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Diversity and critical behavior in prisoner’s dilemma game
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The prisoner’s dilemma (PD) game is a simple model for understanding cooperative patterns in complex
systems. Here, we study a PD game problem in scale-free networks containing hierarchically organized modules
and controllable shortcuts connecting separated hubs. We find that cooperator clusters exhibit a percolation
transition in the parameter space (p,b), where p is the occupation probability of shortcuts and b is the temptation
payoff in the PD game. The cluster size distribution follows a power law at the transition point. Such a critical
behavior, resulting from the combined effect of stochastic processes in the PD game and the heterogeneity of
complex network structure, illustrates diversities arising in social relationships and in forming cooperator groups
in real-world systems.
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Social interactions between individuals are often cooper-
ative or competitive, through which certain patterns such as
the separation between cooperator groups and defector groups
may emerge. In particular, social dilemmas in which the benefit
of the whole society contradicts that of each individual has
been an attractive topic of interdisciplinary research. The
prisoner’s dilemma (PD) game has been used as a basic model
for social dilemmas [1,2]. In the two-player PD game, a player
earns a larger payoff by unilateral defection than by mutual
cooperation. Therefore, even if both players attain nothing
when they defect, the optimal choice would be defection.
In real systems, however, people are often cooperative and
altruistic.

A social system may be described by a network of players
[3]. If players in a network change their strategies accord-
ing to evolutionary dynamics (i.e., by imitating successful
neighbors), we often observe mutual cooperation and the
formation of cooperator clusters. Aggregation of such clusters
induces a phase transition [4,5]. Such an emerging pattern
results from the collective dynamics of players’ interactions
with each other [6]. While such a pattern is present and
probably functional in social relationships, the diversity in
the cluster size distribution has not been clearly understood
yet. In this Brief Report, we investigate the formation of
diverse sizes of cooperator groups in the PD game as the
network topology changes from large-world to small-world
network.

In the context of networks, the PD game were firstly studied
in the Euclidean space [1,7]. Then, it has been studied in
complex networks such as scale-free (SF) networks, in which
the degree distribution follows a power law. In random SF
networks such as the Barabási and Albert (BA) model [8], the
mean distance between two nodes scales logarithmically with
system size N . In such small-world SF networks, the density
of cooperators is significantly enhanced [9] compared with
that in the Euclidean space and cooperators can be stable. The
stabilization of cooperation is initiated from the hubs and then
spreads to nodes with smaller degrees [9,10]. Thus, the hub
plays a crucial role in spreading cooperation.

Many SF networks in the real world are not as random
as that in the BA model; they contain modular structure
within them. Moreover, the modular structure is hierarchically
organized [11]. In such modular SF networks, hubs are
separated from each other, and the mean distance between two
nodes often scales in a power-law manner with the system
size [12]. Such networks are called large-world or fractal
networks. Cooperation in such networks is less than that in
random SF networks, because the large distance between hubs
generally reduces cooperation [9,10].

Social networks in the real world are often at the boundary
between small-world and large-world networks [13]. Thus,
in this Brief Report, we study the PD game in artificial
networks in which the number of edges between separated
hubs is controlled by the occupation probability p and
examine the diversity occurring in the cooperator cluster sizes
as the network transforms from large-world to small-world
network as p increases. We find that clusters composed of
cooperators undergo a percolation transition in the parameter
space of (p,b), where b is the temptation payoff in the PD
game. Interestingly, the percolation transition occurs either
continuously or discontinuously as p is increased for a fixed
b or b is decreased for a fixed p. Therefore, there exists a
tricritical-like point (pt ,bt ) such that for a fixed b < bt (b > bt )
or p < pt (p > pt ), the giant cluster of cooperators grows
continuously (discontinuously) [Fig. 1(a)]. The phase diagram
is shown in Fig. 1(b). Furthermore, the size distribution of
the cooperator clusters exhibits a power-law behavior near the
percolation threshold as long as p < pt . This result suggests
that the cooperators organize their clusters to attain a critical
state, which enhances the diversity within the system.

