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Critical phenomena of a hybrid phase transition in cluster merging dynamics
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Recently, a hybrid percolation transition (HPT) that exhibits both a discontinuous transition and critical
behavior at the same transition point has been observed in diverse complex systems. While the HPT induced by
avalanche dynamics has been studied extensively, the HPT induced by cluster merging dynamics (HPT-CMD)
has received little attention. Here, we aim to develop a theoretical framework for the HPT-CMD. We find that
two correlation-length exponents are necessary for characterizing the giant cluster and finite clusters separately.
The conventional formula of the fractal dimension in terms of the critical exponents is not valid. Neither the giant
nor finite clusters are fractals, but they have fractal boundaries. A finite-size scaling method for the HPT-CMD

is also introduced.
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I. INTRODUCTION

Percolation has long served as a simple model that
undergoes a geometrical phase transition in nonequilibrium
disordered systems [1]. As an occupation probability p is
increased beyond a transition point p., a macroscopic-scale
giant cluster emerges across the system. This percolation
theory has been used for understanding percolation-related
diverse phenomena such as conductor-insulator transitions [2],
the resilience of systems [3—5], the formation of public opinion
[6,7], and the spread of disease in a population [8,9]. The theory
of percolation transition was well established by the Kasteleyn-
Fortuin formula [10]. The percolation transition is known to
be one of the most robust continuous transitions [1,11].

Recently, however, many explosive or abrupt percolation
transitions have been observed in complex systems [12-18],
such as large-scale blackouts in power-grid systems [19] and
pandemics [20], in which the order parameter increases or
decreases abruptly at a transition point. In such phenomena,
when a system is perturbed, e.g., when a link is removed, an
avalanche dynamics occurs, which leads the order parameter
to collapse to zero at a transition point. The transitions
in k-core percolation [21-25] and in the cascading failure
model on interdependent networks [19,26—29] are prototypical
instances. In these models, hybrid percolation transitions
(HPTs) can be induced by avalanche dynamics. The order
parameter exhibits a second-order and a first-order transition at
the same transition point. However, the cluster-size distribution
(CSD) does not follow a power law, thus the conventional
percolation theory could not be applied to this type of HPT.
Instead, the theory of critical avalanche dynamics was applied
to understand the critical behavior of the HPT [24,27,29].

At this stage, one may be interested in a HPT generated
as links are added one by one, similarly to the kinetics of
ordinary percolation and explosive percolation [12]. Thus, the
HPT is induced by cluster merging dynamics (abbreviated as
HPT-CMD). Actually, we introduced a modified version [30]
of the so-called half-restricted percolation model [31] for this
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purpose, and we obtained interesting mean-field results [30].
As links are added to a system, the order parameter (i.e., the
fraction of nodes belonging to a giant cluster) remains zero up
to a transition point, at which it increases rapidly to a finite
value, generating a first-order transition. During this increase
process, clusters are self-organized in their sizes, after which
the size distribution of finite clusters follows a power law. A
giant cluster is located separately from those finite clusters in
the CSD. As more links are added to the system, the order
parameter increases gradually, and a second-order transition
occurs. Indeed, the properties of the second-order transition
are determined by the power-law behavior of the CSD. In this
paper, we aim to develop a theoretical framework for a HPT-
CMD using the restricted percolation model in two dimensions
and the mean-field result. We find that two correlation-length
exponents v, and v, are needed to characterize the critical
behaviors of the giant cluster and finite clusters, respectively.
To explore HPTs, we introduce a finite-size scaling method that
is more advanced than the method used in the second-order
percolation transition.

This paper is organized as follows: In Sec. II, we recall
the theory of ordinary percolation for further discussion in the
HPT. In Sec. III, we introduce the restricted percolation model
and explain the underlying mechanism of the dynamic rule
and why this model generates a HPT-CMD. The conventional
finite-size scaling method cannot be applied to a hybrid
percolation transition. In Sec. IV, we present a finite-size
scaling method that is applicable to the hybrid percolation
transition. In Sec. V, we use this method to determine the
values of critical exponents for the restricted percolation
model. In Sec. VI, we determine the fractal dimensions of
finite clusters and the giant cluster, and we show that the
conventional formula for the fractal dimension in terms of the
critical exponents is not satisfied. The final section is devoted
to a discussion and a summary.

