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Relaxation processes driven by a Laplacian matrix can be found in many real-world big-data systems, for
example, in search engines on the World Wide Web and the dynamic load-balancing protocols in mesh networks.
To numerically implement such processes, a fast-running algorithm for the calculation of the pseudoinverse of
the Laplacian matrix is essential. Here we propose an algorithm which computes quickly and efficiently the
pseudoinverse of Markov chain generator matrices satisfying the detailed-balance condition, a general class
of matrices including the Laplacian. The algorithm utilizes the renormalization of the Gaussian integral. In
addition to its applicability to a wide range of problems, the algorithm outperforms other algorithms in its ability
to compute within a manageable computing time arbitrary elements of the pseudoinverse of a matrix of size
millions by millions. Therefore our algorithm can be used very widely in analyzing the relaxation processes
occurring on large-scale networked systems.
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I. INTRODUCTION

Fast analyses of big data sets [1] are increasingly requested
in diverse interdisciplinary area in this information era. Given
the limitations of available computing resources in space
and time, designing and implementing scalable and efficient
algorithms are essential for practical applications. One of
the tasks most often encountered in such problems is the
analysis of huge sparse matrices, for example, the Laplacian
matrix L of a large-scale complex network. The matrix L
plays important roles in a wide range of problems such as
diffusion processes, random walks [2,3], search engines on
web pages [4], synchronization phenomena [5], epidemics [6],
and load balancing in parallel computing [7]. For instance,
the spectrum of a Laplacian matrix determines the number
of minimum spanning tree, minimal cuts [8,9], and Kirchhoff
index [10].

The elements of the Laplacian matrix L of a given network
are represented as Lij = δij − Aij/kj with the degree of
node j given by kj = ∑

� Aj�. The Laplacian matrix has
a couple of remarkable features. It has positive eigenvalues
and one nondegenerate zero eigenvalue. The zero eigenvalue
appears since

∑
i Lij = 0, related to, e.g., the probability

conservation in the context of random walks and diffusion.
Also, the Laplacian matrix can be symmetrized as L̄ =
SLS−1, whose element is given as L̄ij = δij − Aij/

√
kikj for

Sij = k
−1/2
i δij . This symmetrization can be performed not only

for the Laplacian matrix but also for all the generators V of
Markov chains satisfying the detailed-balance condition [11],
the definition of which will be explained in detail later.
In this paper, we propose an algorithm for computing the
generalized inverse, so-called Moore-Penrose pseudoinverse
of those generators, which is relevant to the first passage
property and the correlation function of the Markov chains
and therefore has been extensively studied in the physics
context [12–16].

*deoksun.lee@inha.ac.kr
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If one uses the standard eigendecomposition method based
on the QR algorithm [17], it needs O(N2) memory space
and takes O(N3) computing time to obtain the inverse of a
N × N matrix. Therefore this algorithm cannot be actually
applied to obtain the inverse of large-size matrices, and faster
algorithms have been developed to solve specific problems
handling large sparse matrices. For instance, the iterative
methods such as the well-known Jacobi method or the Krylov
subspace method [18] are very efficient for the linear problem
M |x〉 = |b〉. In the Euclidean lattice, the Fourier acceleration
method has been introduced to overcome slow convergence of
the Jacobi method for random resistor networks embedded in
the Euclidean space [19–21]. Also the graph theoretic methods
such as the fast inverse using nested dissection (FIND) are
known to be efficient for computing the inverse of large sparse
positive-definite matrices [22–26], most of which are useful
in a two-dimensional lattice. The pseudoinverse of singular
matrices has been investigated [27–29] and can be obtained
efficiently for each specific domain of strength such as for
bipartite graphs [27], the linear problem of the Laplacian
matrix [28], or the Laplacian-specific method [29].

Our algorithm can be used for a wide range of problems
effectively; it enables one to obtain a set of O(N ) arbitrary
elements of the pseudoinverse of a class of N × N matrices
within the computing time much shorter than O(N3) in most
cases. Note that the solution to a single linear problem cannot
provide a set of arbitrary elements of the pseudoinverse in
a single run. The class of the singular matrices we consider
here are the generators of the Markov chains satisfying the
detailed-balance condition. The algorithm exploits the fact that
the Gaussian integral with a coupling matrix H under external
fields turns into a Gaussian function of the external-field
variables with the coupling matrix given by H−1. The coupling
matrix H is constructed from a given generator matrix V .
Its Gaussian integral is evaluated by decimating the variables
and renormalizing the coupling matrix with an appropriate
treatment of the zero eigenvalue mode of V .

To verify the usefulness and performance of the proposed
algorithm in physics problems, we apply the algorithm to
compute the global mean first passage time (GMFPT) of
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a random walk on various networks, which requires the
computation of all the diagonal elements of the pseudoinverse
of the generator, the Laplacian matrix. We compare the
computational cost of our algorithm with that of the QR
algorithm for small system sizes and that of the random-walk
simulation. The dependence of network topology on the
computing time of our algorithm is discussed.

This paper is organized as follows. In Sec. II we introduce
the basic formulas of the Gaussian integral, which play
the central roles in designing our algorithm. Before presenting
the main algorithm, the one computing the inverse of a
positive-definite matrix is outlined in Sec. III. In Sec. IV
we specify a target problem of our algorithm, of which the
pseudoinverse can be obtained exactly by our algorithm. The
applications of the pseudoinverse in the physics context are
also presented. In Sec. V we describe each procedure of the
algorithm in detail. In VI the running time of our algorithm to
compute the GMFPT on various model networks is presented
and compared with that of other methods. The algorithm
is applied to large real-world networks, demonstrating its
practical use in the same section. The summary and discussion
are given in Sec. VII.

