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Abstract

Avalanche dynamics is an indispensable feature of complex systems. Here we study the
self-organized critical dynamics of avalanches on scale-free networks with degree exponent
γ through the Bak-Tang-Wiesenfeld (BTW) sandpile model. Thethreshold height of a node
i is set ask1−η

i with 0≤ η < 1, whereki is the degree of nodei. Using the branching process
approach, we obtain the avalanche size and the duration distribution of sand toppling, which
follow power-laws with exponentsτ andδ, respectively. They are given asτ = (γ−2η)/(γ−
1−η) andδ = (γ−1−η)/(γ−2) for γ < 3−η, 3/2 and 2 forγ > 3−η, respectively. The
power-law distributions are modified by a logarithmic correction atγ = 3−η.
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1 Introduction

Frequently, complex systems in nature as well as in human society suffer massive
catastrophes triggered from only a small fraction of their constituents. Unexpected
epidemic spread of diseases and the power outage in the eastern US of the last
year are the examples of such avalanche phenomena. Such a cascading dynam-
ics is not always harmful to us. The information cascades making popular hits of
books, movies, and albums are good to writers, actors, and singers, respectively.
Thus it is interesting to understand and predict how those cascades propagate in
complex system. Recently, the network approach, by which a system is viewed as
a network consisting of nodes representing its constituents and links interactions
between them, simplifies complicated details of complex systems. Such a simplifi-
cation unveils a hidden order such as scale-free behavior inthe degree distribution.
Here degree is the number of links connected to a certain node. The Internet at
the autonomous system level, the World-Wide Web, social acquaintance networks,
biological networks, and other many complex networks exhibit power-law degree
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distributions,pd(k) ∼ k−γ. The networks following such power-law degree distri-
butions are called scale-free (SF) networks [1], where non-negligible fractions of
hubs, the nodes with extraneously large degrees, exist.

In this paper, we investigate the avalanche dynamics on suchSF networks through
the Bak-Tang-Wiesenfeld (BTW) sandpile model [2], a prototypical model ex-
hibiting self-organized criticality (SOC). The study of sandpile dynamics has been
carried out mostly on regular lattices in the Euclidean space. In the stationary state,
which can be reached without tuning a parameter, the system exhibit scale-invariant
features in the power-law form of the avalanche size distribution pa(s) and the du-
ration or lifetime distributionℓ(t) as

pa(s) ∼ s−τ and ℓ(t)∼ t−δ. (1)

Recently, Bonabeau has studied the sandpile dynamics on theErdős-Rényi (ER)
random networks [3] and found that the avalanche size distribution follows a power
law with the exponentτ≃ 1.5, consistent with the mean-field solution [4]. Recently,
Lise and Paczuski [5] studied the Olami-Feder-Christensenmodel [6] on regular
ER networks, where degree of each node is uniform but connections are random.
They found the exponent to beτ ≈ 1.65. However, when degree of each node is not
uniform, they found no criticality in the avalanche size distribution. Note that they
assumed that the threshold of each node is uniform, whereas degree is not. Here we
study the BTW sandpile model on SF networks, where the threshold zi of the node
i is given ask1−η

i with ki the degree ofi and 0≤ η < 1. We find that the exponents
for the avalanche size and the duration distribution dependon the degree exponent
γ asτ = (γ−2η)/(γ−1−η) andδ = (γ−1−η)/(γ−2) for γ < 3−η while, for
γ > 3−η, they show the same behaviors as the conventional mean-fieldsolutions
as observed for the ER random networks.

2 Sandpile model

We present the dynamic rule of the BTW sandpile model on a given network.

(1) Each nodei is given a prescribed thresholdzi (≤ ki). The smallest integer not
smaller thanzi is denoted as⌈zi⌉ (⌈zi⌉ ≤ ki).

(2) At each time step, a grain is added at a randomly chosen node i. The integer-
valued height of the nodei, hi, increases by 1.

(3) If the height at the nodei reaches or exceedszi, then it becomes unstable and
the⌈zi⌉ grains at the node topple to its⌈zi⌉ randomly chosen adjacent nodes
amongki ones;
hi → hi −⌈zi⌉, andh j = h j +1 for all nodesj which are chosen.

