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Facet formation in the negative quenched Kardar-Parisi-Zhang equation
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The quenched Kardar-Parisi-Zhang equation with negative nonlinear term shows a first order pinning-
depinning (PD) transition as the driving forc& is varied. We study the substrate-tilt dependence of the
dynamic transition properties in+11 dimensions. At the PD transition, the pinned surfaces form a facet with
a characteristic slops; as long as the substrate ftittis less thars,. Whenm<s., the transition is discon-
tinuous and the critical value of the driving forEg(m) is independent afn, while the transition is continuous
andF.(m) increases withm whenm>s.. We explain these features from a pinning mechanism involving a
localized pinning center and the self-organized facet formafi®h063-651X99)12602-3

PACS numbgs): 05.40—a, 64.60.Ht, 68.35.Fx

The pinning-depinning(PD) transition by an external The origin of the nonlinear term in the QKPZ equation is
driving force has been of much interest recently. Typicaldifferent from that of the thermal KPZ equation with noise
examples are interface growth in porous media under exters(x,t) [10]. For the quenched case, the nonlinear term is
nal pressurgl], dynamics of a domain wall under random induced by the anisotropic nature of disordered media, while
fields [2,3], dynamics of a charge density wave under anfor the thermal case, it is induced by the lateral growth effect
external field4], and vortex motion in superconductors un- and is proportional to the velocity of the interface which
der external currer|,6]. In the PD transition, there exists a vanishes at the threshold of the PD transitjdd]. In par-
critical valueF of the driving forceF, such that wherF ticular, Tanget al. [10] showed in the context of vortex dy-
<F., the interface(or charge, or vortexis pinned by dis- namics that the effective pinning strength takes the form
order, while forF>F, it moves with a constant velocity.  (An+5%A,)%¥(1+5%)%® where s=a,h is the local slope

The velocityv plays the role of order parameter in the PD andA? andA}? are the amplitudes of random forces in the

transition, which typically behaves as h andx directions, respectively. When the medium is aniso-
) tropic, A, # A, in general and the effective pinning strength
v~(F—=F¢)" (1) depends on the local slope and generates the nonlinear term

) . in Eq. (2) with Nc(Ap—A,). Therefore whem\ <A, i.e.,
Recently, several stochastic models for the PD transitiofynen the surface is driven along the easy directionis

of interface growth in disordered media have been imro'negative.
d_uced[7,8]. It is_believed that the models in41 dime_n- The negative QKPZ equation, i.e., the QKPZ equation
sions are described by the quenched Kardar-Parisi-Zhangjith negativen, is studied if12]. In marked contrast to the
(QKPZ) equation for the surface height[9], A>0 case, the negative QKPZ equation describes a first or-

N der transition in the sense that the velocitghows a discon-

dth=v@2h+= (9h)2+F + n(x,h), (2)  tinuous jump at the PD transition. This is shown in the inset
2 of Fig. 1. At the PD transition, the pinned surface takes the
_ shape of a mountain with a constant slope as shown in Fig. 1.

where v and A are constants and the noisedepends on  Tq g|ycidate the transition mechanism of the negative QKPZ
positionx and heighth with the properties of »(x,h))=0  equation, we study in this work the substrate-tilt dependence
and(7(x,h)n(x',h"))=2D &(x~x")8(h—h"). The QKPZ  of the dynamic properties. We performed the direct numeri-
equation forA>0 exhibits a PD transition witi#~0.64[8].  ¢a| integration of Eq.(2) in one dimension with the dis-
The surface aF, can be described by the directed percola-cretized version used 3,14
tion (DP) cluster spanned perpendicularly to the surface
growth direction in %1 dimensions. The roughness expo-
nenta of the interface is given as the ratio of the two cor-  h(X,t+At)=h(x,t)+At
relation length exponents of the DP cluster, that ds,
=v, /v=~0.63[7,8]. The coefficient of the nonlinear term A 5
renormalizes to\,, which scales as\,~(F—F¢) %(¢ —2h(x,H)+ g{h(x+1H)—h(x=1}
~0.64) [9]. This is obtained by measuring the substrate-tilt
dependence of the velocity

h(x—1t)+h(x+1})

+F+EX,[h(x,0)]), (4)
N, )
v(F,m)~uv(F,0+ 2 m, ) Where[---] denotes the integer part, andis uniformly
distributed in[ —a/2,a/2], wherea=(10)?® is selected. We
wherem is the tilt of the initial substrate. chooseAt=0.01 and use the initial conditioh(x,0)=mx
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FIG. 1. Temporally evolved surface configurations of the QKPZ
equation with A\=—0.5 in 1+1 dimensions at the pinning-
depinning transition point. Each curve is the surface profile at con-
stant time intervals. The facet slopesg=2.1. Inset: The velocity
versus force to show the first order transition. The data are obtained
from a flat substrate with = —0.5. The solid line is a guide to the

eye.

and the helicoidal boundary condition(L+i,t)=h(i,t)
+Lm. Numerical results are discussed below in detail.