II. BASIC FORMULATION

Here we present the formulas which will be used in our
algorithm. For an N × N nonsingular real symmetric matrix
H and an arbitrary column vector |J 〉 of size N , we consider
the Gaussian integral given by

Z ≡
∫ ∞

−∞

N∏
j=1

dφj exp

[
i

2
〈φ| H |φ〉 + i 〈J |φ〉

]

=
√

(2πi)N

det H
e− i

2 〈J |H−1|J 〉, (1)

where |φ〉 = (φ1,φ2, . . . ,φN )† and the factor i is introduced
for the convergence of the integral. Once the Gaussian integral
Z is evaluated, the inverse matrix H−1 can be obtained by

H−1
j� = −i

∂2

∂Jj∂J�

log Z

∣∣∣∣
|J 〉=|0〉

, (2)

where |0〉 is a null vector. If we introduce a 2N -dimensional
vector |ψ〉 by gluing |J 〉 and |φ〉 as

ψj =
{

Jj for 1 � j � N

φj−N for N + 1 � j � 2N
, (3)

and a 2N × 2N real symmetric matrix H̃

H̃j� =

⎧⎪⎨
⎪⎩

δj� for 1 � j,� � N

Hj−N,�−N for N + 1 � j,� � 2N

0 otherwise

, (4)

we can represent Eq. (1) in a simple form as

Z =
∫ ∞

−∞

2N∏
�=N+1

dψ� exp

[
i

2
〈ψ | H̃ |ψ〉

]
. (5)

The evaluation of the Gaussian integral in Eq. (5) can
be done by integrating out ψ variables one by one and
renormalizing the elements of H̃ accordingly. The matrix H̃
thus reduces its dimension by one at every stage. Some of the
zero elements in H̃ can be nonzero after such renormalization,
which should be taken care of as detailed in the next section.
For an extended coupling matrix H̃ , we consider a graph G

with the adjacency matrix A with its elements given by

Aj� =
{

1 if H̃j� �= 0

0 otherwise
. (6)

G and A then evolve as H̃ is renormalized successively.

III. OUTLINE OF THE ALGORITHM FOR THE INVERSE
OF A POSITIVE-DEFINITE MATRIX

In this section we outline the algorithm for computing
the inverse of a positive definite matrix H by evaluating the
Gaussian integral in Eq. (5), which will be generalized to
singular matrices in Sec. V. For an N × N positive definite
matrix H , following Eq. (4), we construct the extended matrix
H̃ of 2N × 2N . The corresponding graph G of 2N vertices
has the adjacency matrix A as in Eq. (6).

Suppose that we integrate out ψ2N in 5 to transform H̃
into H̃

(1)
of size (2N − 1) × (2N − 1). Since H is positive

definite, H̃2N 2N is positive. Collecting the terms involving
ψ2N , we find that∫ ∞

−∞
dψ2N exp

(
i

2
H̃2N 2Nψ2

2N + iB2Nψ2N

)

=
√

2πi

H̃2N 2N

exp

(
− i

2

B2
2N

H̃2N 2N

)
, (7)

where B2N ≡ ∑
j Aj 2NH̃j 2Nψj . Noting that B2

2N =∑
j,� Aj 2NA� 2NH̃j 2NH̃� 2Nψjψ�, one can identify the

renormalized Hamiltonian H̃
(1)

in the Gaussian integral as

Z =
√

2πi

H̃11
Z(1),

(8)

Z(1) =
∫ ∞

−∞

2N−1∏
j=N+1

dψj exp

[
i

2
〈ψ | H̃

(1) |ψ〉
]
,

where H̃
(1)
j� = H̃j� for all 1 � j,� � (2N − 1) unless both

j and � are the neighbor nodes of the decimated node 2N

in G, the graph representation of H̃ . If Aj 2NA� 2N > 0,
the corresponding matrix element H̃j� is changed to H̃

(1)
j� =

H̃j� − H̃j 2NH̃� 2N/H̃2N 2N . In the graph representation, the
corresponding graph G is transformed to G(1) by eliminating
the node 2N and adding links to every pair of the nodes that
were adjacent to the node 2N but disconnected in G (see
Fig. 1). Accordingly, the adjacency matrix evolves from A to
A(1).

We repeat this procedure, decimation followed by renor-
malization, N times to integrate out all ψj = φj−N variables
for N + 1 � j � 2N . Consequently the extended matrix H
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FIG. 1. (Color online) Example of eliminating a node in a graph.
When a node (open circle) is eliminated, new links (dashed lines) are
added to the pairs of its neighbor nodes if disconnected. Consequently,
the neighbor nodes form a clique, a completely connected subgraph.

evolves as

H̃
(0) = H̃ → H̃

(1) → · · · → H̃
(N−1) → H̃

(N) = H−1 (9)

while reducing its dimension from 2N to N . The N × N

matrix H̃
(N)

obtained at the last stage represents the coupling
between J and is equal to H−1 in Eq. (1). The adjacency matrix
A and the graph G also evolve as A = A(0) → A(1) → · · · →
A(N) and G = G(0) → G(1) → · · · → G(N), respectively.

The order of decimating nodes affects significantly the
running time of the algorithm and will be discussed in detail
later. Once it is determined, one can rearrange the node
indices of H̃ such that nodes are eliminated from j = 2N

to j = N + 1. That is, if we introduce vn, the index of the
node that is eliminated in G(n) to obtain G(n+1); it is given
by vn = 2N − n for n = 0,1, . . . ,N − 1. The matrix H̃

(n+1)

is obtained by removing the last row and column of H̃
(n)

,
corresponding to the node vn = 2N − n, and updating the
elements H̃j� for both j and � adjacent to vn as

H̃
(n+1)
j� = H̃

(n)
j� − A

(n)
jvn

A
(n)
�vn

H̃
(n)
jvn

H̃
(n)
�vn

H̃
(n)
vnvn

(10)

for 1 � j,� � vn+1 = vn − 1. We remark that H̃ (n)
vnvn

�= 0, and
therefore one can apply Eq. (10) for n = 0,1,2, . . . ,N − 1.
This can be understood as follows: If H̃ (n)

vnvn
= 0 for 0 �

n < N , the (n + 1) × (n + 1) block matrix B representing
the coupling among v0,v1, . . . ,vn should have its determinant
equal to zero, since det B ∝ ∏n

�=0 H̃ (�)
v�v�

as shown in 1, and
the latter is zero under the assumption that H̃ (n)

vnvn
= 0. This

contradicts the condition that H is positive definite since
all submatrices of a positive-definite matrix are also positive
definite.

