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The quenched Kardar-Parisi-Zhang equation with negative nonlinear term shows a first order pinning-
depinning ~PD! transition as the driving forceF is varied. We study the substrate-tilt dependence of the
dynamic transition properties in 111 dimensions. At the PD transition, the pinned surfaces form a facet with
a characteristic slopesc as long as the substrate tiltm is less thansc . Whenm,sc , the transition is discon-
tinuous and the critical value of the driving forceFc(m) is independent ofm, while the transition is continuous
andFc(m) increases withm whenm.sc . We explain these features from a pinning mechanism involving a
localized pinning center and the self-organized facet formation.@S1063-651X~99!12602-3#

PACS number~s!: 05.40.2a, 64.60.Ht, 68.35.Fx

The pinning-depinning~PD! transition by an external
driving force has been of much interest recently. Typical
examples are interface growth in porous media under exter-
nal pressure@1#, dynamics of a domain wall under random
fields @2,3#, dynamics of a charge density wave under an
external field@4#, and vortex motion in superconductors un-
der external current@5,6#. In the PD transition, there exists a
critical valueFc of the driving forceF, such that whenF
,Fc , the interface~or charge, or vortex! is pinned by dis-
order, while forF.Fc , it moves with a constant velocityv.
The velocityv plays the role of order parameter in the PD
transition, which typically behaves as

v;~F2Fc!u. ~1!

Recently, several stochastic models for the PD transition
of interface growth in disordered media have been intro-
duced@7,8#. It is believed that the models in 111 dimen-
sions are described by the quenched Kardar-Parisi-Zhang
~QKPZ! equation for the surface heighth @9#,

] th5n]x
2h1

l

2
~]xh !2

1F1h~x,h !, ~2!

where n and l are constants and the noiseh depends on
position x and heighth with the properties of̂ h(x,h)&50
and ^h(x,h)h(x8,h8)&52Dd(x2x8)d(h2h8). The QKPZ
equation forl.0 exhibits a PD transition withu;0.64 @8#.
The surface atFc can be described by the directed percola-
tion ~DP! cluster spanned perpendicularly to the surface
growth direction in 111 dimensions. The roughness expo-
nenta of the interface is given as the ratio of the two cor-
relation length exponents of the DP cluster, that is,a
5n' /n i'0.63@7,8#. The coefficientl of the nonlinear term
renormalizes tolr , which scales aslr;(F2Fc)

2f(f
;0.64) @9#. This is obtained by measuring the substrate-tilt
dependence of the velocity

v~F,m !;v~F,0!1

lr

2
m2, ~3!

wherem is the tilt of the initial substrate.

The origin of the nonlinear term in the QKPZ equation is
different from that of the thermal KPZ equation with noise
h(x,t) @10#. For the quenched case, the nonlinear term is
induced by the anisotropic nature of disordered media, while
for the thermal case, it is induced by the lateral growth effect
and is proportional to the velocity of the interface which
vanishes at the threshold of the PD transition@11#. In par-
ticular, Tanget al. @10# showed in the context of vortex dy-
namics that the effective pinning strength takes the form
(Dh1s2Dx)

2/3/(11s2)2/3 where s5]xh is the local slope
andDh

1/2 andDx
1/2 are the amplitudes of random forces in the

h andx directions, respectively. When the medium is aniso-
tropic, DhÞDx in general and the effective pinning strength
depends on the local slope and generates the nonlinear term
in Eq. ~2! with l}(Dh2Dx). Therefore whenDh,Dx i.e.,
when the surface is driven along the easy direction,l is
negative.

The negative QKPZ equation, i.e., the QKPZ equation
with negativel, is studied in@12#. In marked contrast to the
l.0 case, the negative QKPZ equation describes a first or-
der transition in the sense that the velocityv shows a discon-
tinuous jump at the PD transition. This is shown in the inset
of Fig. 1. At the PD transition, the pinned surface takes the
shape of a mountain with a constant slope as shown in Fig. 1.
To elucidate the transition mechanism of the negative QKPZ
equation, we study in this work the substrate-tilt dependence
of the dynamic properties. We performed the direct numeri-
cal integration of Eq.~2! in one dimension with the dis-
cretized version used in@13,14#:

h~x,t1Dt !5h~x,t !1DtH h~x21,t !1h~x11,t !

22h~x,t !1

l

8
$h~x11,t !2h~x21,t !%2

1F1j„x,@h~x,t !#…J , ~4!

where @•••# denotes the integer part, andj is uniformly
distributed in@2a/2,a/2#, wherea5(10)2/3 is selected. We
chooseDt50.01 and use the initial conditionh(x,0)5mx
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and the helicoidal boundary conditionh(L1i,t)5h(i,t)
1Lm. Numerical results are discussed below in detail.