On the basis of previous papers [5,9,10], we define the
payoff matrix by

C D

C

D

(
1 0

b 0

)
, (1)

057102-11539-3755/2011/83(5)/057102(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.057102


BRIEF REPORTS PHYSICAL REVIEW E 83, 057102 (2011)

 0  0.2  0.4  0.6  0.8  1
p

 1

 1.5

 2

 2.5

 3

b

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0  0.2  0.4  0.6  0.8  1
p

 1

 1.5

 2

 2.5

 3

b

 0

 10

 20

 30

 40

 50

 60

(a) (b)

FIG. 1. (Color online) (a) Giant cluster size in the parameter space
of (p,b) for the hierarchical network with system size N = 10,924.
Plotted data are averages over 100 network configurations.
(b) Susceptibility under the same condition as that in the case
of (a). The solid and dotted curves representing continuous and
discontinuous percolation transitions, respectively, are the loci along
the peaks of susceptibility.

corresponding to the weak PD game payoff matrix. A row
player selects one of two states, either cooperation (C) or
defection (D), and so does a column player. Each entry in the
matrix (1) represents the payoff that the row player obtains.
Regardless of whether the opponent selects C or D, both
players are tempted to defect in order to obtain a larger payoff
(temptation) i.e., b > 1. If both players act selfishly to defect,
both obtain no payoff. However, the individual rewards for
both players could be higher if they mutually cooperate.

We examine the evolutionary PD game for several types of
complex networks with equal initial densities of C and D. At
each time step (or round), each player i interacts with all of
its ki neighbors; here, ki is the degree of the node i. Player i’s
payoff in one round Pi is the sum of all the payoffs earned by
playing against the ki neighbors. Player i updates its strategy
according to the following rule [9]: A neighbor j of player i

is chosen with equal probability 1/ki . Then, if Pj > Pi , i

copies j ’s strategy with probability (Pj − Pi)/[b max(ki,kj )].
The denominator normalizes the probability such that the
probability is between 0 and 1. On the other hand, if Pj < Pi ,
i does not change its strategy. The rule for updating strategies
is synchronously applied by all the players. This procedure is
repeated in subsequent rounds. We find that the main result,
a power-law behavior in the size distribution of cooperator
clusters, obtained from the parallel updating rule does not
change even when updating is performed sequentially [9].

In each round, a player chooses either C or D. However, in
long time limit, players are categorized as [10] a permanent
cooperator, a permanent defector, or an unstable player that
continually changes its state between C and D. The situation
created by unstable players, i.e., the alternative changing
between cooperation and defection, may be called cooperative
solution. We simulate the PD game until the density of the
cooperators does not change with time. We simulate the PD
game for up to 2 × 104 rounds after a steady state is reached for
each initial configuration. A permanent cooperator (defector)
is defined as the node that chooses only C (D) for the last 104

rounds. The rest of the nodes are regarded as unstable players.
The density of the permanent cooperators is denoted by ρc.

The PD game is played on the so-called hierarchical
network introduced in [14]. This network is constructed by
repeating a simple structural mapping as follows: We begin
with an edge, which is replaced with four edges formed in a
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FIG. 2. (Color online) Density of cooperators as a function of
temptation payoff b for the cases (a) p = 0 and p = 1 and (b) p = 0.4
and 0.9 in the hierarchical model.

diamond shape in the next iteration step. A horizontal edge
between two nodes at the diagonal positions is present with
probability p. This process is repeated for each edge in the
diamond (except the horizontal bond) in subsequent iterations
until the obtained network attains the desired system size. This
network is scale-free and has a degree exponent of 3. When
p = 0, the network is a large-world network and the diameter,
i.e., the largest distance between any two nodes in the system,
increases according to a power law in terms of the system size
N . When p = 1, the network is a small-world network and the
diameter is proportional to ln N .

The density of the permanent cooperators ρc is shown as
a function of b for various p values in Fig. 2. When p = 1,
the cooperator density ρc is almost equal to 1 for b values up
to bc, beyond which ρc drops suddenly. When p = 0, ρc is
relatively small even when b = 1, and it decays continuously
with increasing b. When p = 0, a player i with degree �4
is surrounded by players with degree 2 (see Fig. 3 for the

Pajek

FIG. 3. (Color online) A snapshot of permanent cooperators (red,
dark), permanent defectors (white), and unstable players (cyan, gray)
in the hierarchical network with p = 0.15, b = 2.3, and N = 684
after 20,000 rounds in a steady state.
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network structure). A degree-2 defector j adjacent to i obtains
payoff �b if i cooperates. The payoff of cooperator i is equal
to the number of degree-2 cooperators adjacent to i, which
is an integer. Therefore, whether the cooperator is likely to
invade or is invaded along the link between i and j would
drastically change when b crosses integer values. This is the
case for any link because of the deterministic structure of
the network. Therefore, we observed a discontinuous jump
at b = 2 in Fig. 2. However, such behavior does not appear
in nondeterministic networks such as real-world networks. It
is noteworthy that for all b, ρc for p = 1 is larger than ρc

for p = 0. This indicates that the shortcuts connecting the
hubs play an important role in enhancing cooperation [9,10].
The cooperation between influential individuals enhances the
overall cooperation in the society.

