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A wide range of interacting systems can be described by complex networks. A common feature of such
networks is that they consist of several communities or modules, the degree of which may quantified as the
modularity. However, even a random uncorrelated network, which has no obvious modular structure, has a finite
modularity due to the quenched disorder. For this reason, the modularity of a given network is meaningful only
when it is compared with that of a randomized network with the same degree distribution. In this context, it is
important to calculate the modularity of a random uncorrelated network with an arbitrary degree distribution. The
modularity of a random network has been calculated [Reichardt and Bornholdt, Phys. Rev. E 76, 015102 (2007)];
however, this was limited to the case whereby the network was assumed to have only two communities, and it
is evident that the modularity should be calculated in general with q(�2) communities. Here we calculate the
modularity for q communities by evaluating the ground-state energy of the q-state Potts Hamiltonian, based on
replica symmetric solutions assuming that the mean degree is large. We found that the modularity is proportional
to 〈√k〉/〈k〉 regardless of q and that only the coefficient depends on q. In particular, when the degree distribution
follows a power law, the modularity is proportional to 〈k〉−1/2. Our analytical results are confirmed by comparison
with numerical simulations. Therefore, our results can be used as reference values for real-world networks.
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I. INTRODUCTION

A wide range of networks, including, for example, the
Internet, the world wide web, social relationships, and bio-
logical systems [1–4], may appear unrelated to each other.
However, it has recently been shown that there exist several
common features in such networks, including the existence of
hub and fat-tailed degree distributions [5–7]. In particular, one
important common feature is that a network consists of sev-
eral communities, which are densely connected subnetworks
compared with other parts of the network.

Understanding the community structure of a given network
is of practical importance. A set of nodes in the same
community typically has similar properties or functions. For
example, nodes belonging to the same community found
in the world wide web [8] and social networks [9] have
similar topics and identities, respectively. In addition, nodes
in the same community of a metabolic network have been
shown to have similar metabolic functions [4,10]. Therefore,
identifying the community structure provides information that
aids in the understanding of the role of a specific node in a
network. Moreover, the analysis of community structures of
gene-disease and metabolite-disease networks may provide a
method to predict complications associated with diseases [11].

Motivated by such practical importance, many authors have
attempted to identify the optimal community structure of a
given network, and a number of sophisticated algorithms to
detect the possible optimal community structure have been
reported [12–23]. Most of these algorithms make use of the
property that the link density within a community is much
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larger than the intercommunity link density. Therefore, it
is crucial for community-detection algorithms to employ a
suitable function to quantify such a property. A widely used
function for this purpose is the modularity, introduced by
Newman and Girvan [12]. The modularity function takes a
community configuration as its argument and returns a value
between 0 and 1. The modularity represents how modular a
given network is, i.e., a larger modularity corresponds to a
network that is more modularized or has a richer community
structure.

The absolute value of the modularity, however, is not
necessarily helpful in discerning how modular a network
is. In other words, a finite modularity does not guarantee a
truly modular structure of a network. In Ref. [24], Guimerà
et al. showed that even a random uncorrelated network, which
presumably does not have a modular structure, has a finite
modularity because of the presence of quenched disorder.
For example, Fig. 1(a) shows a random uncorrelated network
generated using a static model [25]. Despite the lack of any
obvious community structure, the modularity of this network
is 0.51, which may be considered to be a relatively large value
of the modularity in the usual sense. Figure 1(b) shows another
network with the same size and the same degree distribution.
In this case we can see a clear community structure, and
the modularity is 0.72, which is larger than that of the first
example.

It follows that the modularity is meaningful only when
compared with a random uncorrelated network with the same
degree distribution. Therefore, calculating the modularity
of random uncorrelated networks with an arbitrary degree
distribution is important to determine a reference modularity.
Reichardt et al. [26] found that calculating the ground-state
energy of an Ising model of a network is equivalent to
finding the modularity of the network if the network has
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FIG. 1. (Color online) Examples of a random uncorrelated and
a modular network. Each color represents a different community,
as identified by the q-state Potts model. (a) A static model with a
modularity of 0.51. (b) A modular network with a modularity of
0.72.

two communities. Using this equivalence, they calculated the
modularity of a random uncorrelated network with an arbitrary
degree distribution assuming that the network had only two
communities.

In general, however, it is clear that the modularity should be
calculated with an arbitrary number of communities. Here we
denote the number of communities as q(�2), and we calculate
the modularity of networks with q communities. To achieve
this, we map the modularity function for a network with
q communities onto the ground-state energy of the q-state
Potts model. We then calculate the energy of the Potts model
for a random uncorrelated network with an arbitrary degree
distribution in the large mean-degree limit. Our main result
is that the ground-state energy is given by −C(q)〈√k〉/〈k〉,
Eq. (45), where 〈k〉 is the mean degree of the network. The
coefficient C(q) is an increasing function of q for q � 5 and
C(q) = C(5) for q > 5. For a scale-free network, 〈√k〉/〈k〉 ∝
〈k〉−1/2.

The remainder of this paper is organized as follows. In
Sec. II we first describe how the problem of finding a
community structure can be mapped to that of finding the
ground state of the q-state Potts model. This is achieved by
comparing the modularity function with the Hamiltonian of
the q-state Potts model. We then derive the replica-symmetric
solutions for the free energy and energy of the Hamiltonian. In
Sec. III we give analytic expressions for the energy, especially
the ground-state energy, for general q. In Sec. IV we compare
the analytical results with numerical simulations.

II. ANALYTIC SOLUTIONS FOR THE q-STATE
POTTS MODEL

A. Hamiltonian of the q-state Potts model

We begin by describing the modularity and discussing how
it is related to the q-state Potts model. Consider a network
composed of N nodes, L edges, and q communities. The
degree distribution of the network is pk . Let us arbitrarily
assign a unique integer in the range from 1 to q to each
community. Then let σi denote the number of communities
assigned to a node i. The modularity QMOD [27] is defined as
the difference between the proportion of the intracommunity
edges of a given network and the expected proportion of such
edges in a random uncorrelated network with the same degree

distribution. That is, QMOD is given by

QMOD = 1

L
(number of intracommunity edges)

− 1

L
(expected number of such edges)

= 1

L

∑
i<j

(
Aij − kikj

〈k〉N
)

δ(σi,σj ), (1)

where the adjacency matrix element Aij = 1 if there is an
edge between two distinct nodes i and j ; otherwise, Aij = 0.
Here ki denotes the degree of node i, i.e., ki = ∑

j Aij , and
〈k〉 is the mean degree of the network. Note that the term
kikj /(〈k〉N ) ≡ fij in the above expression is the connection
probability between nodes i and j in a random uncorrelated
network.

If a specific community structure {σ1, . . . ,σN } is initially
given, the calculation of the modularity is straightforward.
However, in most cases, this information is not known a priori;
rather, the optimal community structure is determined as the
one that maximizes the modularity, which is chosen from all
possible configurations of {σ1, . . . ,σN }. This maximum mod-
ularity will be denoted by Q∗

MOD. Therefore, a major task for
community detection is finding the community configuration
that maximizes the modularity. However, since the number
of all possible configurations increases exponentially with N

(∼qN ), it is not generally feasible to enumerate and test all of
them for a network with large N .