The adjacency matrix A(n+1) is obtained by removing the
last row and column of A(n) and updating the element as

A(n+1)
j� = A(n)

j� + A(n)
jvn

A(n)
�vn

(
1 − A(n)

j�

)
. (11)

Note that connecting each pair of the neighbor nodes of the
decimated node may increase the mean degree 〈k〉 = 2L/N ,
the ratio of the number of links (L) to the number of nodes
(N ), of the evolving graph.

H (N) is uniquely determined regardless of the order of
decimating nodes. However, the ordering vn is important for
reducing the computational cost. For instance, as shown in
Fig. 1 and Eq. (11), if a node with degree k is removed,
its k links are removed but its neighbors get interconnected,
resulting in the maximum possible increase of links by
k(k − 1)/2 − k: If a hub node is eliminated, one should
update many elements H̃j� according to Eq. (10) in the

following stages of evolution, which increases the computing
time.

The appearance of new links as in Fig. 1 and Eq. (11) are
called fill-ins in the context of graph theory, and there have
been many efforts to find the optimal ordering that suppresses
those fill-ins. Eliminating nodes in a graph, the so-called
graph elimination game, is encountered in the Cholesky
factorization, which is generally used to solve the linear
problem M |x〉 = |b〉 for a positive definite matrix M. While
the ideal ordering which minimizes the fill-ins is hard to find,
heuristic methods have been proposed, such as the minimum-
degree ordering, the reverse Cuthill-McKee ordering, and the
nested-dissection ordering [23,30].

In decimating φj (= ψj−N ) variables in Eq. (5), every pair of
nodes that are adjacent to the decimated node should update
their corresponding matrix element. If we classify the pairs
of nodes (j�) into three groups according to the types of
their associated variables as (φjφ�), (JjJ�), and (φjJ�), the
computing time is expected to increase if many fill-ins appear
for pairs of type (φ,J ) or (φ,φ). Therefore, we here choose
the minimum-degree ordering which minimizes the fill-ins for
(φj ,φ�). To find the order of decimating nodes and rearrange
the node indices so that nodes are eliminated from the one with
j = 2N to N + 1 in H̃ after the rearrangement, we perform
the node elimination in G representing H as follows:

(1) Construct graph G(0) = G representing H .
(2) n ← 0.
(3) Choose one of the nodes having the minimum degree

in G(n) and record its index in w(n).
(4) Assign a link to every disconnected pair of neighboring

nodes of the node w(n) and eliminate the node w(n) and its
links, which yields G(n+1).

(5) If n < N , n ← n + 1 and go to step 3. Otherwise, for
each node of index i = 1,2, . . . ,N of H , assign a new index
N − w(i).

IV. TARGET PROBLEM

Our idea is that one can use the method in Sec. III to obtain a
set of the arbitrary elements of the pseudoinverse of an N × N

matrix V satisfying the following conditions:
(1) V is a semi-positive-definite symmetric matrix with the

zero eigenvalue λ1 = 0 of multiplicity 1, and
(2) V has the eigenvector |e(1)〉 corresponding to the zero

eigenvalue, which does not have any zero component, i.e.,
e

(1)
i �= 0 for 1 � i � N .

We call such a matrix a semipositive definite symmetric
(SPDS) matrix for simplicity. For a SPDS matrix V , one
can define its pseudoinverse matrix V + by dropping the
zero-eigenvalue mode as

V + =
N∑

n=2

|e(n)〉〈e(n)|
λn

, (12)

where λn are the eigenvalues of V with λ1 = 0 and |e(n)〉 are
the corresponding eigenvectors.

The generator V of a Markov chain satisfying the detailed-
balance condition is an example [11]. V has the zero
eigenvalue of multiplicity 1: Its left eigenvector is 〈e(1)| =
(1,1, . . . ,1), representing the conservation of the probability,
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and the component e
(1)
j of the right eigenvector |e(1)〉 =

(e(1)
1 ,e

(0)
2 , . . .)† represents the stationary-state probability of

the state j . The detailed-balance condition requires that the
transition from a state i to another j happens with equal
probability to that of the transition from j to i. If V satisfies
the detailed-balance condition, all the components e

(1)
j should

be nonzero. If V is not symmetric, a symmetric matrix V̄ can
be obtained by the similarity transformation

V̄ = SV S−1 (13)

with Sj� = δj�/

√
e

(1)
j . The matrix V̄ is then a SPDS matrix. To

obtain the stationary-state probability, there have been many
efficient algorithms suggested so far; e.g., see Ref. [31].

As a concrete example of SPDS matrices, the Laplacian
L with Lj� = δj� − Aj�/k� generates the time evolution of
the occupation probability Pj (t) of a random walker as
Pj (t + 1) = Pj (t) − ∑

� Lj�P�(t). One can symmetrize L
by the transformation L̄ = SLS−1 with Sj� = δj�k

−1/2
j to

obtain L̄j� = δj� − Aj�/
√

kj k�. The pseudoinverse L+ or L̄+

contains important information on random walk dynamics. For
instance, the mean-first passage time (MFPT) Tis from a node
s to i is represented as [32,33]

Tis =
⎧⎨
⎩

2L
ki

(L+
ii − L+

is ) = 2L
ki

(
L̄+

ii −
√

ki

ks
L̄+

is

)
for i �= s

2L
ki

for i = s
.

