus the RWer wanders around
the hub for a long time. Particularly, when γ → 2, phh(t) ∼
const., implying that the RWer is effectively trapped at the hub.

Let us return to the general case of an arbitrary starting
node. We know that the effective degree of the starting node
s evolves with time as k̂s(t) ∼ κ(t), independent of s, until it
reaches the value ks . Therefore the behavior of k̂s(t) for t � tx
reduces to the one similar to Eq. (15) as

k̂s(t) ∼
{

tds/2(γ−1) for t � tc(s),

ks for t � tc(s),
(18)

where tc(s) is the crossover time between the early- and
intermediate-time regime, which depends on ks as

tc(s) ∼ k2(γ−1)/ds

s . (19)

From Eqs. (5), (12), and (18), we obtain the RTO probability
pss(t) for an arbitrary starting node s as

pss(t) ∼

⎧⎪⎨
⎪⎩

t−d
(hub)
s /2 for t � tc(s),

kst
−ds/2 for tc(s) � t � tx,

ks

2L
for t � tx.

(20)

The intermediate time regime, tc(s) � t � tx, disappears
when the starting node is the hub; the crossover time tc reduces
to tx when ks = kh ∼ L1/(γ−1).

III. SIMULATION RESULTS

We check the analytic solution numerically in artificial
scale-free networks as well as a real-world network, the World
Wide Web [12]. The artificial networks are the weighted flower
network [10,11,13,14] and the fractal network introduced
by Song et al. [15]. In both networks, the RTO probability
decays in a power-law manner R(t) ∼ t−ds/2. In the weighted
flower networks, the presence of shortcuts is controlled by a
parameter p = 0 so that the network can be either a fractal or
a nonfractal [11]. In the fractal network model, there are two
parameters m and e which represent the branching number of
each step and the hub-hub attraction probability, respectively.
Those two parameters control the global spectral dimension
and the degree exponent. In our simulations, a RWer starts at
a node s and its trajectories are recorded up to 1000 time steps
to evaluate the specific RTO probability. This simulation is
repeated for all starting nodes and 106 independent RWers.

Figure 2 shows that the effective degree increases with time
in the early time regime, and saturates to a constant value in
the intermediate- and the long-time regime in the weighted
flower networks. The theoretical prediction in the early time
regime in Eq. (18) is represented by the dashed line, which is
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FIG. 3. (Color online) The RTO probabilities as a function of time
in the scaling form for the (3,5) weighted flower networks (WFNs)
with the long-range connection probability p = 0 (a) and p = 1
(b) and the fractal network (FN) with m = 2 and e = 1 (c), with
m = 2 and e = 0 (d), where m represents the branching number
of each step, and e does the hub-hub attraction probability [15].
The weighted flower networks in (a) are fractal and those in (b) are
nonfractal. The networks with e = 1(e = 0) are fractals (not fractals).
The slopes of dashed lines and the dashed-dotted lines are guidelines
theoretically predicted.

in agreement with numerical data. The crossover time tc(s) is
estimated for different ks and are shown in the inset of Fig. 2.
Again numerical data fit the theoretical prediction well.

The crossover behavior of pss(t) between the early- and
the intermediate-time regime can be described as pss(t) =
k

2−γ
s φ(t/tc(s)) with the scaling function φ(x) behaving as

x−d
(hub)
s /2 for x � 1 and x−ds/2 for x � 1. In Figs. 3(a)–

3(d), the plots of k
γ−2
s pss(t) versus t/k

2(γ−1)/ds
s show data

collapse excellently for different ks , conforming the theoretical
prediction. The data in the long-time regime t � tX are not
presented in Fig. 3, which have been already well understood
and are not the main concern of this work.

For a real-world network, we simulate the RWs for the
World Wide Web, which has the degree exponent γ ≈ 2.2
and the spectral dimension ds ≈ 1.8. In our simulations, we
neglect the direction of each link for simplicity. We plot
the numerical results of pss(t) in the scaling form and find
that the numerical data do show the crossover behavior; the
behavior in the early- and the intermediate-time regimes fit
the theoretical predictions reasonably well, represented by the
dashed and dashed-dotted lines, respectively, in Fig. 4. Since
the World Wide Web contains some degree-degree correlation,
the scaling plot is not as good as that obtained for artificial
networks. Nevertheless, the slow decay ∼t−0.16 behavior
of the specific RTO probability in the early-time regime implies
that a random surfer on the World Wide Web is effectively
trapped at hub pages. This result may be related to why
the PageRank algorithm needs to include random jumps for
efficient searching.