A snapshot of the states of the players when p = 0.15, b =
2.3, and N = 684 is shown in Fig. 3: this network represents
a large-world network. The permanent cooperators tend to
locate around or at hubs, and may impact other cooperators.
This is because once cooperators form a cluster around a
hub, then the hub becomes stable and is protected against
invasion by defectors. However, when defectors gather around
a hub cooperator, the hub may cease to be permanently stable
because defectors get higher payoff than the hub cooperator.
Nevertheless, permanent defectors tend to be located at nodes
with small degree, and the unstable players in between nodes
with small degrees and hubs.

On the other hand, we remark that cooperators are not
always located at or around hubs as they were in the snapshot,
because the formation of cooperator clusters is determined
stochastically and it generally depends on the fluctuations in
cooperator densities. The heterogeneity of the degree of the
nodes and the stochastic process of the PD game result in the
formation of cooperator clusters with a wide range of sizes.

In the small-world network with a large p, however,
permanent cooperators always locate at hubs and mutual
cooperation occurs on a global scale. This behavior occurs
even when a hub and its neighbors are mostly defectors at an
early stage; the hub eventually cooperates with another hub.

The size G(p,b) of the largest cluster of permanent
cooperators per the system size is shown as a function of
p and b in Fig. 1(a). Here G(p,b) is considered to be the
order parameter, as in percolation theory. As p increases for
a fixed b < bt (bt is defined below), G increases gradually
from 0 to 1 and exhibits a percolation transition at pc(b).
In Fig. 1(a), we can see that the transition interval in which
0.1 < G < 0.4 is wide for small b. However, this interval
becomes narrower as b increases, indicating that the giant
cluster grows suddenly as p increases for large values of b.
A similar behavior appears in the susceptibility, defined by
χ (p,b) = ∑′

s s2ns , where the prime denotes the exclusion
of the giant cluster in the summation, and ns is the number
of s-sized clusters relative to the system size composed of
permanent cooperators. As shown in Fig. 1(b), the peak
positions of χ mark the phase boundary pc(b) across which
the giant cooperator cluster increases to a macroscopic-scale
cluster. The peak height of the susceptibility decreases as
b approaches the tricritical-like point bt , beyond which the
susceptibility is likely to disappear. It is noteworthy that while
the peak diverges in the classical percolation transition, it is
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FIG. 4. (Color online) Size distribution of cooperator clusters
in the hierarchical network with N = 10,924 nodes for (a) various
values of p and b = 1.7 and (b) various values of b and p = 0.15.
Data are averages over 500 network configurations.

finite in the infinite-order percolation transition, which often
occurs in growing networks [15]. On the basis of this fact,
we may say that the percolation transition is continuous for
p < pt and of infinite order for p > pt . The estimated value
of pt is about 0.4; this is roughly equal to p∗ � 0.494, which
is the boundary between the large-world and the small-world
networks as determined on the basis of the thermal transition
patterns of the Ising model [14].

In Fig. 4(a), the cluster-size distribution ns is plotted against
s for several p and b = 1.7. In Fig. 4(b), ns is plotted for several
b and p = 0.15. For the large-world network, i.e., the network
for which p = 0.0 < pc, ns(p) exhibits a subcritical behavior,
i.e., for small s, it decays according to a power law and for large
s, it decays exponentially beyond a cutoff. At pc

∼= 0.1, ns(pc)
obeys the power law ns(pc) ∼ s−τ with τ ≈ 1.85 ± 0.1. When
p > pc, ns(p) exhibits supercritical behavior. For the small-
world network, the cluster-size distribution does not follow
a power law. Similar behavior is observed when p is kept
constant while varying b [Fig. 4(b)]. When p < pt , the order
parameter increases gradually with b, while when p > pt , it
increases very drastically.