(14)
The GMFPT Ti of node i denotes the MFPT to the target node
i averaged over all possible starting nodes in the stationary
state [34] and is represented by the diagonal element of the
pseudoinverse of the Laplacian as

Ti =
∑

s

ks

2L
Tis = 2L

ki

L+
ii + 1 = 2L

ki

L̄+
ii + 1. (15)

Another Laplacian L̂ with its element given by L̂j� =
kj δj� − Aj� is the time-evolution operator of the Edwards-
Wilkinson model describing the fluctuating interfaces under
tension and noise as ḣj = −∑

� L̂j�h� + ξj (t) with hj the
height at site j and ξj (t) the noise [35]. The height-height
correlation is represented in terms of the pseudoinverse of L̂
as

〈(hj − h̄)(h� − h̄)〉 = L̂+
j� (16)

with the mean height h̄ = N−1 ∑
j hj [7,36,37]. The

roughness is defined as w =
√

N−1 ∑
j 〈(hj − h̄)〉2 and is

evaluated by

w =
√√√√ 1

N

∑
j

L̂+
jj . (17)

As shown above, the MFPT and the GMFPT of random
walk and the height-height correlation and the roughness
of fluctuating interfaces are commonly represented in terms
of O(N ) number of elements of the pseudoinverse of an
N × N SPDS matrix. The algorithm in the next section is
appropriate for computing a set of such arbitrary elements
of the pseudoinverse of a SPDS matrix. Other algorithms are

optimal for N small [33], for the linear problems [18–21,28],
for the positive-definite matrices [22–26], or for limited
cases [27,29]. The linear problem M |x〉 = |b〉 is encountered
in numerous applications and can give, for instance, the kth
column of M+ by setting bj = δjk . However, the solution
to such a single linear problem cannot give the sum of the
diagonal elements

∑
j M+

jj as required in the GMFPT or the
roughness. In contrast, our algorithm obtains a set of O(N )
arbitrary elements of the pseudoinverse of a large SPDS
matrix at a time. In general, the inverse of a sparse matrix
is not guaranteed to be sparse. Therefore given the limitation
of space and time of computation, it is not always available to
obtain all the elements of the inverse matrix of a large sparse
matrix.

V. ALGORITHM FOR THE ARBITRARY ELEMENTS OF
THE PSEUDOINVERSE OF A SPDS MATRIX

Here we present the algorithm for computing the arbitrary
elements of the pseudoinverse of a SPDS matrix V . Since V
is not invertible, we introduce H(μ) ≡ μI + V where μ is a
positive real constant and I is the identity matrix of the same
dimension as V . Then H(μ) is positive definite, and therefore
we can apply Eqs. (1) and (2) to obtain

H−1
j� (μ) = −i

∂2

∂Jj∂J�

log Z(μ)

∣∣∣∣ �J=0

=
N∑

n=1

e
(n)
j e

(n)
�

μ + λn

= e
(1)
j e

(1)
�

μ
+

N∑
n=2

e
(n)
j e

(n)
�

λn

+ O(μ1), (18)

where λn(n = 1,2, . . . ,N ) are the eigenvalues of V and e(n)

are the corresponding eigenvectors e(n) = (e(n)
1 ,e

(n)
2 , . . . ,e

(n)
N )†.

Therefore, the pseudoinverse V + of V can be obtained by
using H−1 of Eq. (18) as

V +
j� = ∂

∂μ
μH−1

j� (μ)

∣∣∣∣
μ=0

. (19)

Equation (19) implies that one can obtain V + once H−1(μ)
is known as expanded in Eq. (18), which becomes available
by the few first terms, up to O(μ2), in the expansion of the
extended matrix H̃

H̃j�(μ) =
(

1 + μ
d

dμ
+ μ2

2!

d2

dμ2

)
H̃j�

∣∣∣∣
μ=0

+ O(μ3)

= H̃0,j� + H̃1,j�μ + H̃2,j�μ
2 + O(μ3). (20)

Our idea is to apply the algorithm in Sec. III to trace the
evolution of the three coefficient matrices H̃0,H̃1, and H̃2 in
Eq. (20). Using 10 and Eq. (20), we eliminate a node with
index vn = 2N − n and renormalize the coefficients at each
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stage 0 � n < N − 1 as

H̃
(n+1)
0,j� = H̃

(n)
0,j� − A

(n)
jvn

A
(n)
�vn

H̃
(n)
0,jvn

H̃
(n)
0,�vn

H̃
(n)
0,vnvn

,

H̃
(n+1)
1,ij = H̃

(n)
1,ij − A

(n)
jvn

A
(n)
�vn

H̃
(n)
1,jvn

H̃
(n)
0,�vn

H̃
(n)
0,vnvn

+ H̃
(n)
0,jvn

H̃
(n)
1,�vn

H̃
(n)
0,vnvn

− H̃
(n)
0,jvn

H̃
(n)
0,�vn

H̃
(n)
1,vnvn[

H̃
(n)
0,vnvn

]2 ,

H̃
(n+1)
2,ij = H̃

(n)
2,ij − A

(n)
jvn

A
(n)
�vn

H̃
(n)
2,jvn

H̃
(n)
0,�vn

[
H̃

(n)
0,vnvn

]2 + H̃
(n)
1,jvn

H̃
(n)
1,�vn

[
H̃

(n)
0,vnvn

]2

[
H̃

(n)
0,vnvn

]3 (21)