(4) If this toppling causes any of the adjacent nodes receiving grains to be unsta-
ble, subsequent topplings follow on those nodes in paralleluntil there is no
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unstable node left. This process defines an avalanche.
(5) Repeat (2)–(4).

Here the thresholdzi of nodei is given as

zi = k1−η
i (0≤ η < 1), (2)

which is a generalization ofzi = ki previously investigated in Ref. [7]. We concen-
trate on the distributions of (i) the avalanche areaA, i.e., the number of distinct
nodes involving in a given avalanche, (ii) the avalanche size S, i.e., the number of
toppling events in a given avalanche, and (iii) the durationT of a given avalanche.

3 Branching process approach

The mapping of each avalanche to a tree provides a useful way of understanding
the statistics of avalanche dynamics analytically. For each avalanche event, one can
draw a corresponding tree: The node where an avalanche is triggered corresponds
to the originator of the tree and the following nodes to descendants. In the tree struc-
ture, a descendant born at timet is located away from the originator by distancet
along the shortest pathway. The tree stops to grow when no further avalanche pro-
ceeds. Then the ensemble of avalanches can be identified withthat of trees grown
through the branching process. In this mapping, the avalanche durationT is equal
to the lifetime of the tree minus one, and the avalanche sizeS differs from the tree
size only by the number of boundary nodes of the tree, which isrelatively small
when the overall tree size is very large. If one assumes that branching events at dif-
ferent nodes occur independently and that there is no loop inthe tree, the tree size
and lifetime distribution can be obtained analytically [8,9]. Those distributions are
expected to share the same asymptotic behaviors with the avalanche size and du-
ration distribution, respectively, due to the near-equivalence between an avalanche
and its corresponding tree in their scales as mentioned above.

In the branching process describing an avalanche, after initial branching intok de-
scendants with probabilityq0(k), successive branchings are assumed to occur inde-
pendently with probabilityq(k). q0(k) andq(k) may be different in general, but the
statistics of the overall size and duration of an avalanche is determined dominantly
by q(k). We checked also numerically the case where a new grain is added to a node
with the probability proportional to the degree of that node, which gives different
q0(k) from that in the case where a new grain is added randomly, and found that the
nature of the avalanche dynamics is the same in both cases. Thus, for simplicity,
we consider the branching process where every branching occur with probability
q(k). For the BTW model in the Euclidean space, where the threshold zi of nodei is
equal to its degreeki, q(k) has a finite cut-off such thatq(k) = 0 for k > zi = const,
because the degree of each node is uniform and finite. Consequently, the exponents
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of the avalanche size and the duration distributions in Eq. (1) come out to be the
so-called mean-field values;τ = 3/2 andδ = 2 [8,9]. These results are known to
hold for the BTW model on regular lattices with dimensions larger than 4 [4]. Note
that when dimension is smaller than 4, the branching processapproach cannot be
applied, so that the values of the exponentsτ andδ would not be trivial.

In SF networks, avalanches usually do not form loops, generating tree-structures:
According to the numerical simulations of the BTW model for the case ofzi = ki

on SF networks [7], the statistics of the two quantitiesA andS are nearly equal
when they are large: For example, the maximum area and size (Amax, Smax) among
avalanches are (5127, 5128), (12058, 12059) and (19692, 19692) for scale-free
networks withγ = 2.01, 3.0, and∞, respectively. The fact thatA andS are almost
the same implies that the avalanche structure can be treatedas a tree. From now on,
we shall not distinguishA andS, denoted bys. Thus it is valid to use the branching
process approach to understand the avalanche dynamics on SFnetworks.

We study the BTW model on SF networks with the degree exponentγ and the
threshold given as Eq. (2). The branching probabilityq(k) consists of two factors,
that is,q(k) = q1(k)q2(k), whereq1(k) is the probability that the thresholdzi of
node i is in the rangek − 1 < zi ≤ k and q2(k) is the probability that the total
number of grains at the node reaches or exceeds the threshold. If zi = f (ki) with
f (x) a monotonic increasing function ofx satisfying f (x) ≤ x for all x ≥ 1, the
condition ofk −1 < zi ≤ k implies thatq1(k) is nothing but the probability that
a nodei connected to the one end of a randomly chosen edge has its degree ki