To avoid such difficulties, several feasible algorithms
[24,28,29] have been proposed. One particularly interesting
approach is to use the q-state Potts model, the Hamiltonian of
which is given by [26]

H = − 1

〈k〉
∑
i<j

(Aij − ηfij )δ(σi,σj )

(
fij = kikj

〈k〉 N

)
, (2)

where σi denotes the spin state of node i of q possible spin
states and η is a control parameter. Note that the connection
probability fij is typically very small, i.e., fij 	 1. Therefore,
when Aij = 1 (Aij = 0), the coupling constant between nodes
i and j becomes positive (negative); thus, two spins, σi and σj ,
tend to be in the same (different) spin state(s) in order to lower
the energy E of the Hamiltonian. The ground-state energy Eg

of this model can be obtained from the spin configuration by
minimizing the Hamiltonian. When η = 1, the ground-state
energy is proportional to the maximized modularity Q∗

MOD,
i.e.,

Q∗
MOD = −2Eg/N. (3)

Therefore, finding the community structure of a network now
becomes a problem of searching for the ground-state of the
q-state Potts model Hamiltonian.

B. Free energy

In this section we describe the calculation of the free energy
of the q-state Potts model Hamiltonian (2) for an uncorrelated
random network with an arbitrary degree distribution pk as a
reference value for the modularity. We assume that the typical
free energy of Eq. (2) is the same as the quenched average of
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q=2 q=3 q=4

FIG. 2. Potts spin vector. q-state Potts spin can be mapped into
vertices of a r(= q − 1)-dimensional simplex.

the free energy over the network configurations {Aij }. Using

the replica method, the configuration-averaged free energy is
given by

[ln Z]c = lim
n→0

[Zn]c − 1

n
, (4)

where Z is the partition function of the Hamiltonian for a one-
network configuration and [· · · ]c denotes the configuration-
ensemble average [30,31]. In the context of the replica method,
n is assumed to be a nonzero integer, prior to discussing
the limit n = 0. For any integer n, we can write the above
expression as

[Zn]c = [(Trie
−βH)n]c =

∫ ∏
i<j

dJijP (Jij )Tri,α exp

⎡⎢⎢⎢⎣ β

〈k〉
∑
i < j

α

Jij δ
(
σα

i ,σ α
j

)
⎤⎥⎥⎥⎦ ,

where β is the inverse temperature, Jij ≡ (Aij − ηfij ), and Tri,α denotes the sum of all possible spin states σα
i over all nodes in

all the replicas. Using P (Jij ) = fij δ(Jij − 1 + ηfij ) + (1 − fij )δ(Jij + ηfij ), [Zn]c becomes

[Zn]c = Tri,α exp

⎛⎝− β

〈k〉
∑
i<j

∑
α

ηfij δ
(
σα

i ,σ α
j

)⎞⎠ exp

⎡⎣∑
i<j

ln

(
1 + fij

{
exp

[
β

〈k〉
∑

α

δ
(
σα

i ,σ α
j

)]
− 1

})⎤⎦ . (5)

Now we use an approximation ∑
i<j

ln(1 + fijDij ) ≈
∑
i<j

fijDij =
∑
i<j

kikj

〈k〉N Dij , (6)

which is valid in the thermodynamic limit for a wide range of uncorrelated ensembles [32]. Then, [Zn]c becomes

[Zn]c = Tri,α exp

⎡⎣∑
i<j

kikj

〈k〉 N

(
−βη

〈k〉
∑

α

δ
(
σα

i ,σ α
j

) + exp

(
β

〈k〉
∑

α

δ
(
σα

i ,σ α
j

))
− 1

)⎤⎦ . (7)

To manipulate the Kronecker δ function, it is convenient to adopt the vector representation for q-state Potts spins [33,34]. As
shown in Fig. 2, each q-state Potts spin σi can be mapped to a q − 1 dimensional vector �Si . The angle between any two vectors
is identical. Then, the Kronecker δ function can be written as

δ(σi,σj ) = 1

q
(r �Si · �Sj + 1) = 1

q

(
r

∑
μ

SiμSjμ + 1

)
, (8)

where

r ≡ q − 1. (9)

The vector-component index μ varies from 1 to r .
In this work we consider the densely connected limit [35], i.e., β 	 〈k〉 for fixed β, which was also used in Reichardt et al.

[26]. Then, by expanding the exponential term exp( β

〈k〉
∑

α δ(σα
i ,σ α

j )) in Eq. (7) up to the second order in β

〈k〉 and by using Eq. (8),
Eq. (7) can be written as

[Zn]c = exp

(
nβ(1 − η)N

2q

)
�, (10)

with

� = Tri,α exp

⎡⎣C1N

2

∑
α,μ

(∑
i

ki

〈k〉N
Sα

iμ

)2

+ C2N

2

∑
α 
=β,μν

(∑
i

ki

〈k〉 N
Sα

iμS
β

iν

)2

+ C2N

2

∑
α,μν

(∑
i

ki

〈k〉N
Sα

iμSα
iν

)2
⎤⎦ , (11)

where

C1 = β(1 − η)r

q
, C2 = β2r2

2 〈k〉 q2
. (12)

Note that the terms which are higher order than n are ignored in the above derivation since they will vanish as n → 0.
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Now, performing the Hubbard-Stratonovich transform on each quadratic term in � and applying the saddle point method
subsequently, � becomes

� = exp

⎡⎣−C1N

2

∑
αμ

(
M

α

μ

)2 −
∑

α 
=β,μν

C2N

2

(
Q

αβ

μν

)2 −
∑
α,μν

C2N

2

(
L

α

μν

)2 + N
∑

k

pk ln Trα expH(k)

⎤⎦ , (13)

where pk is the degree distribution of a given network and H(k) is given by

H(k) = k

〈k〉

⎛⎝C1

∑
αμ

Sα
μM

α

μ + C2

∑
α 
=β,μν

Sα
μSβ

ν Q
αβ

μν + C2

∑
α,μν

Sα
μSα

ν L
α

μν

⎞⎠ . (14)

Here M
α

μ, Q
αβ

μν , and L
α

μν are chosen to satisfy the saddle point condition. Their explicit replica-symmetric forms will be shown
later in Eqs. (20) to (22).