−A
(n)
jvn

A
(n)
�vn

H̃
(n)
0,jvn

H̃
(n)
2,�vn

[
H̃

(n)
0,vnvn

]2 − H̃
(n)
1,jvn

H̃
(n)
0,�vn

H̃
(n)
1,vnvn

H̃
(n)
0,vnvn

− H̃
(n)
0,jvn

H̃
(n)
1,�vn

H̃
(n)
1,vnvn

H̃
(n)
0,vnvn[

H̃
(n)
0,vnvn

]3

−A
(n)
jvn

A
(n)
�vn

−H̃
(n)
0,jvn

H̃
(n)
0,�vn

H̃
(n)
2,vnvn

H̃
(n)
0,vnvn

+ H̃
(n)
0,jvn

H̃
(n)
0,�vn

[
H̃

(n)
1,vnvn

]2

[
H̃

(n)
0,vnvn

]3 ,

where the indices j and � run from 1 to vn − 1 = 2N − n − 1.
Given the relation H = μI + V and V is a SPDS matrix,

one eigenvalue of H can be zero if μ = 0. During the
renormalization of H̃0,H̃1, and H̃2 as in Eq. (21), H̃

(n)
0,vnvn

are nonzero for n = 0,1,2, . . . ,N − 2. It is only in H̃
(N−1)

that a singular element H̃
(N−1)
0,vN−1vN−1

= 0 appears. This can
be understood similarly to in III. Suppose that there exists
n such that H̃

(n)
0,vnvn

= O(μ1) for 0 � n < N − 1. Then the
determinant of the submatrix B representing the coupling
among v0,v1, · · · ,vn should be O(μ1), as det B ∝ ∏n

�=0 H̃ (�)
v�v�

and H̃
(n)
vnvn

= O(μ1) even if H̃
(�)
v�v�

= O(1) for all 0 � � < n.
This means that the vector space spanned by v0,v1, . . . ,vn

contains the eigenvector of H̃ associated with the zero
eigenvalue for μ = 0, which contradicts the condition that

the eigenvector of V and in turn that of H̃ associated to the
zero eigenvalue has no zero component. Therefore, H̃ (n)

0,vnvn
= 0

should appear only for n = N − 1.
At the last step of decimation, when the last node vN−1 =

N + 1 should be eliminated, its matrix element H̃ (N−1)
vN−1vN−1

be-

comes zero for μ = 0, that is, H̃ (N−1)
vN−1vN−1

(μ) = H̃
(N−1)
1,vN−1vN−1

μ +
H̃

(N−1)
2,vN−1vN−1

μ2 + O(μ3). Using this expansion in Eq. (10), one

can find that H̃
(N)
j� is expanded as

H−1
j� (μ) = H̃

(N)
j� (μ) = H̃

(N)
−1,j�

1

μ
+ H̃

(N)
0,j� + O(μ) (22)

with the coefficient matrices H̃
(N)
−1,j� and H̃

(N)
0,j� evaluated in

terms of H̃
(N−1)

as

H̃
(N)
−1,j� = −A

(N−1)
jvN−1

A
(N−1)
�vN−1

H̃
(N−1)
0,jvN−1

H̃
(N−1)
0,�vN−1

H̃
(N−1)
1,vN−1vN−1

,

(23)

H̃
(N)
0,j� = H̃

(N−1)
0,j� − A

(N−1)
jvN−1

A
(N−1)
�vN−1

{
H̃

(N−1)
1,jvN−1

H̃
(N−1)
0,�vN−1

+ H̃
(N−1)
0,jvN−1

H̃
(N−1)
1,�vN−1

H̃
(N−1)
1,vN−1vN−1

− H̃
(N−1)
0,jvN−1

H̃
(N−1)
0,�vN−1

H̃
(N−1)
2,vN−1vN−1[

H̃
(N−1)
1,vN−1vN−1

]2

}
.

Then, from Eq. (19), the elements of the pseudoinverse of V
are evaluated as

V +
j� = H̃

(N)
0,j�. (24)

The above procedures for computing the exact pseudoin-
verse V + of an N × N SPDS matrix V are summarized in the
following:

(1) Construct a N × N matrix H (0) = μI + V and its
extended matrix H̃ of 2N × 2N using Eq. (4).

(2) Construct a graph G(0) representing H̃ and make its
adjacency matrix A(0).

(3) n ← 0.
(4) Remove the last row and column of H̃

(n)
and update

the elements related to the neighbor nodes of the node vn using

Eq. (21) if n < N − 1 or Eq. (23) for n = N − 1. This yields
H̃

(n+1)
.

(5) Assign a link between every disconnected pair of the
neighbor nodes of vn and eliminate the node vn and its links
in G(n). This yields G(n+1). Remove the last row and column
of A(n) and update the elements related to the neighbor nodes
of vn by using Eq. (11). This yields A(n+1).

(6) If n = N − 1, stop the process, else n ← n + 1 and go
to step 4.
Here we emphasize that before applying this algorithm, the
indices of the matrix H should be rearranged such that the
ordered list of decimated nodes in H̃ is given by vn = 2N −
n. The source code implementing the proposed algorithm is
available in Ref. [38].
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The space and time complexities of the algorithm are as
follows. If the number of neighbors of the decimated nodes is
O(1), each step in the algorithm takes O(1) time and the whole
algorithm will take O(N ) time as steps 4 and 5 are repeated
N times. This implies that the number of nonzero elements
of H is O(N ) throughout the computation and O(N ) space
of memory is sufficient. On the other hand, if the number of
neighbors of the decimated node is of order N and thereby
O(N2) elements should be updated at steps 4 and 5, the
computation time scales as ∼N3. Also, H becomes dense and
O(N2) memory is needed. Therefore the computational cost of
our algorithm depends critically on the network topology such
that the space and the time complexity are O(N ) and O(N )
in the best case and O(N2) and O(N3) in the weakest case,
respectively. It depends also on the order of decimating nodes
while we do not explore this issue systematically here. In the
next section, we investigate the performance of our algorithm
in more detail, focusing on time complexity.