in the region( f−1(k−1), f−1(k)], and thusq1(k) = ∑⌊ f−1(k)⌋
k′=⌊ f−1(k−1)⌋+1 k′pd(k′)/〈k〉,

where⌊x⌋ is the largest integer not larger thanx. Notice that∑∞
k=1 q1(k) = 1 and

q1(k) ∼ k(1−γ+η)/(1−η) for largek if f (x) ≃ x1−η (0≤ η < 1) for largex. q2(k) is
the probability that the nodei has heightk−1 at the moment of receiving a grain
from one of its neighbors. We have checked numerically that atypical height of
node is absent, so that all possiblek values 0,1, . . . ,k−1 are equally likely [10].
Thus we setq2(k) = 1/k. As a result, the branching probabilityq(k) for largek is
given asymptotically as

q(k) =
1
k

q1(k) ∼ k−γ′
(

γ′ =
γ−2η
1−η

)

. (3)

Whenzi = ki or η = 0, γ′ is reduced toγ. Since we are interested in the case ofγ > 2
and 0≤ η < 1, γ′ > 0.

Using the independence of the branchings from different parent-nodes, one can de-
rive the following self-consistent relation for the tree size distributionp(s) as [8,9]

p(s)= q(0)δs,1+
∞

∑
k=1

q(k)
∞

∑
s1=1

∞

∑
s2=1

· · ·
∞

∑
sk=1

p(s1)p(s2) . . . p(sk)δ∑k
i=1 si,s−1. (4)
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This relation can be written in a more compact form by introducing the generating
functions,P (y) = ∑∞

s=1 p(s)ys andQ (ω) = ∑∞
k=0 q(k)ωk as

P (y) = y Q (P (y)). (5)

Thenω = P (y) is obtained by invertingy = P −1(ω) = ω/Q (ω).

The average size〈s〉 of a finite tree can be obtained easily from the generating
functions.

〈s〉 =
finite

∑
s=1

sp(s) = P ′(1), (6)

whereP ′(y) = dP (y)/dy. Using the relation, Eq. (5), we obtain

〈s〉 = P ′(1) =
Q (P (1))

1−Q ′(P (1))
, (7)

where againQ ′(ω) = dQ (ω)/dω.

The distribution of duration,i.e., the lifetime of the tree can be evaluated simi-
larly [8,9]. Let r(t) be the probability that a branching process stops at or priorto
time t. Then following the similar steps leading to Eq. (4),i.e., r(t) = ∑∞

k=0 qk[r(t−
1)]k, one has

r(t) = Q (r(t −1)). (8)

For larget, r(t) comes close to 1. One can obtainω = r(t −1) by solvingdω/dt ≃
r(t)− r(t −1) = Q(ω)−ω. Then the lifetime distributionℓ(t) is obtained through
ℓ(t) = r(t)− r(t−1) ≃ dω/dt.

4 Avalanche size and duration distribution

The growth of a tree depends on the average number of branchesdefined as

C =
∞

∑
k=1

kq(k). (9)

WhenC > 1 (C < 1), a tree can (cannot) grow infinitely in a probabilistic sense.
Thus the case ofC = 1 is a critical point for the growth of a tree. One can see
that for any branching process withq(k) = (1/k)q1(k) (k ≥ 1) and∑∞

k=1 q1(k) = 1,
the average number of branchesC is always 1, independent of detailed structural
properties of networks. Therefore our assumptionq2(k) = 1/k corresponds to the
condition for the self-organized criticality (SOC) of the sandpile model.

The inverse functionP −1(ω) satisfiesP −1(1) = 1. WhenC = 1, the first-order
derivative∂P −1(ω)/∂ω at ω = 1 is zero and thusP (y) becomes singular aty = 1.
P (y) is expanded aroundy = 1 asP (y)≃ 1−b(1−y)φ with constantb and 0< φ <

5



1. Then the asymptotic behavior of the avalanche size distributionp(s) for larges is
given byp(s)∼ s−φ−1, because if a series∑∞

s=0 asys with the radius of convergence
1 has the asymptotic behavior

∞

∑
s=0

asy
s ∼ (1− y)φ as y → 1, then as ∼ s−φ−1 as s → ∞. (10)