II. PERCOLATION THEORY

We first recall the theory of continuous percolation
transitions [1]. The order parameter increases from zero
continuously as m ~ (p — p.)? for p > p,; the mean cluster
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size diverges as (s) ~ |p — p.|”7, and the correlation length
diverges as & ~ |p — p.|7". These exponents satisfy the
hyperscaling relation 28 + y = dv, where d is the spatial
dimension. The critical exponents and the scaling relations can
be obtained from the CSD denoted as n,(p), which behaves
as ng(p) ~ s~ exp(—s/s*), where s* ~ (p — p.)~1/?. On the
other hand, a percolating cluster at p, is a fractal object. The
total number of sites belonging to this percolating cluster,
denoted as My, (L), where L is the linear size of the system
in Euclidean space, scales as My, (L) ~ L?, where D is the
fractal dimension. In addition to the percolating cluster, finite
clusters also behave similarly, as M(R;) ~ RXD , where R; is
the linear size of an s-size cluster. The fractal dimension D is
related to the critical exponents S and v as D =d — B/v.

III. THE r-PERCOLATION MODEL IN TWO DIMENSIONS

We begin with the introduction of the so-called restricted
percolation model on a square lattice of size L x L. N = L?
is the total number of sites in the system. Bonds are occupied
on the lattice one by one at each time step according to a
given rule [32]. When b bonds are occupied in the system,
the occupation probability p conventionally used in bond
percolation corresponds to p = b/(2N). Here we use a control
parametert = b/N, whichis the same ast = 2p. The dynamic
rule of bond occupation is as follows: At each time step, we
classify clusters into two sets, a set R and its complement
set R according to their sizes. Let ¢; denote the ith cluster
in ascending size order. The set R contains the k smallest
clusters, those satisfying Zf‘;ll s(ci) < |lgN] < Zles(ci),
where s(c;) denotes the size of the cluster with index c¢;,
and g € (0,1] is a parameter that controls the size of the
set R. The complement of R, denoted as R¢, contains the
remaining largest clusters. Next, we occupy arandomly chosen
unoccupied bond, one or both ends of which belong to the
clusters in the set R. We do not allow the occupation of bonds
between two sites belonging to clusters in the set R¢. We
remark that our dynamic rule is slightly different from the
original one in the following point: when [gN | < Zf;l s(cy),
in the original model, some |[gN | — Z;:l' s(c;) nodes in the
kth cluster belong to the set R, and the remaining nodes in
the kth cluster belong to the set R, whereas in our model all
nodes in the kth cluster belong to the set R. We call this model
the restricted percolation (abbreviated as r-percolation) model
with reference to the original name, i.e., the half-restricted
percolation model [31]. We use periodic boundary conditions
in the simulations.

This r-percolation model contains two important factors to
generate a HPT-CMD. The first is to attain global information,
which is needed to generate a discontinuous percolation
transition as proposed in Ref. [13]. At each dynamic step, we
need to order all clusters according to their sizes. This ordering
cannot be achieved without global information about all cluster
sizes. The other is to create a continuous transition. As the size
of a giant cluster exceeds (1 — g)N, the giant cluster lies on
the boundary of the sets R and R°. Then according to the
modified rule, it belongs to the set R and thus the model is no
longer restrictive, but it reduces to ordinary percolation. Thus,
a second-order transition naturally occurs. Our modified rule
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is much simpler in simulations, and it also enables us to solve
the critical behavior analytically for the mean-field case [30].
Accordingly, as g — 1, my — 0, and our model reduces to
the ordinary percolation model and undergoes a second-order
transition.

For explosive percolation, when the number of link candi-
dates is larger than two, denoted as k., the critical exponent
depends on k, [33-35]. Thus, the exponent is continuously
varying. Note that k. serves as a parameter that controls
the extent of attaining global information. Moreover, as k,
increases, the growth of the giant cluster becomes more
suppressed. In the r-percolation model, the parameter (1 — g)
plays a similar role. Thus, the critical exponents depend on g
(see Table I and Fig. 8). These features may be reminiscent
of the previous work in which the n-component spin model
with long-range interactions 1/r?*" (0 < n < 2) exhibits a
continuous transition with n-dependent critical exponents [36].