VI. PERFORMANCE OF OUR ALGORITHM IN
COMPUTING THE GMFPT

The major use of our algorithm lies in its ability to compute
a set of arbitrary elements of the exact pseudoinverse of a large
SPDS matrix, which are important in the physics context at
least as described in Sec. IV. Furthermore, its computing time
is much shorter than O(N3) for most matrices, as we will show
in this section, which enables us to apply the algorithm to large
matrices constructed from big data.

To address the performance of the proposed algorithm
specifically, we investigate the computing time T taken to
obtain all the diagonal elements of the symmetric Laplacian
matrix L̄ of diverse networks including artificial and real ones.
As shown in Eq. (15), the set of all the diagonal components
{L̄+

jj |j = 1,2, . . . ,N} indicates the GMFPTs to all nodes, Tj ,
in a network having the symmetric Laplacian matrix L̄.

A. GMFPT from the simulation of random walk

For comparison, let us consider estimating the GMFPT Tj

by performing the simulation of random walk on a given sparse
network of N nodes and L = O(N ) links. The average of the
MFPT for m random walkers starting at arbitrary locations
and arriving at node j gives the ensemble average 〈Tj 〉. The
advantage of the random walk simulation is that the required
memory is only O(N ), much smaller than O(N2) in the
worst case of our algorithm. Concerning the time complexity,
it takes T  〈Tj 〉Nm to obtain all the GMFPT’s {〈Tj 〉|j =
1,2, . . . ,N} from the simulation. The deviation of 〈Tj 〉 from
the exact value Tj scales as Tj − 〈Tj 〉 ∼ 〈Tj 〉/

√
m [34], and

thus the higher accuracy we require, the larger number of
ensembles (random walkers) we need to run. Note that the
algorithm proposed in this work provides the exact values Tj ,
and their higher moments can be also obtained exactly [16].
We simply require that the relative error Tj −〈Tj 〉

〈Tj 〉 should be

statistically less than 1√
〈Tj 〉

, which leads to the requirement

that the number of ensemble should be larger than 〈Tj 〉, i.e.,

m � 〈Tj 〉. The total simulation time is then given by

T ∼ max
j

{〈Tj 〉2}N. (25)

It is known that

max
j

{〈Tj 〉} ∼
{

N2/ds for ds < 2

N for ds > 2
(26)

with ds the spectral dimension of the underlying net-
work [34,39,40]. Therefore the whole simulation time needed
to obtain such accurate ensemble averages 〈Tj 〉 for all j =
1,2, . . . ,N as the relative error being less than 1/

√〈Tj 〉 scales
as

T ∼ Nz, (27)

z =
{

4
ds+1 for ds < 2

3 for ds > 2
. (28)

It is remarkable that the simulation time decreases with the
spectral dimension; A very long simulation is needed for
estimating Tj in networks of low dimensionality. For instance,
T ∼ N5 for ds = 1 and N3 < T < N5 for 1 < ds < 2. Such
long simulations are not available practically for large N . Our
algorithm gives the exact values of {Tj } within O(N3) time
even in the worst case. Moreover, in contrast to the simulation
time in Eq. (28), the computing time T of the algorithm turns
out to be short for networks of low dimensionality.

B. Computing time for GMFPT in model networks

The performance of our algorithm varies with the network
topology. In Fig. 2 we present the computing time T of the
GMFPTs as a function of the number of nodes N for various
model networks such as the Sierpinski gasket (df = ln 3/ ln 2
and ds = 2 ln 3/ ln 5) [41], two-dimensional (2D) percolation
clusters at the critical point(df = 91/48 and ds = 1.32) [42]),
the Barabási-Albert (BA) model networks with a power-law
degree distributions [43] (df → ∞,ds = 4/3 for 〈k〉 = 2 and
df → ∞,ds → ∞ for 〈k〉 > 2) [37,44,45] and the (1,2)-
flower networks (df = ∞,ds = 2 ln 3/ ln 2) [46–48], where
df (ds) is the fractal (spectral) dimension. If we measure
the scaling exponent z introduced in Eq. (27) also for
the computing time T of our algorithm in each network, the
exponent z turns out to be different as shown in Fig. 2.

We can classify those studied networks according to their
fractal dimensions or the spectral dimensions. The Sierpinski
gasket and the 2D critical percolation cluster have finite fractal
dimensions, and other networks are not fractal, having infinite
fractal dimensions. The spectral dimension is infinite in the BA
model networks with 〈k〉 = 4; however, it is finite between 1
and 2, for other networks.

The Sierpinski gasket and the 2D critical percolation cluster
have their node degree bounded. Given such finite node
degrees, the computing time of steps 4 and 5 at each iteration
in the algorithm in Sec. V is expected to be O(1) unless
many fill-ins are generated during renormalization. The scaling
exponent z in Eq. (27) is indeed z = 1.7 and z = 1.3 for the
Sierpinski gasket and the 2D percolation cluster, respectively,
in Fig. 2(a). Both are far smaller than z = 3 of the worst

043303-6



FAST ALGORITHM FOR RELAXATION PROCESSES IN . . . PHYSICAL REVIEW E 90, 043303 (2014)

FIG. 2. (Color online) Scaling of the computing time T for the
generalized MFPT in model networks of N nodes. The model
networks are (a) the Sierpinski gasket and 2D critical percolation
cluster and (b) the BA model network with the mean degree 〈k〉 = 2
and 〈k〉 = 4 and (1,2)-flower networks. For comparison, we also draw
the result for the BA model (�) with the same mean degree 〈k〉 = 4
but using the conventional eigendecomposition. We have not shown
the scaling of computing times obtained by using the conventional
method for other cases but the BA model with 〈k〉 = 4 because they
all behave as T ∼ O(N3).

case. This suggests that it affects the time complexity of our
algorithm whether the degree is bounded or not. The Sierpinski
gasket is constructed recursively and shows the self-similarity
of fractal structures. The minimum-degree node is the oldest
one in the Sierpinski gasket, which generates fill-ins. The
structure of the 2D percolation cluster is not deterministic but
random due to the removal of randomly selected sites during
the course of its construction from a regular 2D lattice. The
shorter computing time T in the percolation cluster implies
that a smaller number of fill-ins are generated than in the
Sierpinski gasket by the minimum-degree ordering.