At this stage we seek a replica symmetric solution so that we assume M
α

μ → Mμ, Q
αβ

μν → Qμν , and L
α

μν → Lμν . Then, �

and H(k) can be simplified as

� = exp

[
−NC1n

2

∑
μ

(Mμ)2 − NC2n(n − 1)

2

∑
μν

(Qμν)2 − NC2n

2

∑
μν

(Lμν)2 + N
∑

k

pk ln Trα expH(k)

]
(15)

and

〈k〉
k
H(k) = C1

∑
αμ

Sα
μMμ + C2

∑
α

∑
μν

Sα
μSα

ν (Lμν − Qμν) + C2

∑
μν

Qμν

(∑
α

Sα
μ

) ⎛⎝∑
β

Sβ
ν

⎞⎠ . (16)

The quadratic nature of the last term in Eq. (16) allows us to perform the modified Hubbard-Stratonovich transform. In Appendix
A it is shown that

ln Trα expH(k) = n

∫∫
DzDw ln Tr exp h(k) + O(n2), (17)

where Dz = ∏
μν

dzμν√
2π

exp(− z2
μν

2 ) and Dw = ∏
μν

dwμν√
2π

exp(−w2
μν

2 ) and h(k) is defined as

h(k) ≡ kC1

〈k〉
∑

μ

SμMμ + kC2

〈k〉
∑
μν

SμSν(Lμν − Qμν) +
∑
μν

√
2kC2Qμν

〈k〉 (Sμνzμν + Aμνwμν), (18)

with Sμν ≡ 1
2 (Sμ + Sν) and Aμν ≡ i

2 (Sμ − Sν).
From Eqs. (10), (15), and (17) the free energy density is given by

f = − 1

β
lim
n→0

[Zn] − 1

nN

= − (1 − η)

2q
+ C1

2β

∑
μ

M2
μ + C2

2β

∑
μν

(
L2

μν − Q2
μν

) − 1

β

∑
k

pk

∫∫
DzDw ln(Tr exp h(k)). (19)

Here Mμ, Lμν , and Qμν are determined by minimization of the free energy. For Mμ, the condition ∂f

∂Mμ
= 0 gives

Mμ =
∑

k

pkk

〈k〉
∫∫

DzDw 〈Sμ〉h(k) , (20)

where 〈(•)〉h(k) denotes the expectation value with respect to h(k), namely, 〈(•)〉h(k) ≡ Tr(•) exp h(k)

Tr exp h(k) . Similarly, one can find

Lμν =
∑

k

pkk

〈k〉
∫∫

DzDw 〈SμSν〉h(k) (21)

and

Qμν = Lμν −
∑

k

pk

√
k

2〈k〉C2Qμν

∫∫
DzDw 〈Sμνzμν + Aμνwμν〉h(k)

=
∑

k

pkk

〈k〉
∫∫

DzDw 〈Sμ〉h(k)〈Sν〉h(k) , (22)
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where the last equality in Eq. (22) is obtained by integration by
parts. From Eqs. (21) and (22), one can easily check that Lμν =
Lνμ and Qμν = Qνμ. By a proper rotation of r-dimensional
space, any r-dimensional vector (M1, M2, . . . , Mr ) can be
transformed into one satisfying the following condition:

Mμ = M1δμ1. (23)

In this coordinate setting, one can prove some important
identities for Qμν and Lμν such as Qμν = Lμν = 0 for
μ 
= ν, Lμμ = Lνν and Qμμ = Qνν for μ > 1 and ν > 1, and∑q

μ=1 Lμμ = 1, which are derived in Appendix C. Using them,
we finally obtain

f = − (1 − η)

2q
+ C1

2β
M2

1 + C2

2β

∑
μ

(
L2

μμ − Q2
μμ

)
− 1

β

∑
k

pk

∫
Dz ln(Tr exp h(k)), (24)

where h(k) is now simplified as Eq. (C11). Note that in the
above equation the integral with respect to

∫
Dw disappears

and Dz is reduced to
∏

μ

dzμμ√
2π

exp(− z2
μμ

2 ) (see Appendix C).

From now on
∫
Dz means the product of integrals with respect

to only the diagonal integral variables zμμ if there is no other
comment.

C. Energy

From Eq. (24) the energy E is given by

E/N = ∂(βf )

∂β

= − (1 − η)

2q
+ C1

2β
M2

1

+C2

β

∑
μ

(
L2

μμ − Q2
μμ

) −
∑

k

pk

∫
Dz

×
〈

kC1

β 〈k〉S1M1 + 2kC2

β 〈k〉
∑

μ

S2
μ(Lμμ − Qμμ)

+
∑

μ

√
2kC2Qμμ

β2 〈k〉 Sμzμμ

〉
h(k)

. (25)

Using Eqs. (20) to (22), the three terms in the average 〈(•)〉h(k)

in Eq. (25) can be reduced to∑
k

pkk

〈k〉
∫

Dz 〈S1〉h(k) = M1, (26a)

∑
k

pkk

〈k〉
∫

Dz
〈
S2

μ

〉
h(k) = Lμμ, (26b)

∑
k

pk

∫
Dz

〈√
kSμzμμ√
β2 〈k〉

〉
h(k)

=
√

2C2Qμμ

β
(Lμμ − Qμμ).

(26c)

With these equations, one can simplify Eq. (25) as

E/N = − (1 − η)

2q
− C1

2β
M2

1 − C2

β

∑
μ

(
L2

μμ − Q2
μμ

)
.

(27)

Using Eqs. (C9b), (C18), and (26c), Eq. (27) becomes

E/N = − (1 − η)

2q
− C1

2β
M2

1 − 1

〈k〉
∑

k

pk

√
kC(q,k),

(28)

where

C(q,k) = r
√

r

2q

[
(L11 + Q11)

∫
Dz z11〈S1〉h(k)

+ (L22 + Q22)(r − 1)
∫

Dz z22〈S2〉h(k)

]
. (29)

By plugging the solutions of the self-consistent equations (26)
into Eq. (28), we can calculate the energy for any β and η.

III. GROUND-STATE ENERGY FOR EACH q

A. q = 2

In this case, Potts spins become one-dimensional vectors,
which greatly simplifies the trace with respect to h(k) as
follows:

Tr exp h(k) = exp

(
β2k

8〈k〉2
(1 − Q11)

)
2 cosh (βh(z)) (30)

and

TrS1 exp h(k) = exp

(
β2k

8〈k〉2
(1 − Q11)

)
2 sinh (βh(z)),

(31)

where z = z11 and βh(z) = β(1−η)
2〈k〉 M1 + β

√
k

2〈k〉
√

Q11z. Using
Eqs. (30) and (31), the self-consistent equations (20)–(22)
become

M1 =
∑

k

pkk

〈k〉
∫

Dz tanh (βh(z)), (32a)

Q11 =
∑

k

pkk

〈k〉
∫

Dz tanh2 (βh(z)), (32b)

and

L11 =
∑

k

pkk

〈k〉
∫

Dz 1 = 1, (32c)

where Dz = dz√
2π

exp(− z2

2 ).
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Finally, the free energy [Eq. (24)] and the energy [Eq. (28)]
become

f = −1 − η

4

(
1 − M2

1

) − β

16 〈k〉 (Q11 − 1)2

− 1

β

∑
k

pk

∫
Dz ln 2 cosh (βh(z)) (33a)

and

E/N = −1 − η

4

(
1 + M2

1

) − β

8 〈k〉
(
1 − Q2

11

)
= −1 − η

4

(
1 + M2

1

) − β(1 + Q11)

8 〈k〉
q

βr
√

Q11

×
∑

k

pk

√
k

∫
Dz z tanh (βh(z)), (33b)

respectively. Equation (22) is used for deriving the last equality
in the above equation. We are interested in the modularity
which is proportional to the ground-state energy with η = 1.
Therefore, setting η = 1 and taking the β → ∞ limit, the
ground-state energy is given by

Eg/N = − 1

2〈k〉
∑

k

pk

√
k

∫ ∞

−∞

dz√
2π

exp

(
−z2

2

)
|z|

= − 1√
2π

〈√k〉
〈k〉 . (34)

Strictly speaking, the large β limit in this study should be
taken with maintaining the condition β/〈k〉 	 1 (see more
discussion on the β → ∞ limit in Appendix E). Note that
Eq. (34) is in agreement with the result presented in Ref. [26].