First, we measure the critical driving forde, and the
facet slope am=0 (no tilt) for several values ok.F is
numerically defined as the value Bfat which no surface in
the sample of up to 200 configurations is pinned until a large
fixed timet,~ 10PAt. Just belowF, at least a finite fraction
of the ensemble is pinned & showing the facet morphol-
ogy. The facet slope is determined by sample averages of
100 configurations. Measured valuesFgf ands, are shown
in Table | forA=-0.5-1,—1.5, and— 2. Also shown are
v, the velocity atFq, i.e., the velocity discontinuity at the
first order PD transition.

Next, we examine the tilt dependence of the surface
growth. In general, one expects that the critical driving force
F.(m) is m dependent with,(0)=F,. For small tilts, the
first order nature of the PD transition and the morphology of
the pinned surfaces at the transition do not change. More-
over, within our numerical accuracies, both the critical driv-
ing force and the critical facet slope are independent of the FIG. 2. (a) The phase diagram in ttem plane.(b) The veloc-

tilt m. We find this is so as long asis less than a critical tilt
m, which is essentially the same as the facet slgpeThat
is, Fc(m<m,)=F,. Whenm becomes larger thas;, the
surfaces at the pinned state cannot form a facet with dgpe

by the helicoidal

boundary condition and instead align alon
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the case ol =—0.5.

TABLE |. Measured values of the critical driving fordg, for
m<m,, the facet slope;, the velocity discontinuitw,, the ef-

fective nonlinear parametex,, and the critical substrate tifn,.
The data with T obtained from E¢6) and f from Eq(8), respec-

tively.

A Fo Se vy A m?
-05 1.91 2.08 1.20 -0.62 211
-1.0 1.99 1.60 1.30 -1.12 1.64
-15 2.06 1.40 1.35 —-1.52 1.39
-2.0 2.09 1.26 142 -1.89 1.24

ity versus the substrate tith for various driving forces= for A=
—0.5. Different symbols mean different forcagoper data are for
larger forcg. The data on the bottomX) are for the critical force
F=F,, each of which corresponds to the velocity discontinuity
Sv(m) of the first order transition for eaah. (c) Three dimensional
gl)lot of the velocity versus substrate titt and external forcé& for

the substrate. In this case, the critical driving foregm)
has to increase witm to compensate for the tilt force. The
schematic phase diagram in the- m plane is shown in Fig.
2(a). The positively moving phase is bounded by a horizontal
line atF=F, for m<m, and a smooth curvé_(m) for m
>m.. The transition to the» <0 phasdthe lower curve in
Fig. 2(a)] is the continuous PD transition of the directed
percolation universality clasg9,10]. This region is better
understood by rewriting the QKPZ equation in termshof
=—-has
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, o )\ s , 5 T T T |xx=_2‘0|
ah'=vifh' = 5 (ah")?=F +n(x,h"). (5) sk (@) i |
4+ )g‘ 4
The above equation implies that the negative QKPZ equation £ A=15 4

with negativeF is equivalent to the positive QKPZ equation 75‘3'5 }g‘x ++*+>»=—1.0

with positive F and vice versa. The negative velocity phase ;_63 I XZX +++++ i
in the F>0 region of Fig. 2a) can be understood as a result 251 &t 7
of the positive QKPZ equation driven by a negative force S L L L LT L TP SO
which is not strong enough to overcome the effect of the L |
positively driving nonlinear term. We confine our discussion L = X )
to the upper curve of Fig.(2) below. ) 05 1 15 2 25 3

A typical data set for the velocity as a functionfndm — : m :

in the positively moving phase is shown in Figh2 while 2P (b) — 1
Fig. 2(c) shows a three dimensional plotwfversus- andm. b o i .
At F=F, and form<m;,v exhibits a discontinuous jump N ‘i r -~ 1 ]
by sv(m). The lowest data in Fig.(B) show this. Since i : = a

dv(m) vanishes am=mc, the point €=Fo,m=m,) may g1 In(-) i
be regarded as a tricritical point in analogy with the equilib- 15| ° .
rium critical phenomena. Followinf], we measure\, by ik - 4
fitting the curvewv (F,m) to Eq. (3) for smallm. Since itis [ e ..
insensitive toF, we define\, as that obtained fronf 2 ]
=Fo; ! 05 : s : 25

A *
ov(m=v(Fg,m)=vo— Trm2+ e (6) FIG. 3. (a) The depinning criticaF .(m) versus the substrate tilt

m for several values of\. (b) Estimated numerical data for the
critical tilt m, versus\. The broken linem,~|\| %% is a least

The fifth column of Table | shows, . ForF larger than but i ! 0.8
squares fit. Inset: The dependence af, showing|\|~|\,|%.

close toFg,v(F,0) is linear inF. This together with Eq(6)
allows one to approximate(F,m) as