IV. FINITE-SIZE SCALING METHOD

Determining a transition point 7. is not straightforward in
the HPT-CMD. We first obtain the distribution P(m;t, L) of the
order parameter m by accumulating different configurations
with m for fixed + and L. Next, we characterize two time
steps, #. (L) and 7 (L). For t <t (L), P(m;t,L) exhibits a
peak at a certain m near m = 0 denoted as m~(L). m~ (L)
is denoted as m, (L) at a particular point ¢t = ¢, (L), which
satisfies the criterion that for t > (L), P (m) begins to exhibit
another peak at m™(L) near m = 1, as shown in Fig. 1. As
t is increased further, the peak at m~ shrinks, whereas the
other peak at m* becomes higher. At r = ¢(L), the peak at
m~ disappears, and only the peak at m] remains. For 7 >
(L), a peak remains at m* (L), which grows with 7. As L
is increased, #7(L) and ¢} (L) converge to a certain value 7.,
and m~ (L) — 0, and m™ (L) approaches a certain value m.
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FIG. 1. Plot of the distributions of the order parameter for
L = 6400. The distribution is unimodal with a peak near zero (left
peak) for t < ¢t (L) (light blue and violet). As ¢ passes ¢, (L) (light
green), the right peak begins to grow, whereas the left-hand peak
shrinks. As 7 reaches (L) (orange), the left peak disappears and the
distribution becomes unimodal with the right peak alone. The two
characteristic times 7, (L) and ¢}(L) converge to a transition point
t. in the thermodynamic limit. The inset shows the scaling behavior
tH(L) — 1. ~ L7V,
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This suggests that the order parameter exhibits a discontinuous
jump at 7, in the thermodynamic limit. Particularly, we find that
t+(L) — t. ~ L%, in which the exponent v, is estimated to
be vé ~ 1.13 £ 0.07 for g = 0.5 (see the inset of Fig. 1).

The majority of realizations have no giant cluster in
t <t (L) and have a giant cluster in # > 7F(L) in contrast
to the situation in 7 (L) <t < ¢ (L). Thus the ensemble
average taken over the realizations in those separate regions
can be easily calculated. Moreover, the finite-size effect is still
observed near ¢ (L) and 7 (L). Thus we use the simulation
data obtained only in # < (L) or ¢t > tj (L) for finite-size-
scaling analysis and discard the data obtained in t_ (L) < t <
t+(L). The asymptotic behavior of the system at t}(L) as
L — oo gives the behavior of the system as ¢ approaches #.
from above in the thermodynamic limit, i.e., the properties
of the percolating phase near the critical point. Similarly, the
properties of the nonpercolating phase near the critical point
are obtained by observing the system at 7. (L). For instance,
the scaling plot of (m — mg)LP/"s versus (t — t.)L'/"s can be
drawn in the region t > tj (L), which will be shown later. This
numerical analysis method differs from those in the ordinary
percolation transitions. For the simulations of continuous
percolation transitions, we do not need to investigate the two
limits separately, and we also do not need to distinguish the
two phases strictly around the transition point.

V. CRITICAL EXPONENT VALUES
AND HYPERSCALING RELATIONS

In finite systems, the order parameter m(t) is approximately
m~(L) for t <t (L), but it increases rapidly in the interval
t7(L) <t < t}(L), and it becomes m; (L) at 7} (L), beyond
which it increases gradually as ¢ is increased, as shown in
Fig. 2. This suggests that in the thermodynamic limit, m(z)
behaves as

o 0 fort < t., 0
= mo+r@—1t)f fort >t

where m( and r are constants. m represents the fraction of
sites belonging to the giant cluster at 7., and the second term
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FIG. 2. Plot of the order parameter m(t) vs t for the restricted
percolation model with g = 0.5 for different lateral sizes L and in data
collapse form of (m — mg)LP/"¢ vs (t — t.)L'/"¢ (inset). Characteristic
time steps 7 and ¢ for L = 6400 are marked.
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FIG. 3. (a) Plot of the susceptibility defined as x,, = L2({m?) —
(m)?) vs t —t.. xm ~ (t —t.)"¥" is expected. The dashed line is a
guideline with slope —1.79. The susceptibility exponent is obtained
as Y, = 1.79 £ 0.08. (b) Plot of the susceptibility defined as y; =
(s) ~ Z?:ie s2ng vst —t,.. x; ~ (t — t.)7 is expected. The dashed
line is a guideline with slope —1.56. The susceptibility exponent is
obtained as y; = 1.56 & 0.15. Simulation data are obtained from the

systems with lateral size L = 6400.