B. q = 3

For the q = 3 case, h
(k)
t in Eq. (C11) for each Potts spin

vector can be written as

h
(k)
1 = β(1 − η)rk

q〈k〉 M1 + β2r2k

2〈k〉2q2
(L11 − Q11) + βr

〈k〉q
√

kQ11z11, (35a)

h
(k)
2 = −β(1 − η)rk

2q〈k〉 M1 + β2r2k

2〈k〉2q2

[
(L11 − Q11)

4
+ 3(L22 − Q22)

4

]
+ βr

〈k〉q
[−√

kQ11z11

2
+

√
3kQ22z22

2

]
, (35b)

h
(k)
3 = −β(1 − η)rk

2q〈k〉 M1 + β2r2k

2〈k〉2q2

[
(L11 − Q11)

4
+ 3(L22 − Q22)

4

]
+ βr

〈k〉q
[−√

kQ11z11

2
−

√
3kQ22z22

2

]
. (35c)

Note that 〈Sμ〉h(k) = ∑q

t=1 St,μ exp h
(k)
t /

∑q

t=1 exp h
(k)
t ,

where St,μ is the μth component of �S(q)
t (see Appendix B). As

β → ∞, the largest term in the summation dominates among
exp h

(k)
1 , exp h

(k)
2 , and exp h

(k)
3 . Now let us define

(1) �1 ≡ z22 −
√

3Q11
Q22

z11 − G,

(2) �2 ≡ z22 +
√

3Q11
Q22

z11 + G,

(3) �3 ≡ z22,
where

G =
√

3k(1 − η)√
Q22

M1

+
√

3kr

4〈k〉q√
Q22

[β(L11 − Q11) − β(L22 − Q22)]. (36)

Note that the three lines �1 = 0, �2 = 0, and �3 = 0 meet at

one point (−G

√
Q22

3Q11
,0) in a two-dimensional plane (z11,z22)

and divide a whole plane into three regions A, B, and C as
follows:

(1) A : �1 < 0 and �2 > 0,
(2) B : �1 > 0 and �3 > 0,
(3) C : �2 < 0 and �3 < 0.
Then, one can show that h

(k)
1 , h

(k)
2 , and h

(k)
3 dominate in

A, B, and C, respectively. On these divided regions, in the
β → ∞ limit, the self-consistent equation for M1, Eq. (26a),

can be written in terms of the regions as

M1 = 1 − 3D, (37)

where

D ≡
∑

k

pkk

〈k〉
∫∫
B

Dz = 1

2
− 1

2

∑
k

pkk

〈k〉
∫∫
A

Dz . (38)

Other self-consistent equations in Eqs. (26b) and (26c) can
also be written in terms of the regions in the similar way.
Calculation details are presented in Appendix D. Collecting
all the new self-consistent equations written in terms of the
regions A, B, and C, the ground-state energy [Eq. (28)] can
now be calculated as

Eg/N = −1 − η

2
(1 − 4D + 6D2)

− 1

〈k〉
(

−2

√
1 − 3

2
DX +

√
2DY

)
, (39)

where

X =
∑

k

pk

√
k

∫∫
B

Dz z11

and

Y =
∑

k

pk

√
k

∫∫
B

Dz z22.
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Here X and Y are the self-consistently determined quantities
(see Appendix D). In the case of η = 1, D becomes 1

3 and thus

Eg/N = − 1

〈k〉
(

−
√

2X +
√

2

3
Y

)
= −

√
3
2

2π

〈√k〉
〈k〉 . (40)

C. q = 4

For q = 4, calculation of the ground-state energy is rather
complicated and tedious, but proceeds in a similar way as
the previous section; in this case, the three-dimensional plane
(z11,z22,z33) is divided into four regions and the self-consistent
equations are written as the integral over the divided regions.
Here we present only the final result for the ground-state energy
when η = 1 as below:

E/N =−3
√

3

4〈k〉
∑

k

pk

√
k

∫
Dz zμμ

TrSμ exp h(k)

Tr exp h(k)
(for any μ)

where∫
Dz zμμ

TrSμ exp h(k)

Tr exp h(k)

β→∞−−−→ 2
√

6

3

∫ ∞

0
dz33

∫ z3√
3

−∞
dz22

∫ √
6z33−√

2z22
4

−∞
dz11

z33

(2π )
3
2

× exp

(
−

∑3
μ=1 z2

μμ

2

)
≈ 0.243, (41)

Where Dz = ∏3
μ=1

dzμμ√
2π

exp(− z2
μμ

2 ). Then,

Eg/N ≈ −3
√

2

2
× 0.243

∑
k

pk

√
k

≈ −
√

5
3

2π

〈√k〉
〈k〉 . (42)

D. Modularity for q > 4

For q > 4 case, the calculation of the ground-state energy
becomes much more complex for general η. Therefore, in this
section, we focus on the η = 1 case only, where the ground-
state energy is proportional to the modularity as explained in
Sec. II A. To go further, we tentatively assume that M1, defined
as Eq. (26a), will be zero in the ground state as is the case with
q � 4. This assumption, M1 = 0, implies that all q spin states
are equally distributed to all nodes in the ground state; if not,
M1 would not be zero. The validity of this assumption will be
discussed later.

The assumption M1 = 0 greatly simplifies the calculation.
When M1 = 0, Lμμ = 1

r
for all μ as shown in Eqs. (C9a) and

(C9b), and Qμμ = Qνν for any μ and ν as shown in Eq. (C20).
Then, in the β → ∞ limit Eq. (28) becomes

Eg/N = − 1

〈k〉
∑

k

pk

√
kC0(q) = −C0(q)

〈√k〉
〈k〉 , (43)

where

C0(q) = r
√

r

q

∫
Dz z11〈S1〉h(k) . (44)

0

FIG. 3. (Color online) C0(q) as defined in Eq. (44) for various q.

A more explicit integral form of C0(q) is presented in
Appendix F.

We numerically evaluate C0(q) up to q = 10 as shown in
Fig. 3. Interestingly, C0(q) becomes maximum at q = 5. This
indicates that, within the assumption M1 = 0, the ground-state
energy becomes minimum at q = 5. However, the decreasing
behavior of C0(q) for q > 5 is problematic because it should
satisfy the relation Eg(q) � Eg(q + 1), where Eg(q) is the
ground-state energy with q-possible spin states. If we denote
a spin configuration of N nodes with q-possible spin states as
{σ1, . . . ,σN }q , all possible spin configurations of {σ1, . . . ,σN }q
are included in those of {σ1, . . . ,σN }q+1. Therefore, Eg(q + 1)
should be smaller than or equal to Eg(q). We attribute this
contradiction to the assumption M1 = 0.