FIG. 4. (Color online) The RTO probabilities in the scaling
form for the World Wide Web. The dashed and dashed-dotted lines
represent theoretical formula pss(t) ∼ t−d

(hub)
s /2 and pss(t) ∼ t−ds/2

with d (hub)
s ≈ 0.33 evaluated by Eq. (17) using the measured values

γ ≈ 2.2 and ds ≈ 1.8.

IV. DISCUSSION

In summary, we have studied the time-dependent behavior
of the RTO probability of RWs in scale-free networks in
relation to information accessibility during random surfing
in the World Wide Web. It was found that the specific RTO
probability pss(t) exhibited the crossover between a slow and
a fast decay behavior. The crossover time increases with the
degree of the starting node. Thus, an RWer starting from a hub
takes a long time to escape from it. This result implies that it is
undesirable for a random surfer to start from a portal site in the
World Wide Web that contains a great number of hyperlinked
pages, and random jumps are needed to escape from it when
the RWer reaches there during travels.
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APPENDIX A: DERIVATION OF THE DENOMINATOR OF
EQ. (10)

To calculate the denominator of Eq. (10) explicitly, we first
present a general framework how to calculate the average of
a general function f (�) in which � is the node index, but
actually the function depends on its degree k� in the form of
f̂ (k�). Then,

〈f (�)〉�∈n.n.(s) ≡ 1

ks

∑
�∈n.n.(s)

f (�) (A1)

≈
∑

k

k

〈k〉D(k)f̂ (k). (A2)

The step from (A1) to (A2) is obtained by using DLN(k)
which is given as k

〈k〉D(k). We also remark that the degrees of
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neighbor nodes � ∈ n.n.(s) are a randomly composed subset
of DLN(k), and if their numbers are large, one may regard their
distribution as the same as DLN(k). Using the above formalism,
we calculate the denominator as follows:〈

1

k�

p��(t − 2)

〉
�∈n.n.(s)

≈
∑

k

k

〈k〉D(k)
p̂k(t − 2)

k

= 1

〈k〉
∑

k

D(k)p̂k(t − 2)

= 1

〈k〉R(t − 2), (A3)

where we denote p̂k�
(t) ≡ p��(t).

APPENDIX B: LINK ACCESSIBILITY IN THE
EARLY-TIME REGIME

To explore Ws�(t) in the early-time regime, we decompose
the occupation probability p�s(t − 1) in Eq. (10) into two parts
as

p�s(t − 1) = p��(t − 2)p�s(1) +
∑

m∈n.n.(s)
m�=�

p�m(t − 2)pms(1).

(B1)

The RWer at node m �= � can reach the node �, which is also
a neighbor of s, mainly via the starting node s. This leads

to p�m(t − 2) 
 (1/ks)q�m(t − 3) within the leading order of
(1/ks), in which q�m(t − 3) is regarded as being independent
of ks . For instance, p�m(2) = 1/(kskm) and q�m(1) = 1/km. On
the other hand, p��(t − 2) is not proportional to 1/ks because
the RWer does not necessarily pass through the starting node to
return to �. Therefore, by using p�s(1) = 1/ks for � ∈ n.n.(s),
we find that

Ws�(t) = κ�(t)

ks

+ o

(
1

ks

)
, (B2)

with

κ�(t) 

1
k�

(
p��(t − 2) + 1

ks

∑
m∈n.n.(s)
m�=�

q�m(t − 3)
)

〈
1
k�′

p�′�′(t − 2)
〉
�′∈n.n.(s)

. (B3)

This argument is relevant when the network structure is locally
treelike, since the RWer starting from m cannot reach � without
visiting s in the tree network. The treelike structure actually
appears in a random graph, because the probability to form
a link between � and m is k�km/2L, which is as small as
〈k〉/N � 1. As t increases, the difference between p��(t − 2)
and p�m(t − 2) becomes reduced, since the RWer can exploit
various pathways from m to �. In the stationary state, p�m(t −
2) does not depend on m whether m is equal to � or not, leading
to Ws� = 1.
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