represents the increment of the order parameter as ¢ is increased
beyond t.. In finite systems, the order parameter for ¢ > .
may be written as m(t) — mg ~ L~#/% in the critical region
above 7., in which L is less than the correlation length of the
giantcluster, &, ~ (t — t.)""¢. Bisdetermined as § = 0.061 +
0.005 for g = 0.5 by plotting m — mg versus t — t., while v,
is determined as v, = 1.03 £ 0.08 by plotting (m — mq)LP/"
versus (r — t,)L'/Vs (see Fig. 2). Because the numerical values
of v, and v, agree within the error bars, we may regard them as
being the same. We examine the susceptibility in the form of
the fluctuations of the order parameter. We obtain the associ-
ated exponent as y,, = 1.79 £ 0.08 for g = 0.5 in Fig. 3. The
scaling relation 28 + y,, = dv, is satisfied within error bars.
The CSD ny(t) of finite clusters exhibits a power-law
decay with the exponent 7 at a transition point z.. This is an
important feature of the critical behavior of the HPT-CMD.
In finite systems, the power-law behavior occurs at z(L)
(see Fig. 4), which is reduced to 7. as L — co. When t > ¢,
the CSD of finite clusters exhibits a crossover behavior at
s*: ng(t) ~ s Te/%", where s* ~ (t —t.)"'/°. We obtain
the exponents 7 and o from Fig. 4. Using the results of
T =2.035+£0.009 and 0 =0.58 £0.03 for g =0.5 and
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FIG. 4. Plot of the size distribution of finite clusters n,(¢) and the
giant cluster (separated dots) at various time steps for L = 6400 and
g=05 Atr < tj(L), a bump exists in the tail part, but it shrinks
as t increases, and it finally disappears at = £ (L). Inset: scaling
plot of the size distribution of finite clusters in the form of s™n vs
s(t — t.)'/7 for several t > t,.

the scaling relation § = (r — 2)/o, we determine the critical
exponent S as 0.0613 £ 0.0187 for g = 0.5. This value is
consistent with the directly measured one within error bars.
We examine the susceptibility in the form of the second
moment of the size distribution of finite clusters, and we
obtain the associated exponent as y; = 1.56 £ 0.15. The
scaling relation y; = (3 — t)/0o is satisfied within error bars.

Introducing the correlation length exponent vy of finite
clusters, we obtain that s* ~ L'/°%. We numerically obtain
that 1 /(o v,) &~ 1.9523 £ 0.0045 for g = 0.5 by measuring the
ratio of the (n 4+ 1)th moment of n,(¢) to the nth moment, where
n > 3. Using the previously obtained value o = 0.58 £ 0.03
for g = 0.5, we obtain v, = 0.886 =+ 0.048. Using the directly
measured values 7 = 2.035 £ 0009 and d = 2, we find that
the hyperscaling relation dvy = (t — 1)/o holds. The values
of those critical exponents depend on the parameter g. Their
values are listed in Table I and shown in Fig. 8.

In previous studies [30], we found numerically that § =
0.21 £0.05, y; =0.83 £0.05, 1/o0 =1.04 £0.05, and T =

1.6
1.3
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FIG. 5. Plot of the order parameter m(t) vs t for the r-ER
percolation model with g = 0.5 for different system sizes N in data

collapse form of (m — mo)N#/% vs (t — t.)N'/%. §, is estimated to
be ~2.0. The system sizes are chosen as N = 10* and 2'2x 10*.

PHYSICAL REVIEW E 96, 042148 (2017)

x 108 ——

6 N=2
10 N =20 % 104 1
N =27 x 104
N =2%x10" ——
N=2%%x10* ——
104 N =2910x10f — |
. N =21 x10" ——
~. N=212x10* ——
S Xm ~ (t =1t )7%7:71'61 -
= 102} -
100 | p
DNy
1 1 1 \\
10-° 10—* 103 10—2 10! 100

FIG. 6. Plot of the susceptibility defined as x,, = L?*[(m?) —
(m)2] vs t —te. xm ~ (t —1.)"" is expected. The dashed-dotted
line is a guideline with slope —1.61. The susceptibility exponent is
obtained as y,, = 1.61 £ 0.12, which satisfies the scaling relation
28 + ¥Ym = V,. The system sizes are chosen as N = 23x10* and
212 10%.

2.18 £ 0.04 for g = 0.5 for the r-percolation model in Erdos-
Rényi (ER) networks. These exponent values yield the value
of correlation size as Py =dv, = (r — 1)/o = 1.23 £0.10
for finite clusters. Here we obtain the exponent value of the
correlation length exponent for g = 0.5 as ¥, = dv, ~ 2.0
for the giant cluster using the data collapse technique for the
formula [m(t) — mo]N#/ versus (t —t,)N'/% for different
system sizes (Fig. 5). Therefore, the two exponents, ¥, and vy,
are different even in the mean-field version of the r-percolation

FIG. 7. Snapshots of the system of lateral size L = 6400 with g =
0.5 at three time steps (a) t =t ~ 1.024 57346, (b) 1. ~ 1.02523,
and (c) 1} ~ 1.025434 37. Att}, the size distribution of finite clusters
follows a power law. (d) Zoom-in snapshots of the giant cluster (top
right) and a finite cluster (lower left).
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within the window, which is called the mass, M (£). We obtain
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the average mass of the giant cluster, M, (£), over different
configurations, and the average mass of finite clusters of size
s, M, (£), over different clusters of the same size s and different
configurations. We also calculate the mean radius of gyration
of all clusters of size s, denoted as R;.