Through numerical simulations for scale-free networks
as described in Sec. IV, we checked when this assumption
is valid. As seen in Table I, we found M1 = 0 for q � 5.
However, for q > 5 we found that the ground-state spin
configuration is the same as that of q = 5. In other words,
in the ground state only five spin states are equally distributed
to all nodes even for q > 5 case. Thus, we conclude that
the proportionality coefficient C(q), defined in Eq. (46), is

TABLE I. Ground-state spin configuration data for a network
with 104 nodes, 〈k〉 = 128, and γ = 3.5 obtained from the numerical
simulations described in Sec. IV. A number in the table denotes the
number of nodes having the same spin state. Up to q = 5, all q

spin states are almost equally distributed to all nodes, which implies
M1 = 0. For q > 5, ground-state spin configurations are the same as
that of q = 5; only five spin states are used.

State
q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8 q = 9 index

5024 3369 2503 2017 2017 2017 2017 2017 1
4976 3317 2474 1981 1981 1981 1981 1981 2

3314 2517 2084 2084 2084 2084 2084 3
2506 1950 1950 1950 1950 1950 4

1968 1968 1968 1968 1968 5
0 0 0 0 6

0 0 0 7
0 0 8

0 9
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independent of q for q > 5. Therefore, we finally come to the
conclusion that the ground-state energy is given by

Eg/N = −C(q)
〈√k〉
〈k〉 , (45)

where

C(q) =
{
C0(q) for q � 5

C0(5) for q > 5.
(46)

This expression is verified by the simulation in Sec. IV.
Equation (45) is one of our main results.

From Eq. (3) the modularity of a random uncorrelated
network with arbitrary degree distribution based on q com-
munities becomes

[Q∗
MOD]c = 2C(q)

〈√k〉
〈k〉 . (47)

Note that for the ER network with 〈k〉 = c, [Q∗
MOD]c,ER =

2C(q)
∑∞

0

√
kck−1e−c/k! and for a regular random network

with a fixed degree c, [Q∗
MOD]c,regular = 2C(q)/

√
c.

IV. NUMERICAL SIMULATIONS

Here we describe the results of numerical simulations and
compare them with the analytical expressions derived in the
previous sections. We used the static model introduced by
Goh et al. [25] to generate an ensemble of random networks.
The term “static” originates from the fact that the number of
vertices N of a network is fixed while constructing a network
sample. In this model, a normalized weight Pi (

∑
i Pi = 1) is

assigned to each vertex i. We consider the case whereby Pi

follows a power-law form, i.e., Pi = i−α/
∑

j j−α . A network
is constructed via the following process. In each time step, the
two vertices i and j are selected with probabilities Pi and Pj ,
respectively. If i = j or an edge connecting i and j already
exists, we do nothing; otherwise, an edge is added between
vertices i and j . We repeat this step NK times. The probability
that a given pair of vertices i and j (i 
= j ) are not connected by
an edge following this process is given by (1 − 2PiPj )NK �
e−2NKPiPj . Thus, the connection probability for nodes i and
j is 1 − e2NKPiPj . Here we used the condition Pi 	 1. The
factor 2 in the exponent comes from the equivalence of (ij ) and
(ji). The connection probability fij can thus be approximated
as fij ≈ 2NKPiPj ≈ 〈ki〉〈kj 〉/(〈k〉N ) in the thermodynamic
limit, where we used the fact 〈ki〉 = 2KNPi in this limit [36].
The resulting network is scale-free and has a degree exponent
γ given by

γ = 1 + 1

α
. (48)

Note that a network generated by the static model becomes
uncorrelated when γ � 3 [36]. Therefore, we performed the
simulation on a network with γ � 3. For this scale-free
network, the Eq. (47) becomes

[Q∗
MOD]c = 2C(q)

√
(γ − 1)(γ − 2)(

γ − 3
2

) 〈k〉−1/2. (49)

The size of the networks N used in this study was 10 000,
and the exponents of the degree distributions were 3.0, 3.5,

FIG. 4. (Color online) Plot of [Q∗
MOD,η

]c against η for q = 3,

N = 10 000, 〈k〉 = 64, and γ = 3.5. The red open circles represent
the data calculated using the simulated annealing method. The cross
symbols indicate the solutions of Eq. (39) obtained by solving the
self-consistent equations (36), (D2), (D7), and (D9) numerically. For
small η, D is expected to be small, and thus [Q∗

MOD,η
]c is very close

to 1 − η (the blue dashed curve), which can be seen in Eq. (39).

4.0, and 4.5. As γ → ∞ limit, we also performed the same
numerical simulations for the Erdős-Rényi (ER) network [37]
of the same size.

Since finding the ground state of the Potts model Hamilto-
nian is an NP-hard problem, it is practically impossible to do
so for very large networks. Instead, we used the simulated
annealing method [38] to obtain an approximate solution.
Initially, one of the q possible spins was randomly assigned to
each node in the network. The initial temperature was set
to be sufficiently high. In the Monte Carlo simulation we
chose one spin at random, and determined whether the spin
state was changed according to the Metropolis algorithm. This
procedure was repeated until the system reached a stationary
state at a fixed temperature. The temperature was then reduced
according to a predefined schedule, and the simulation was
repeated until it reached a stationary state for this new
temperature. The final state, i.e., the stationary state at zero
temperature, was assumed to be the ground state of the system.

Figure 4 shows a plot of [Q∗
MOD,η

]c versus η for q = 3,

〈k〉 = 64, and γ = 3.5. The analytical results were in very
good agreement with the simulated data. As η approached 0,
the interaction between Potts spins became more ferromag-
netic and M1 → 1. We then found that D → 0 from Eq. (D3),
which made [Q∗

MOD,η
]c ≈ 1 − η, from Eq. (39).

Figure 5(a) shows [Q∗
MOD]c as a function of 〈k〉 for various

γ with η = 1.0 and q = 3. Note that [Q∗
MOD]c is rescaled

by G(γ ) ≡
√

(γ−1)(γ−2)
(γ−3/2) in order to observe the collapsing

behavior. As expected from the analytical results, all the
simulated data collapsed onto the curve given by Eq. (49).
Figure 5(b) shows [Q∗

MOD]c as a function of 〈k〉 for various q

with η = 1.0 and γ = 3.5. In this case, [Q∗
MOD]c is rescaled

by C(q). As seen in the figure, the data collapses well with the
theoretical line for all q. By carefully investigating the ground-
state spin configurations obtained from the simulations, we
confirmed that the assumption M1 = 0 used in Sec. III D is
valid for q � 5. We also checked that the ground-state spin

052140-8



GROUND-STATE ENERGY OF THE q-STATE POTTS . . . PHYSICAL REVIEW E 90, 052140 (2014)

FIG. 5. (Color online) (a) Plot of [Q∗
MOD]c rescaled by G(γ ) as a

function of 〈k〉 for γ = 3, 3.5, 4, 4.5, and ER (γ → ∞), with η = 1.0
and q = 3. The red dashed curve shows the result of Eq. (49). The
gradient of the curve in the double logarithmic scale is −0.5. (b) Plot
of [Q∗

MOD]c rescaled by C(q) as a function of 〈k〉 for eight values of q

up to q = 9 with η = 1.0 and γ = 3.5. The red dashed curve shows
the theoretical curve from Eq. (49).

configuration for q > 5 are essentially the same as that for
q = 5. However, we note that if the simulation starts with very
large q, it will take too long time to reach the optimal spin
configuration consisting of only five communities.