First, we measure the critical driving forceF0 and the
facet slope atm50 ~no tilt! for several values ofl.F0 is
numerically defined as the value ofF at which no surface in
the sample of up to 200 configurations is pinned until a large
fixed timet0;106Dt. Just belowF0 , at least a finite fraction
of the ensemble is pinned att0 showing the facet morphol-
ogy. The facet slope is determined by sample averages of
100 configurations. Measured values ofF0 andsc are shown
in Table I for l520.5,21,21.5, and22. Also shown are
v0 , the velocity atF0 , i.e., the velocity discontinuity at the
first order PD transition.

Next, we examine the tilt dependence of the surface
growth. In general, one expects that the critical driving force
Fc(m) is m dependent withFc(0)[F0 . For small tilts, the
first order nature of the PD transition and the morphology of
the pinned surfaces at the transition do not change. More-
over, within our numerical accuracies, both the critical driv-
ing force and the critical facet slope are independent of the
tilt m. We find this is so as long asm is less than a critical tilt
mc which is essentially the same as the facet slopesc . That
is, Fc(m,mc)5F0 . When m becomes larger thansc , the
surfaces at the pinned state cannot form a facet with slopesc
by the helicoidal boundary condition and instead align along

the substrate. In this case, the critical driving forceFc(m)
has to increase withm to compensate for the tilt force. The
schematic phase diagram in theF2m plane is shown in Fig.
2~a!. The positively moving phase is bounded by a horizontal
line at F5F0 for m,mc and a smooth curveFc(m) for m
.mc . The transition to thev,0 phase@the lower curve in
Fig. 2~a!# is the continuous PD transition of the directed
percolation universality class@9,10#. This region is better
understood by rewriting the QKPZ equation in terms ofh8

[2h as

TABLE I. Measured values of the critical driving forceF0 for
m,mc , the facet slopesc , the velocity discontinuityv0 , the ef-
fective nonlinear parameterlr , and the critical substrate tiltmc .
The data with † obtained from Eq.~6! and ‡ from Eq.~8!, respec-
tively.

l F0 sc v0
† lr

† mc
‡

20.5 1.91 2.08 1.20 20.62 2.11
21.0 1.99 1.60 1.30 21.12 1.64
21.5 2.06 1.40 1.35 21.52 1.39
22.0 2.09 1.26 1.42 21.89 1.24

FIG. 1. Temporally evolved surface configurations of the QKPZ
equation with l520.5 in 111 dimensions at the pinning-
depinning transition point. Each curve is the surface profile at con-
stant time intervals. The facet slope issc'2.1. Inset: The velocity
versus force to show the first order transition. The data are obtained
from a flat substrate withl520.5. The solid line is a guide to the
eye.

FIG. 2. ~a! The phase diagram in theF-m plane.~b! The veloc-
ity versus the substrate tiltm for various driving forcesF for l5

20.5. Different symbols mean different forces~upper data are for
larger force!. The data on the bottom (L) are for the critical force
F5F0 , each of which corresponds to the velocity discontinuity
dv(m) of the first order transition for eachm. ~c! Three dimensional
plot of the velocity versus substrate tiltm and external forceF for
the case ofl520.5.

PRE 59 1571FACET FORMATION IN THE NEGATIVE QUENCHED . . .



] th85n]x
2h82

l

2
~]xh8!2

2F1h~x,h8!. ~5!

The above equation implies that the negative QKPZ equation
with negativeF is equivalent to the positive QKPZ equation
with positiveF and vice versa. The negative velocity phase
in theF.0 region of Fig. 2~a! can be understood as a result
of the positive QKPZ equation driven by a negative force
which is not strong enough to overcome the effect of the
positively driving nonlinear term. We confine our discussion
to the upper curve of Fig. 2~a! below.

A typical data set for the velocity as a function ofF andm
in the positively moving phase is shown in Fig. 2~b!, while
Fig. 2~c! shows a three dimensional plot ofv versusF andm.
At F5F0 and for m,mc ,v exhibits a discontinuous jump
by dv(m). The lowest data in Fig. 2~b! show this. Since
dv(m) vanishes atm5mc , the point (F5F0 ,m5mc) may
be regarded as a tricritical point in analogy with the equilib-
rium critical phenomena. Following@9#, we measurelr by
fitting the curvesv(F,m) to Eq. ~3! for small m. Since it is
insensitive toF, we define lr as that obtained fromF
5F0 ;

dv~m ![v~F0 ,m !5v02

ulru

2
m2

1•••. ~6!