We measure the fractal dimension D, of the giant cluster
using the relation M.,(£) ~ £P¢ for each system size L at a
transition point 7 (L). As shown in Fig. 7, the clusters are
almost compact, and we obtain that D, = 2.0001 £ 0.003
regardless of L. We measure the fractal dimension of finite
clusters using the relation M,(£)/s ~ (£/R;)Ps. We obtain
that Dy = 1.993 £ 0.010 independent of the system size L.
Therefore, we conclude that neither the giant cluster nor finite
clusters are fractal in hybrid percolation. The conventional
formalisms of the fractal dimension, D =d — /v and D =
1/ov, are not valid for the HPT-CMD. We remark that the
transition point 7 (L) of the HPT-CMD is larger than that of
the ordinary bond percolation model, 7. = 1. Thus, the number
of occupied bonds in the critical region of the HPT-CMD is as
dense as that in the supercritical region of ordinary percolation.
Accordingly, the giant cluster as well as the finite clusters
are almost compact with dimension D, = Dy = 2. On the
other hand, we examine the fractal property of the perimeter
of the largest cluster at 7.. Using the yardstick method, we
find that the accessible boundaries of the compact clusters
at t. are fractal with a dimension less than 4/3 for g < 1.
We speculate that the fractal dimension of the boundary is
the same as D, ~ 1.217 & 0.001, the fractal dimensions of
the watershed [37], and the Gaussian model for the explosive
percolation [38].

VII. DISCUSSION AND SUMMARY

Thus far, we obtained that for the HPT-CMD, there exist
two correlation exponents v, and vy, the percolating cluster
and finite clusters are compact, and the fractal dimension
reduces to D, = Dy =2 = d. The properties of the cluster-
size distribution in the ordinary percolation can be obtained
by using the Kasteleyn-Fortuin formalism for the g-state Potts
model in the limit ¢ — 1. On the other hand, in such equi-
librium spin models, the critical behavior can be understood
using the renormalization-group (RG) transformation of the
singular part of the free-energy function f. Thatis, f(¢,h) =
¢ f@,h'), where t and h are reduced temperature and
external field, respectively, and t' = €%t and h’ = ¢*h, where
v = 1/v, y, = D, and ¢ is the scale factor of coarse-grained
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length. On the other hand, for a discontinuous transition,
y; =y, =d, because of 8 =0 [39]. For the HPT-CMD,
we found that there exist two v exponents v, and v,, and
D = d. Thus, it is not clear how to coarse-grain clusters near
the transition point. Thus, further studies are needed in the
perspective of RG theory.

One may wonder how the HPT-CMD is related to the HPT
induced by avalanche dynamics. For the former, the order
parameter increases continuously at a transition point in finite
systems, but it becomes discontinuous in the thermodynamic
limit. For the latter, it jumps or drops suddenly through
an avalanche dynamics even in finite systems. The order
parameter behaves as in a spinodal transition. Recent studies
[25,29] on the HPT by avalanche dynamics such as k-core
percolation transitions on Erdds and Rényi networks and the
percolation transition on interdependent networks revealed
that two sets of critical exponents are needed to characterize
the HPT. One is for the order parameter and the other is for the
avalanche size distribution, which plays the role of the CSD
for the HPT-CMD. One more noteworthy result is that the HPT
induced by avalanche dynamics has an intrinsic scaling relation
between the critical exponent y, of mean avalanche size and
the exponent B as y, = 1 — B [29]. However, the analogous
relation y;, = 1 — B does not hold in the HPT-CMD, because
oy # 1 for any g. Furthermore, k-core percolation does not
occur in two dimensions. Thus, it is not clear how these two
cases are related to each other.

In summary, we investigated the critical phenomena of an
HPT-CMD using the r-percolation model. We showed that two
sets of the critical exponents, including the correlation length
exponent, are necessary to understand the critical behaviors for
the giant cluster and finite clusters separately. We found that the
conventional relationship D = d — /v breaks down. Because
v and D play a central role in the RG transformation, our results
reveal a fundamental problem, namely how to understand the
HPT-CMD in the RG framework. We introduced a finite-sized
scaling method to determine the critical exponents in finite
systems for the HPT-CMD.
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