The correspondence between our theoretical and simulated
data indicates that the replica symmetric (RS) solution is valid
for calculating the energy of the Potts model. We also note that
the analytical results can be improved by taking into account
the replica symmetry breaking (RSB) solutions. For example,
as stated in Ref. [26], for q = 2, the modularity obtained
from the RSB solution is more accurate. The difference
in modularity between RS and RSB was approximately
6%. However, this small difference is not significant in the
logarithmic scale, as can be seen from Fig. 5.

V. CONCLUSION

We have described a community detection method based
on maximizing the modularity function, which is equivalent
to finding a ground-state energy of the q-state Potts model
Hamiltonian, Eq. (2), when η = 1. Because a random un-
correlated network has a finite modularity due to quenched
disorder, the modularity of a given network is meaningful
only when it is compared with that of a random network.
Therefore, we analytically calculated the modularity of a

random uncorrelated network as a reference by finding the
ground-state energy of the q-state Potts model. We used the
replica method to find a replica symmetric solution. We also
studied the densely connected regime where β 	 〈k〉, even if
we take the limit β → ∞, which is described formally at the
later stages of the calculation.

We showed that, for an arbitrary q, the modularity is
proportional to 〈√k〉/〈k〉 when η = 1. Especially for a scale-
free network, it is proportional to 〈k〉−0.5. The q dependence
is included only in the coefficient C(q), which increases as
q increases up to q = 5 and becomes constant for q � 5.
Surprisingly, this “critical” value, q = 5, is universal for any
random-uncorrelated complex networks. In this context, it
would be mathematically interesting to extend the results for
noninteger q and check whether the maximum value of C0(q)
is obtained at noninteger q.

We also performed simulations using the simulated an-
nealing method to find the ground state of the q-state Potts
model and showed that our analytical results were in good
agreement with the simulated data. Our results provide a
theoretical minimum value over which the modularity of a
network becomes meaningful. In addition, our calculation
method may be applicable to evaluating the energy of a similar
type of q-state Potts model.
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APPENDIX A: LINEARIZATION OF QUADRATIC
SPIN PRODUCT

We begin by introducing the modified Hubbard-
Stratonovich transform as follows:

exp(2λ2ab)

=
∫∫

dz√
2π

dw√
2π

× exp

(
−1

2
z2− 1

2
w2 + λ(a + b)z + iλ(a − b)w

)
.

(A1)

Using the above transformation, the last term of the exponent
in Eq. (16) becomes

exp

⎡⎣kC2

〈k〉
∑
μν

Qμν

(∑
α

Sα
μ

) ⎛⎝∑
β

Sβ
ν

⎞⎠⎤⎦
=

∫∫
DzDw exp

[ ∑
μν

∑
α

√
kC2Qμν

2〈k〉
{(

Sα
μ + Sα

ν

)
zμν

+ i
(
Sα

μ − Sα
ν

)
wμν

}]
, (A2)

whereDzDw = ∏
μν

dzμν√
2π

dwμν√
2π

exp(− z2
μν

2 − w2
μν

2 ). Note that the
term quadratically coupled by two replica indices is now
linearized in the final expression. Then, the trace of expH(k)
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of Eq. (16) can be evaluated as

Trα expH(k) =
∫∫

DzDw (Tr exp h(k))n, (A3)

where h(k) is defined in Eq. (18).

APPENDIX B: VECTOR REPRESENTATION
OF q-STATES POTTS MODEL

Consider a r-dimensional simplex with q vertices whose
center of mass is located at the origin. If we define θq to
be the angle between any two vectors pointing from the
origin to the vertices of the simplex, it satisfies cos θq =
− 1

q−1 . Because Potts spin vectors can be identically mapped
to the vectors of the simplex [39], r-dimensional Potts
vector can be expressed by θq . For q = 2, �S(2)

1 = (1) and
�S(2)

2 = (cos θ2). For q = 3, �S(3)
1 = (1,0), �S(3)

2 = (cos θ3, sin θ3),
and �S(3)

3 = (cos θ3, sin θ3 cos θ2). Apart from �S(3)
1 , the other

two vectors can be written as �S(3)
2 = cos θ3|| sin θ3 �S(2)

1 and
�S(3)

3 = cos θ3|| sin θ3 �S(2)
2 , where the concatenation operator ||

is defined as a||(b1,b2, . . . ,b�) ≡ (a,b1,b2, . . . ,b�). With this
operator, the q-states Potts spin vectors can be written as �S(q)

1 =
(1,0, . . . ,0) and �S(q)

� = cos θq || sin θq
�S(q−1)
�−1 for � = 2, . . . ,q.

By construction, one can prove the several identities stated
below. Let St,μ be the μth element of �S(q)

t . Then, one can verify

St,μ = 0, (B1)

for 1 � t � μ − 1 and

St,ν = Sν+1,ν , (B2)

for ν < t . It can also be shown that

q−1∑
μ=1

St,μSu,μ = 1 − (1 − δtu)(1 − cos θq), (B3a)

q∑
t=1

(St,μ)2 = q

q − 1
, (B3b)

q∑
t=1

St,μ = 0. (B3c)

APPENDIX C: PROPERTIES OF Lμν AND Qμν

In Eq. (21) the expression 〈SμSν〉h(k) for μ > ν can be
simplified as

〈SμSν〉h(k) = TrSμSν exp h(k)

Tr exp h(k)

=
q∑

t=1

St,μSt,ν exp h
(k)
t

Tr exp h(k)

=
q∑

t=μ

St,μSt,ν exp h
(k)
t

Tr exp h(k)

= Sμ,ν

q∑
t=μ

St,μ exp h
(k)
t

Tr exp h(k)
= Sμ,ν〈Sμ〉h(k) , (C1)

where h
(k)
t denotes a h(k) calculated at �S(q)

t . Note that
Eqs. (B1) and (B2) are used for the third and fourth equalities,
respectively, in the above equation. Using the facts that∑

k
pkk

〈k〉
∫∫

DzDw 〈Sμ〉h(k) = Mμ = 0 for μ > 1 and Lμν =
Lνμ, we have

Lμν = 0 (C2)

for μ 
= ν.
Next, we will show that Lμμ = Lνν for μ > 1 and ν > 1.