In Fig. 2(b), we present the computing time of the GMFPT
in two scale-free (SF) networks: the BA model networks with
〈k〉 = 2 and 4 and the (1,2)-flower networks. They are not
fractal. The node degrees are not bounded and therefore the
computing time of steps 4 and 5 at each iteration can be long.
The scaling exponent z of the computing time is expected to
be larger than the networks with bounded degrees. However,
T is the shortest for the (1,2)-flower networks among the four

classes of networks in Fig. 2. On the contrary, the BA model
networks with 〈k〉 = 2L/N = 4 show the longest computing
time. The origin of such a striking difference can be found in
their network structures. The flower networks are constructed
in a recursive way with the youngest node having the minimum
degree. Eliminating the minimum-degree nodes is thus exactly
the reverse of the original construction process and does
not create any fill-in. Furthermore, every node has only two
neighbors at the moment of elimination, which leads to the
almost linear scaling (z = 1) of the computing time as shown
in Fig. 2(b). On the other hand, the BA model networks are
random networks displaying power-law degree distributions,
for which many fill-ins can be created during renormalization.
These BA networks with 〈k〉 = 4 become almost completely
connected already in the early stage of evolution, and thus steps
4 and 5 take O(N2) time at each iteration, leading to z = 3, the
largest value of z possible in our algorithm. It should be also
noted that the BA networks with 〈k〉 = 2 have the computing
time scale in a similar way to that of the (1,2)-flower networks,
much shorter than that of the BA networks with 〈k〉 = 4.
Their difference is that a BA network with 〈k〉 = 2 is of a
tree structure and has a finite spectral dimension (ds = 4/3) in
contrast to the BA networks with 〈k〉 = 4 that have loops and
ds → ∞.

In spite of such varying behaviors of the computing time
from network to network, the performance of our algorithm
in computing the GMFPT is better than that of the the
random-walk simulation in all studied networks. Interestingly,
in contrast to the simulation time, the computing time of the
algorithm tends to be shorter in networks of low dimensionality
than those of high dimensionality, characterized by df and
ds , meaning that the algorithm is particularly useful for
the networks of low dimensionality. We also observe that
the structural characteristics other than dimensionality, such
as hierarchy and randomness, and the ordering scheme for
eliminating nodes may affect the computing time and even
the scaling exponent z. It has been shown that there exists
an ordering which provides the upper bound of the number
of fill-ins less than O[N1/4(log N )7/2] and therefore T ∼
N5/4(ln N )7/2 for a given sparse matrix [30]. Therefore the
computing time can be reduced drastically if the optimal
ordering can be found and applied. Various ordering schemes
other than the minimum-degree one can be found in, e.g.,
Ref. [49].

The conventional eigendecomposition method based on the
QR algorithm [17] can be applied to obtain the GMFPT if the
size of the Laplacian matrix is not so large. The conventional
method takes O(N3) time, whether the matrix is sparse or
not [17]. Its computing time for the BA model networks with
〈k〉 = 4 is presented for N � 104 in Fig. 2(b). While our
algorithm shows the worst performance, O(N3), for the BA
networks with 〈k〉 = 4 in Fig. 2, it is shown to be better than the
conventional method with the ratio of the computing times of
the two algorithms Tours

Tconv.
 0.03 ± 0.015 almost constant

in our simulation range 800 � N � 12 800. It is obvious
that our algorithm outperforms the conventional method for
other networks, for which our algorithm shows O(Nz) time
complexity with z < 3 but the conventional one shows O(N3)
one. Given that the computing time of the conventional method
is 107 ms (2.7 h) for the BA networks with 〈k〉 = 4 and
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FIG. 3. (Color online) The computing time T (in seconds) for the
GMFPT in the modified BA networks of N = 104 and 〈k〉 = 4 with
the clustering coefficient controlled by mt . The larger mt is, the larger
the clustering coefficient is. For each given value of mt , 10 networks
are sampled and their computing times are plotted.

N = 104, one can see that it amounts to 2700 h ≈ 115 d
for N = 105, and thus the conventional method does not work
for the BA networks with N = 105.

We should mention that all the computations, whatever
algorithms we use, and all the simulations have been performed
on the same identical computer equipped with an Intel i7,
3.4 Ghz CPU, and 8 GB memory. In compiling the source
code C++, we switched on the gcc’s compiler options “-O3 -
ffast-math” for optimization. In particular, for the computation
by the conventional eigendecomposition method, we used the
implementation of the Eigen library, which is believed to be
one of the most efficient linear algebra library [50].

Finally, we also investigate the dependence of network clus-
tering on the computing time of our algorithm. The clustering
coefficient of a network [51] quantifies the likelihood that two
neighbors of a node are also connected to each other. The
number of fill-ins is therefore expected to be smaller for a
network with high clustering than that with low clustering
if both have the same number of nodes and links in the
beginning. For a variant of the BA model with a parameter
mt controlling the clustering coefficient [52], the computing
time of the GMFPT is indeed decreasing with increasing the
clustering coefficient (mt ) in the model network of N = 104

nodes and 〈k〉 = 4 as shown in Fig. 3.