The fifth column of Table I showslr . For F larger than but
close toF0 ,v(F,0) is linear inF. This together with Eq.~6!
allows one to approximatev(F,m) as

v~F,m !5v01A~F2F0!2

ulru

2
m2

1•••, ~7!

whereA is a constant. Settingv50 in Eq.~7!, one obtains an
approximate form forFc(m) as

Fc~m !;F01

ulru

2A
~m2

2mc
2!, ~8!

with mc5(2v0 /ulru)
1/2. However, for largerm, v deviates

from Eq.~7! and higher order terms inm become significant.
To find Fc(m) and mc more accurately, we fit the velocity
curve for largem and estimateFc(m) independently from
the condition ofv„Fc(m),m…50. This is justified sinceu
51 generically formÞ0 @10#. In Fig. 3~a! we show the
values ofFc(m) obtained in this way. The relationFc(mc)
5F0 then gives an independent estimate ofmc which is also
shown in Table I. Note thatmc obtained in this way agrees
well with the facet slopesc as mentioned above. The value
of mc itself strongly depends onl and could be fitted to a
power law asmc;ulu20.37 as shown in Fig. 3~b!. Thus when
l50,mc becomes infinite, which recovers the previous result
that the critical forceFc(m) is independent of the substrate
tilt in the quenched Edwards-Wilkinson universality class
@9,10#. On the other hand,ulru scales asulu0.8 in the inset of
Fig. 3~b! and hencemc;ulu20.37;ulru

20.46. This is to be
compared with the zeroth order expressionmc;ulru

20.5 in
Eq. ~8!.

In order to understand the origin of the discontinuous PD
transition forl,0, we examine the noise distribution on the
perimeter sites of critically pinned surfaces. It is found that

the noise strengths around the site at the valley in Fig. 1 are
relatively small, corresponding to large pinning strengths.
Meanwhile, whenl,0, surfaces tend to form a flat facet to
make the term (l/2)(]xh)2 negatively large, leading to a
large pinning strength. However, the curvature force¹2h is
almost zero on the hillside, but is positive at the valley. Thus
the sites around the valley are pinned by balancing the driv-
ing forces due to the curvature and the external forceF with
the pinning forces due to the noise and the nonlinear term.
Once the sites around the valley are pinned, the stable slope
sc of the facet is selected in a self-organized way: Suppose
that a surface is formed with a facet of slopes,sc . Then the
velocity of the sites on the hillside would be positive accord-
ing to Fig. 2~b!. The pinning strength due to (l/2)s2 is not
strong enough to resist the external force, and the sites on the
hillside move upward, and tend to make the slope of the
facet larger. When the slope becomes larger thansc , how-
ever, the nonlinear term is too strong, and the sites on the
hillside move downward, reducing the slope. Thus the slope
sc becomes stable, and surfaces form a facet with the slope
sc as shown in Fig. 1. Since the surface pinning is initiated at
the sites around the valley, once the pinning site is broken by
an external force which is slightly bigger thanF0 , the sur-
face grows with a finite velocity, leading to the first order
transition. On the other hand, whenl.0, the nonlinear term
is positive, and enhances the external driving force. Thus
surfaces do not form a facet. The surface pinning is mainly
due to local noise strengths as can be pictured in the DP
cluster. Thus the pinned sites are not localized but scattered
all over the system, so that the PD transition is continuous.

It would be interesting to observe the tilt dependence of
the negative quenched KPZ equation from a stochastic

FIG. 3. ~a! The depinning criticalFc(m) versus the substrate tilt
m for several values ofl. ~b! Estimated numerical data for the
critical tilt mc versusl. The broken linemc;ulu20.37 is a least
squares fit. Inset: Thel dependence oflr showingulu;ulru

0.8.
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model. The Sneppen A model@12,15# is known to belong to
the negative QKPZ universality class. In the Sneppen A
model, the restricted solid-on-solid~RSOS! condition is im-
posed on the height difference of neighboring columns. Be-
cause of this restriction, the surface tilt cannot be larger than
a maximum value. If the maximum tilt is less than the criti-
cal slopesc(l) of the stochastic model, the tricritical behav-
ior would not be observed in simulations because the coeffi-
cient l is not controllable. Recently a PD transition similar
to the negative QKPZ equation is found in a seemingly dif-
ferent system, the driven Frenkel-Kontorova model@16#,
where the PD transition is also discontinuous and the dis-
placement at the pinned state looks like Fig. 1. However, the
tricritical behavior has not been studied yet in this system.

In summary, we have investigated the tilt-dependent be-
havior of the negative quenched QKPZ equation. We ob-

served and explained that there exists a characteristic sub-
strate tilt mc such that the PD transition is discontinuous
~continuous! when the substrate tiltm is less~greater! than
mc . The characteristic tiltmc is found to be the same as the
facet slopesc of the critically pinned surfaces which are
formed in a self-organized way and depends on the nonlinear
term coefficientl asmc;ulu20.37. Moreover, the threshold
force Fc(m) for the PD transition is independent ofm for
m,mc and increases with increasingm for m.mc . The
effective nonlinear term coefficientlr remains finite asF
approachesF0 .
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