First, it is useful to consider the sum of Lμμ:

q∑
μ=1

Lμμ =
q∑

μ=1

∑
k

pkk

〈k〉
∫∫

DzDw
〈
S2

μ

〉
h(k)

=
∑

k

pkk

〈k〉
∫∫

DzDw

〈
q∑

μ=1

S2
μ

〉
h(k)

= 1, (C3)

where Eq. (B3a) is used for the last equality. Here DzDw =∏
μν

dzμν√
2π

dwμν√
2π

exp(− z2
μν

2 − w2
μν

2 ). To proceed further, we define
a quantity

Vt ≡
∑

k

pkk

〈k〉
∫∫

DzDw
exp h

(k)
t

Tr exp h(k)
. (C4)

Then, Mμ can be written as the sum of Vt and St,μ, i.e.,

Mμ =
q∑

t=1

VtSt,μ, (C5)

for μ = 1, . . . ,q − 1. The set of linear equations, Eq. (C5),
can be solved and the solution is

Vm = V2, (C6)

for m = 3, . . . ,q and V1 = M1 + V2. Thus, one finds that for
μ > 1,

Lμμ =
∑

k

pkk

〈k〉
∫∫

DzDw
〈
S2

μ

〉
h(k)

=
q∑

t=1

VtS
2
t,μ =

q∑
t=μ

VtS
2
t,μ

= V2

q∑
t=μ

S2
t,μ = V2

q

q − 1
, (C7)

where Eqs. (B1), (B3b), and (C6) are used for the third, last,
and fourth equalities, respectively. Similarly, we obtain

L11 = V1 + V2

q − 1
. (C8)

Plugging Eqs. (C7) and (C8) into Eq. (C3), Lμμ is given by

L11 = 1 + (q − 2)M1

q − 1
(C9a)

and

L22 = 1 − M1

q − 1
= Lνν for ν > 1. (C9b)
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Next, let us examine the properties of Qμν . We will show
that there exist nontrivial solutions for the self-consistent
Eq. (22) satisfying the following conditions:

Qμν = 0 (C10a)

for μ 
= ν and

Qμμ = Qνν (C10b)

for μ > 1 and ν > 1. With these conditions, h
(k)
t in Eq. (18)

can be written as

h
(k)
t ≡ kC1

〈k〉 St,1M1

+ kC2

〈k〉 S2
t,1(L11 − Q11) + kC2

〈k〉 (L22 − Q22)
r∑

μ=2

S2
t,μ

+
√

2kC2Q11

〈k〉 St,1z11 +
√

2kC2Q22

〈k〉
r∑

μ=2

St,μzμμ.

(C11)

If we define Q̃11 =
√

2kC2Q11
〈k〉 and Q̃22 =

√
2kC2Q22

〈k〉 , h
(k)
t for

t = 1 and t = w > 1 can be written as

h
(k)
1 = B1 + Q̃11z11, and

(C12)
h(k)

w = B2 − Q̃11
z11

r
+ Q̃22 �S(q)

w · �z′,

respectively, where

B1 = kC1

〈k〉 M1 + kC2

〈k〉 (L11 − Q11),

B2 = −kC1

〈k〉
M1

r
+ kC2

r2〈k〉 (L11 − Q11)

+ kC2(r2 − 1)

〈k〉r2
(L22 − Q22), (C13)

�S(q)
t = (St,1,St,2, . . . ,St,r ),

�z′ = (0,z22,z33, . . . ,zrr ).

Note that B1 and B2 have nothing to do with the auxiliary
integration variables zμμ.

From Eq. (22), Qμμ can be written as

Qμμ =
∑

k

pkk

〈k〉
∫

Dz

( ∑q

t=1 St,μ exp h
(k)
t

)2( ∑q

t=1 exp h
(k)
t

)2

=
∑
u,v

Su,μSv,μ

∑
k

pkk

〈k〉
∫

Dz
exp h(k)

u exp h(k)
v( ∑q

t=1 exp h
(k)
t

)2 .

(C14)

Note that in the above equation the integral with respect to∫
Dw disappears becauseAμν = 0 for ν = μ and Qμν = 0 for

ν 
= μ, thus, all the integration variables wμν in h(k) in Eq. (18)

vanish. In addition, nowDz = ∏
μ

dzμμ√
2π

exp(− z2
μμ

2 ) because the
off-diagonal terms of zμν also vanish by Eq. (C10a). Then, the
integral in Eq. (C14) can be categorized into the following four
cases:∫

Dz
exp h(k)

u exp h(k)
v( ∑q

t=1 exp h
(k)
t

)2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Dz

exp h
(k)
1 exp h

(k)
1

(
∑q

t=1 exp h
(k)
t )2

, for u = v = 1∫
Dz

exp h
(k)
1 exp h

(k)
2

(
∑q

t=1 exp h
(k)
t )2

, for u = 1 and v > 1∫
Dz

exp h
(k)
2 exp h

(k)
2

(
∑q

t=1 exp h
(k)
t )2

, for u = v > 1∫
Dz

exp h
(k)
2 exp h

(k)
3

(
∑q

t=1 exp h
(k)
t )2

. for u,v > 1 and u 
= v.

(C15)

The derivation for the above equation is straightforward.
For example, for u = 1 and v > 1 (the second case), using
Eq. (C12), the integral becomes∫

Dz
eh

(k)
1 +B2−Q̃11

z11
r eQ̃22 �S(q)

v · �z′(
eh

(k)
1 + eB2−Q̃11

z11
r

∑q

t=2 eQ̃22 �S(q)
t · �z′)2 . (C16)

Because �S(q)
t for t > 1 possesses rotational symmetry in the

subspace spanned by z22, z33, . . . , and zrr , Eq. (C16) is
invariant under the exchange of different v(>1). Therefore,
the integral is the same as the integral for u = 1 and v = 2.
The other cases can be derived in the similar way.

From Eqs. (C14) and (C15), Q11 becomes

Q11 =
∑

u

S2
u,1

∑
k

pkk

〈k〉
∫

Dz
exp 2h(k)

u(∑q

t=1 exp h
(k)
t

)2 +
∑
u 
=v

Su,1Sv,1

∑
k

pkk

〈k〉
∫

Dz
exp h(k)

u exp h(k)
v(∑q

t=1 exp h
(k)
t

)2

= S2
1,1

∑
k

pkk

〈k〉
∫

Dz
exp 2h

(k)
1(∑q

t=1 exp h
(k)
t

)2 +
q∑

u=2

S2
u,1

∑
k

pkk

〈k〉
∫

Dz
exp 2h

(k)
2(∑q

t=1 exp h
(k)
t

)2

+ 2
q∑

v=2

S1,1Sv,1

∑
k

pkk

〈k〉
∫

Dz
exp h

(k)
1 exp h

(k)
2(∑q

t=1 exp h
(k)
t

)2 +
⎡⎣(∑

u=2

Su,1

)2

−
q∑

u=2

S2
u,1

⎤⎦ ∑
k

pkk

〈k〉
∫

Dz
exp h

(k)
2 exp h

(k)
3(∑q

t=1 exp h
(k)
t

)2

=
∑

k

pkk

〈k〉
∫

Dz

[
exp 2h

(k)
1 + 1

r
exp 2h

(k)
2 − 2 exp h

(k)
1 exp h

(k)
2 − (

1 − 1
r

)
exp h

(k)
2 exp h

(k)
3(∑q

t=1 exp h
(k)
t

)2

]
. (C17)
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For the third equality, we used Eqs. (B3b) and (B3c). Using the similar way, we can find Qμμ as

Qμμ = r + 1

r

∑
k

pkk

〈k〉
∫

Dz

(
exp h

(k)
2 exp h

(k)
2(∑q

t=1 exp h
(k)
t

)2 − exp h
(k)
2 exp h

(k)
3(∑q

t=1 exp h
(k)
t

)2

)
= Qνν, (C18)

for all μ,ν > 1. Finally, we can also check that

Qμν =
∑

k

pkk

〈k〉
∫

Dz 〈Sμ〉h(k)〈Sν〉h(k) = 0 (C19)

for all μ 
= ν pairs. Equations (C18) and (C19) consistently
satisfy the initially imposed conditions, Eqs. (C10a) and
(C10b). Even though it is not clear whether there exist other
solutions for Qμν from the self-consistent equations which
do not satisfy Eq. (C10b), these imposed conditions must
be satisfied in the β → ∞ limit. From Eq. (22) we can see
that β(Lμν − Qμν) remains finite as β → ∞, which indicates
Qμν → Lμν in the zero temperature limit. Note that Lμν

satisfies Lμν = 0 for μ 
= ν and Lμμ = Lνν for μ,ν > 1 [see
Eqs. (C2) and (C9b)]. Therefore, it is reasonable to impose the
same conditions for Qμν at least in the large β limit.