IN]

2
—mPt---,
2

the noise strengths around the site at the valley in Fig. 1 are
relatively small, corresponding to large pinning strengths.
Meanwhile, when\ <0, surfaces tend to form a flat facet to
make the term X/2)(9,h)? negatively large, leading to a
large pinning strength. However, the curvature fo¥c is
almost zero on the hillside, but is positive at the valley. Thus
the sites around the valley are pinned by balancing the driv-
ing forces due to the curvature and the external féraeith

the pinning forces due to the noise and the nonlinear term.
Once the sites around the valley are pinned, the stable slope
s. of the facet is selected in a self-organized way: Suppose
that a surface is formed with a facet of slogpes.. Then the
velocity of the sites on the hillside would be positive accord-
ing to Fig. ab). The pinning strength due to\(2)s? is not
strong enough to resist the external force, and the sites on the
hillside move upward, and tend to make the slope of the
facet larger. When the slope becomes larger thanhow-
ever, the nonlinear term is too strong, and the sites on the
hillside move downward, reducing the slope. Thus the slope
s. becomes stable, and surfaces form a facet with the slope
of m, itself strongly depends oR and could be fitted to a s, as shown in Fig. 1. Since the surface pinning is initiated at
power law asn.~ [\| %3 as shown in Fig. @). Thus when  the sites around the valley, once the pinning site is broken by
A=0,m. becomes infinite, which recovers the previous resultan external force which is slightly bigger th&, the sur-

that the critical force~.(m) is independent of the substrate face grows with a finite velocity, leading to the first order
tilt in the quenched Edwards-Wilkinson universality classtransition. On the other hand, whar-0, the nonlinear term

v(F,m)=vo+A(F—Fg)— (7)

whereA is a constant. Setting=0 in Eqg.(7), one obtains an
approximate form foF,(m) as

IA]
2A

Fo(m)~Fo+ 55 (m?—m}), (8)

with mg=(2vo/|\|)¥2 However, for largem, v deviates
from Eq.(7) and higher order terms im become significant.
To find F.(m) and m. more accurately, we fit the velocity
curve for largem and estimate=.(m) independently from
the condition ofv(F.(m),m)=0. This is justified sinced
=1 generically form#0 [10]. In Fig. 3a we show the
values ofF;(m) obtained in this way. The relatioR.(m.)
=F4 then gives an independent estimatemfwhich is also
shown in Table I. Note that. obtained in this way agrees
well with the facet slopes, as mentioned above. The value

[9,10]. On the other hand),| scales a$h |®®in the inset of
Fig. 3b) and hencem,~|\| %3~ |\,| %4 This is to be
compared with the zeroth order expressiog~|\,| %% in
Eq. (8).

is positive, and enhances the external driving force. Thus
surfaces do not form a facet. The surface pinning is mainly
due to local noise strengths as can be pictured in the DP
cluster. Thus the pinned sites are not localized but scattered

In order to understand the origin of the discontinuous PDall over the system, so that the PD transition is continuous.

transition fora <0, we examine the noise distribution on the

It would be interesting to observe the tilt dependence of

perimeter sites of critically pinned surfaces. It is found thatthe negative quenched KPZ equation from a stochastic
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model. The Sneppen A modgl2,15 is known to belong to  served and explained that there exists a characteristic sub-
the negative QKPZ universality class. In the Sneppen Astrate tilt m. such that the PD transition is discontinuous
model, the restricted solid-on-soli®SOS condition is im-  (continuou$ when the substrate tilh is less(greatey than
posed on the height difference of neighboring columns. BeMc . The characteristic tilin; is found to be the same as the
cause of this restriction, the surface tilt cannot be larger thaffcet slopes; of the critically pinned surfaces which are

a maximum value. If the maximum tilt is less than the criti- formed in a self-organized way and depends on the nonlinear

cal slopes,()\) of the stochastic model, the tricritical behav- {€rm coefficientx as me~|\| %" Moreover, the threshold

ior would not be observed in simulations because the coeffifoc€ Fc(m) for the PD transition is independent of for

cient\ is not controllable. Recently a PD transition similar ™=~Mc and increases with increasing for m>m,. The

to the negative QKPZ equation is found in a seemingly dif_effecnve nonlinear term coefficient, remains finite ag-

ferent system, the driven Frenkel-Kontorova mod#&é], approaches,.

where the PD transition is also discontinuous and the dis- \we would like to thank M. Kardar for suggesting this

placement at the pinned state looks like Fig. 1. However, th@roblem and F.-J. Elmer for sending Ré16] to us. This

tricritical behavior has not been studied yet in this system. work was supported in part by the KOSEF through the SRC
In summary, we have investigated the tilt-dependent beprogram of SNU-CTP, and in part by the Ministry of Edu-

havior of the negative quenched QKPZ equation. We obeation, Korea(Grant No. 97-2400
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