Large-world networks are known as fractal networks.
Typical fractal networks in the real world are the protein
interaction network and the World-Wide Web (WWW) [12].
In this study, we simulate the evolutionary PD game on the
undirected version of the WWW. Since the WWW network is
a single network, corresponding to p being fixed, we vary only
b. As shown in Fig. 5, the distribution of cooperator cluster
sizes for several values of b decays according to a power
law with an exponent of approximately 2. Thus, we conclude
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FIG. 5. (Color online) Size distribution of cooperator clusters for
several values of b in the WWW with system size N = 325,729.
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FIG. 6. (Color online) (a) Giant cluster size in the parameter
space of (fR,b) for rewired networks with N = 10,924, where fR

is the fraction of rewired links. Data are averages over 100 network
configurations. (b) Accumulated size distribution of cooperator
clusters at fR = 0.01 for several values of b.

that the critical behavior of the cluster-size distribution is not
limited to the hierarchical networks, but rather, this behavior
is intrinsic.

Since PD game dynamics generally depends on the number
of links of a network, one may wonder if our results for
different p values [Fig. 1 and Fig. 4(a)] are intrinsic. Thus, we

construct rewired networks in which the degree of each node
remains the same but fR fraction of links are rewired. While
the giant cluster size G(fR,b) looks somewhat different in
Fig. 6(a), the distribution of cooperator cluster sizes exhibits a
critical behavior at a certain value bc for a given fR [Fig. 6(b)].

In summary, we have studied the percolation transition
of cooperator clusters in fractal hierarchical networks. We
found that in the WWW, the cluster-size distribution of
permanent cooperators follows a power law near the perco-
lation threshold. Such a critical behavior is also observed in
the artificial hierarchical networks. The power-law behavior
indicates that cooperators create communities of diverse sizes
at scattered locations. These clusters stochastically form.
In order to improve cooperations on a global scale in the
society, communication channels must be established between
influential individuals.
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[10] J. Gómez-Gardeñes, M. Campillo, L. M. Florı́a, and Y. Moreno,
Phys. Rev. Lett. 98, 108103 (2007).

[11] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A.-L.
Barabási, Science 297, 1551 (2002).

[12] C. Song, S. Havlin, and H. A. Makse, Nature (London) 433, 392
(2005); K. I. Goh, G. Salvi, B. Kahng, and D. Kim, Phys. Rev.
Lett. 96, 018701 (2006).

[13] D. Lee, K. I. Goh, B. Kahng, and D. Kim, Phys. Rev. E 82,
026112 (2010).

[14] M. Hinczewski and A. N. Berker, Phys. Rev. E 73, 066126
(2006).

[15] D. S. Callaway, J. E. Hopcroft, J. M. Kleinberg, M. E. J.
Newman, and S. H. Strogatz, Phys. Rev. E 64, 041902 (2001).

057102-4

http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1146/annurev.soc.30.020404.104342
http://dx.doi.org/10.1146/annurev.soc.30.020404.104342
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1103/RevModPhys.81.591
http://dx.doi.org/10.1103/RevModPhys.81.591
http://dx.doi.org/10.1103/PhysRevE.58.69
http://dx.doi.org/10.1016/j.physrep.2007.04.004
http://dx.doi.org/10.1038/nature06940
http://dx.doi.org/10.1038/nature06940
http://dx.doi.org/10.1038/359826a0
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1103/PhysRevLett.95.098104
http://dx.doi.org/10.1103/PhysRevLett.95.098104
http://dx.doi.org/10.1098/rspb.2005.3272
http://dx.doi.org/10.1098/rspb.2005.3272
http://dx.doi.org/10.1103/PhysRevLett.98.108103
http://dx.doi.org/10.1126/science.1073374
http://dx.doi.org/10.1038/nature03248
http://dx.doi.org/10.1038/nature03248
http://dx.doi.org/10.1103/PhysRevLett.96.018701
http://dx.doi.org/10.1103/PhysRevLett.96.018701
http://dx.doi.org/10.1103/PhysRevE.82.026112
http://dx.doi.org/10.1103/PhysRevE.82.026112
http://dx.doi.org/10.1103/PhysRevE.73.066126
http://dx.doi.org/10.1103/PhysRevE.73.066126
http://dx.doi.org/10.1103/PhysRevE.64.041902