Finally, we briefly discuss the properties of Qμν when η =
1. In this case, using the similar method presented above,
we can show that there exist nontrivial solutions for the self-
consistent equations (22) satisfying (C10a) for μ 
= ν and

Qμμ = r + 1

r

∑
k

pkk

〈k〉

×
∫

Dz

(
exp h

(k)
1 exp h

(k)
1(∑q

t=1 exp h
(k)
t

)2 − exp h
(k)
1 exp h

(k)
2(∑q

t=1 exp h
(k)
t

)2

)
= Qνν, (C20)

for all μ and ν.

APPENDIX D: CALCULATION DETAILS FOR THE
GROUND-STATE ENERGY WITH q = 3

Since exp h
(k)
1 , exp h

(k)
2 , and exp h

(k)
3 dominate in the regions

A, B, and C (defined in Sec. III B), respectively, in the β → ∞
limit, the self-consistent equation for M1, Eq. (26a), can be
written as

M1 =
∑

k

pkk

〈k〉
[ ∫∫

A

Dz+
∫∫
B

Dz

(
−1

2

)
+

∫∫
C

Dz

(
−1

2

)]
,

(D1)

where
∫∫
R

Dz denotes the integral over the domain R and

Dz = ∏2
μ=1

dzμμ√
2π

exp(− z2
μμ

2 ). Note that
∫∫
B

Dz = ∫∫
C

Dz by

symmetry and
∫∫

A∪B∪C

Dz = 1. From these identities one can

show that

D ≡
∑

k

pkk

〈k〉
∫∫
B

Dz = 1

2
− 1

2

∑
k

pkk

〈k〉
∫∫
A

Dz . (D2)

The magnetization M1, thus, can be written in terms of D as

M1 = 1 − 3D. (D3)

Similarly, from Eqs. (26b) and (26c), one can find

L11 = Q11 = 1 − 3
2D (D4)

and

L22 = Q22 = 3
2D. (D5)

To obtain the ground-state energy, we should calculate
β(Lμμ − Qμμ) in the β → ∞ limit. From the first equality
in Eq. (26c), one can obtain

β (L11 − Q11) = −3q

r
√

Q11
X, (D6)

where

X ≡
∑

k

pk

√
k

∫∫
B

Dz z11. (D7)

For the derivation of the above equation, we used the facts∫∫
A∪B∪C

Dz z11 = 0 and
∫∫
B

Dz z11 = ∫∫
C

Dz z11. Similarly, one

can show that

β (L22 − Q22) =
√

3q

r
√

Q22
Y, (D8)

where

Y ≡
∑

k

pk

√
k

∫∫
B

Dz z22 (D9)

using the identity
∫∫
B

Dz z22 = − ∫∫
C

Dz z22.

Note the following three facts: (i) D, X, and Y are
determined by the region B, (ii) the region B depends on
G, and (iii) G is evaluated from D, X, and Y . Therefore,
Eq. (36) and the set of equations (D2), (D7), and (D9) form
self-consistent equations.

APPENDIX E: DISCUSSION ON THE β → ∞
LIMIT IN THIS STUDY

Our theory was developed under the condition β/ 〈k〉 	 1
to expand the exponential term in Eq. (7) up to the second
order. Therefore, in this study the large β limit should be
taken with maintaining the condition β/ 〈k〉 	 1. For a given
〈k〉, one can estimate a valid range of β satisfying this
condition. Define the energy evaluated at the maximum value
of β in the valid range as Eβmax . We also define the energy
at β = ∞ limit as Eg . Then, their difference Eg − Eβmax

decreases exponentially on β as e−βa , where a is some
positive number and O(a) � O(〈√k〉 / 〈k〉). [This exponential
dependence on β comes from the calculation of 〈Sμ〉h(k) =∑q

t=1 St,μ exp h
(k)
t /

∑q

t=1 exp h
(k)
t ; a dominant term among all

Boltzmann factors is exponentially larger than the second
largest term. For example, see Eqs. (35a) to (35c).] Since the
maximum value of β in the valid range can become sufficiently
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large for a large 〈k〉, Eβmax can become approximately the same
as Eg . In this sense, the limit β → ∞ can be justified.

APPENDIX F: EXPLICIT INTEGRAL FORM OF C0(q)

Here we will show that C0(q) defined in Eq. (44) can be
explicitly written in the following form:

C0(q) =
√

r

(2π )
q−1

2

∫ ∞

0
dz1z1e

− 1
2 z2

1

∫
· · ·

∫
�q−2(

√
2qrz1)

× dz2 · · · dzq−1e
− 1

2 (z2
2+z2

3+···+z2
q−1), (F1)

where the integral range �d (x) denotes a volume inside a
regular d-dimensional simplex whose center is located at the
origin in d-dimensional space and whose side length is x. To
derive the above equation, let us first examine the integrand
〈S1〉h(k) in Eq. (44). In the limit of β → ∞, this term can be
simplified as

〈S1〉h(k) =
q∑

t=1

St,1 exp h
(k)
t

/ q∑
t=1

exp h
(k)
t

=
{

1, �z ∈ A
− 1

r
, �z /∈ A,

(F2)

where A is a region in the r-dimensional space defined
as A = { �z | �z · (�S(q)

1 − �S(q)
t ) � 0 for all t ∈ { 2, . . . ,q } }. The

region A can be derived from the condition h
(k)
1 � h

(k)
t for all

t = 2, . . . ,q when M1 = 0, where h
(k)
t is defined in Eq. (C11).

Then, noting that
∫
Dz z1 = 0, Eq. (44) can be written as

C0(q) = √
r

∫
· · ·

∫
A

Dzz1. (F3)

If we define Ax as the region satisfying z1 = x in
A, then Ax = {(x,z2, . . . ,zq)|x(1 + cos θq) � (z2, . . . ,zq)
sin θq

�S(q−1)
t for all t ∈ {2, . . . ,q}}, where cos θq and sin θq are

defined in Appendix B. Then Eq. (F1) becomes

C0(q) =
√

r

(2π )
q−1

2

∫ ∞

0
dz1z1e

− 1
2 z2

1

×
∫

· · ·
∫

Ax

dz2 · · · dzq−1e
− 1

2 (z2
2+z2

3+···+z2
q−1). (F4)

Note that the set (z2, . . . ,zq) belonging to Ax is the volume
inside the regular (q − 2)-dimensional simplex whose center
is located at the origin and whose side length is

√
2qrx. Thus,

Eq. (F4) can be written as Eq. (F1).
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