The functional form of the branching probabilityq(k) determines the singularity of
P (y). To illustrate this, we first consider a simple case that

q(k) =



















1−a (k = 0),

a (k = 2),

0 (otherwise),

(11)

where 0< a < 1. Then the average number of branchesC = ∑kq(k) = 2a and
the generating functionQ (ω) = ∑∞

k=0 q(k)ωk = 1−a+aω2. Using the relations of
y = ω/Q (ω) andω = P (y), it is obtained that

P (y) =
1−

√

1−4a(1−a)y2

2ay
. (12)

The value ofP (1) = ∑finite
s=1 p(s) is given as

P (1) =
1−|1−2a|

2a
=







1 for 0< a ≤ 1
2 (C ≤ 1),

1−a
a for 1

2 < a < 1 (C > 1),
(13)

which means that when 1/2 < a < 1 (C > 1), a tree can grow infinitely with prob-
ability 1− P (1) = (2a−1)/a, and the critical point is located atac = 1/2. Near
y = 1,P (y)≈ 1−

√

2(1− y) from Eq. (12), leading toφ = 1/2. Then, the avalanche
size distributionp(s) behaves asp(s) ∼ s−3/2. On the other hand, using Eq. (7),

〈s〉 = P ′(1) =







1
2(ac−a) (a < ac),

1−a
2a(a−ac)

(a > ac).
(14)

Even for the case thatq(k) has a finite cut-off larger than 2 or decays exponen-
tially, the above result holds. This is the conventional mean-field solution for the
avalanche size distribution [4,8,9] and has been shown to hold for the BTW model
on the ER random networks [3].

Whenq(k) decays slowly as in Eq. (3), however, its generating function Q (ω) is
singular atω = 1. Forq(k) in Eq. (3), the expansion ofQ (ω) aroundω = 1 is given
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as

Q (ω) ≃ 1− (1−ω)+



















A1(1−ω)γ′−1 (2 < γ < γc),

−A2(1−ω)2 ln(1−ω) (γ = γc),

A3(1−ω)2 (γ > γc),

(15)

whereAi’s are constants,γ′ is given in Eq. (3), andγc = 3−η. The derivation of
the logarithmic correction for the case ofγ = γc can be found in [11]. Note that the
singular term(1−ω)γ′−1 is the second leading term of 1−Q (ω) for γ < γc. Using
the relationP −1(ω) = ω/Q (ω) in Eq. (5), the behavior ofP (y) aroundy = 1 is
obtained for each region ofγ from Eq. (15), and in turn, using Eq. (10),p(s) for
s → ∞. We find that

p(s) ∼



























s−(γ−2η)/(γ−1−η) (2 < γ < γc),

s−3/2(lns)−1/2 (γ = γc),

s−3/2 (γ > γc).

(16)

Thus, the exponentτ is given asτ = (γ−2η)/(γ−1−η) for 2< γ < γc andτ = 3/2
for γ ≥ γc.

Also obtained isr(t) from Eq. (15) by using Eq. (8). The duration distributionℓ(t),
which is the derivative ofr(t), is found to be

ℓ(t)∼



























t−(γ−1−η)/(γ−2) (2 < γ < γc),

t−2(lnt)−1 (γ = γc),

t−2 (γ > γc).

(17)

That is, the exponentδ is given asδ = (γ−1−η)/(γ−2) for 2 < γ < γc andδ = 2
for γ ≥ γc.

5 Conclusion

We have studied the BTW sandpile model on SF networks with thedegree exponent
γ to understand the avalanche dynamics in complex systems. The main results are
the avalanche size and duration distribution. The exponents τ andδ increase with
increasingγ, implying that the hubs play a role of reservoir, that is, sustain large
amount of grains to make the SF network resilient under avalanche dynamics. This
is reminiscent of the structural resilience of the SF network under random removal
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of nodes forγ ≤ 3 [12,13,14]. We also checked the case where the thresholdzi

contains noise in the way thatzi = ζiki with ζi being distributed uniformly in [0,1].
We find that such a variation does not change the nature of the avalanche dynamics.
However, when the threshold is given in terms of a quantity other than degree,
e.g., load, the corresponding avalanche dynamics has no reason to follow the same
statistics as studied in this paper, which remains further works.
This work is supported by the KOSEF Grant No. R14-2002-059-01000-0 in the
ABRL program.
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