C. Computing time for GMFPT in real networks

The scaling behaviors of the computing time, T ∼ O(Nz)
with z < 3, identified in most of the studied artificial networks,
suggest that our algorithm can be useful in analyzing the Lapla-
cian matrices of large real-world systems. We constructed the
Laplacian matrices L̄ of one e-mail communication network,
the subgraphs of the World Wide Web (WWW), and two
road networks in the United States, all archived in the
Stanford Large Network Dataset Collection [1]. These selected
networks commonly have a very large number of nodes, N

ranging between 2 × 105 and 2 × 106 and the mean degree 〈k〉
between 2 and 16. The properties of those real-world networks
and the computing time of the GMFPTs {Tj } by our algorithm
are shown in Table I. Most importantly, we found that our
algorithm can obtain all the GMFPTs in 5 min for an e-mail

TABLE I. The number of nodes (N ), the number of links (L), the
mean degree 〈k〉 = 2L/N , the clustering coefficient (C.C.), the trace
of the symmetric Laplacian matrix Tr L̄+

/N , and the computing time
(T ) for the GMFPT are given for each network.

Network N L 〈k〉 C.C. TrL̄+
/N T (sec)

Email-EuAll 224 832 339 925 3.02 0.07 21.3529 87.5
web-Stanford 255 265 1 941 926 15.2 0.60 18.7769 2833
web-NotreDame 325 729 1 090 108 6.69 0.23 39.5499 6608
roadNet-CA 1 957 027 2 760 388 2.82 0.05 916.898 351
roadNet-TX 1 351 137 1 879 201 2.78 0.05 862.147 165

network and road networks and in 1 or 2 h for the WWW.
Such fast computation of the pseudoinverse of matrices of
size millions by millions strongly suggests that our algorithm
can be applied to the analysis of diverse big-data systems
demanded increasingly in this era.1

Also, it is interesting that the computing times T are
scattered seemingly regardless of the size N ; the computing
time is shorter for road networks of more than one million
nodes than for the WWW consisting of less than a half million
nodes. This is not explained by their clustering coefficients,
which would predict the longer computing time for the
networks of low clustering as in Fig. 3. The trace of the
pseudoinverse Tr L̄+

/N is related to the GMFPT by Eq. (15)
and is given in Table I. The road networks show larger values
of Tr L̄+

/N than the WWW. From Eq. (26), we can conjecture
that the spectral dimensions ds of the road networks are smaller
than those of the WWW and suspect that the smaller values
of ds may be related to such a short computing time in the
road networks. We have already seen that the computing time
is short in the model networks of low dimensionality.

VII. SUMMARY AND DISCUSSION

In this work we proposed an algorithm that computes a
set of arbitrary elements of the exact pseudoinverse of a
class of singular matrices, which we call the SPDS matrices.
This class of matrices plays the role of the time-evolution
operators in the Markov chains satisfying the detailed-balance
condition, and the elements of their pseudoinverse contain
important information such as the MFPT and the correlation
function. Therefore fast and efficient algorithms for computing
the elements of the pseudoinverse of the SPDS matrices can
be greatly useful for analyzing the dynamics of large complex
systems in this big-data era. Our algorithm consists of the
steps of decimating the variables in the Gaussian integral
and renormalizing the Hamiltonian matrix repeatedly. The
algorithm runs very fast, occupying little memory space in
many cases, which enables us to apply the algorithm to large

1We also tried but failed to obtain the GMFPTs in the collaboration
network “com-DBLP” of 334 863 nodes and 〈k〉 = 5.53, owing to
insufficient memory for the increasing number of nonzero elements
during renormalization. As our algorithm works for larger networks,
we expect that the optimal ordering for this network, other than the
minimum-degree ordering, should enable the computation.
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singular matrices, e.g., of size millions by millions, capturing
the dynamics of large complex systems.

The optimal order of decimating nodes, once found, would
greatly reduce the computing time of our algorithm, which
needs further investigation for practical applications. We have
shown that our algorithm allows us to obtain the diagonal ele-
ments of the pseudoinverse of the Laplacian matrices of real-
world networks such as the WWW, e-mail communication, and
road networks of millions of nodes within minutes or a few
hours, which suggests strongly the potential of our algorithm
in analyzing the relaxation processes in big-data systems.
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APPENDIX: A FASTER ALGORITHM COMPUTING TrV +

For computing quantities like the roughness w defined in
Eq. (17), only Tr V + is needed. In such a case, the auxiliary
variables |J 〉 are not needed nor is the extended matrix H̃ ,
which greatly reduces the running time of the algorithm.

Let us consider a SPDS matrix V and the coupling matrix
H(μ) = μI + V . Since Tr V + ≡ ∑N

�=2
1
λ�

with λ� being the

eigenvalues of V , one can use the expansion of det H as

det H =
N∏

n=1

(μ + λn)

= aNμN + aN−1μ
N−1 + · · · + a2μ

2 + a1μ (A1)

with

Tr V + = a2

a1
. (A2)

Considering the application of the procedures in Sec. V to H ,
not to H̃ , one finds that

det H =
N−1∏
n=0

H (n)
vnvn

. (A3)

Using the expansion of H (n)
vnvn

in terms of μ as

H (n) =
{

H (n)
0 + H (n)

1 μ + O(μ2) (0 � n < N − 1)

H (N−1)
1 μ + H (N−1)

2 μ2 + O(μ3) (n = N − 1)

(A4)

one can obtain a1 and a2 in Eq. (A1). Finally, Tr V + is
evaluated as

Tr V + =
N−2∑
n=0

H
(n)
1,vnvn

H
(n)
0,vnvn

+ H
(n)
2,vN−1vN−1

H
(n)
1,vN−1vN−1

. (A5)
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