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Abstract

In scale-free networks, the degree distribution follows a power law with the exponent �. Many
model networks exist which reproduce the scale-free nature of the real-world networks. In most
of these models, the value of � is continuously tunable, thus is not universal. We study a problem
of data packet transport in scale-free networks and de/ne load at each vertex as the accumulated
total number of data packets passing through that vertex when every pair of vertices send and
receive a data packet along the shortest paths. We /nd that the load distribution follows a power
law with an exponent � for scale-free networks. Moreover, the load exponent � is insensitive to
the details of the networks in the range 2¡�6 3. For the class of networks considered in this
work, � ≈ 2:2(1). We conjecture that the load exponent is a universal quantity to characterize
and classify scale-free networks.
c© 2002 Elsevier Science B.V. All rights reserved.
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In the network approach of complex systems, vertices of a graph represent their
constituents such as individuals, substrates, and companies in social, biological, and
economic systems, respectively, and edges the interactions between the two constituents
connected [1–3]. The number of edges incident on a vertex is the degree (or connec-
tivity) of the vertex and one is interested in the probability distribution of the degree,
PD(k), which is measured by the fraction of the vertices whose degree is k, averaged
over an appropriate ensemble. The random network of Erd?os and RAenyi (ER) [4] and
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the small world network of Watts and Strogatz (WS) [5] are exponential networks in
that the degree distribution is Poissonian. However, many real-world networks show
power-law behavior in the degree distributions, and are termed as scale-free (SF) [6].
Examples of SF networks include the world-wide web [7,8], the Internet [9–11], the
citation network [12] and the author collaboration network [13,14] of scienti/c papers,
the protein–protein interaction network [15,16] and the metabolic networks in biological
organisms [17].
There are many models which reproduce such scale-free features. For example,

BarabAasi and Albert (BA) [18] introduced an evolving network where the number
of vertices N increases linearly with time rather than /xed, and a newly introduced
vertex is connected to m already existing vertices, following the so-called preferential
attachment rule. In the original BA model, the probability for the new vertex to con-
nect to an already existing vertex is proportional to the degree k of the selected vertex.
But the generalized versions [19] assign the probability proportional to k + m(a− 1),
a (¿ 0) being a tunable parameter. Then the degree distribution PD(k) follows a power
law PD(k) ∼ k−� with � = 2 + a. Many other models also possess parameters with
which the degree exponent can be tuned continuously. Real-world networks also show
varying values for � [3], mostly in the range 2¡�6 3.

The SF networks show the small world behavior in that the diameter d of the
network, de/ned as the average of shortest distances between every pair of vertices,
scales with the size N , the number of vertices, as d ∼ logN [20]. The small-world
property in SF networks results from the presence of a few vertices with high degree.
In particular, the hub, the vertex whose degree is the largest, plays a dominant role
in reducing the diameter of the system. The transport from one position to another is
mainly carried along the shortest path(s) between them. When a data packet is sent
from one vertex to another through SF networks such as Internet, it is eIcient to
take a road along the shortest path between the two. Then vertices with higher degrees
should be heavily loaded and jammed by lots of data packets passing along the shortest
paths. To prevent such Internet traIc congestions, and allow data packets to travel in
a free-Jow state, one has to enhance the capacity, the rate of data transmission, of
each vertex to the extent that the capacity of each vertex is large enough to handle
appropriately de/ned “load”.
We de/ne and study such a quantity, which we simply call load, to characterize the

transport dynamics in SF networks. To be speci/c, we suppose that a data packet sent
from a vertex i to j is transmitted along the shortest path between them. If there exist
more than one shortest paths, the data packet would encounter one or more branching
points. In this case, we assume that the data packet is divided evenly by the number
of branches at each branching point as it travels. Load contribution to a vertex k from
a pair (i → j) is denoted as ‘(i→j)

k . A simple example for de/ning ‘(i→j)
k is depicted

in Fig. 1. Note that the contribution from the path (i → j) may be diNerent from that
of (j → i) even for undirected networks. Then we de/ne the load ‘k of a vertex k as
the total amount of data packets passing through that vertex when all pairs of vertices
send and receive one unit of data packet between them; ‘k =

∑
i; j ‘

(i→j)
k .

Since the packets are conserved, total load contributed by one pair is simply related
to the shortest path length dij between them, by

∑
k ‘

(i→j)
k = dij + 1. Thus we have
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Fig. 1. The load at each vertex due to a unit packet transfer from the vertex i to the vertex j (from j to i).
In this diagram, only the vertices along the shortest paths between (i; j) are shown.

the sum rule for ‘k :

∑
k

‘k =
∑
i; j

(dij + 1) = N (N − 1)(d+ 1) ∼ N 2d : (1)

One can also de/ne an equivalent quantity associated with bonds rather than vertices in
analogy with the bond percolation problem. In this case, the bond-load contribution to a
bond b from the pair (i → j), denoted as ‘(i→j)

b , is similarly de/ned and ‘b=
∑

i; j ‘
(i→j)
b

is the load of the bond b. The sum rule for the bond-load is
∑

b ‘b=N (N−1)d. In social
network theory, there are several kinds of centrality which measure the importance of
a vertex in a network [21]. One is the degree centrality which simply associates the
degree of a vertex as the measure of power. Another measure is the betweenness
centrality [22]. It is de/ned as the number of times the shortest paths between every
pair of vertices pass through that particular vertex. When there are more than one
shortest path for a given pair, say g, each path contributes 1=g. This quantity is exactly
the same as the load for trees where there is only one shortest path for any pair of
vertices, but is slightly diNerent in general. However, we /nd the two quantities show
very similar scaling behaviors for SF networks [23].
We now introduce the load distribution function PL(‘), which can be measured by

fraction of vertices or bonds whose load is ‘, averaged over an appropriate ensemble.
For SF networks, one may expect it also show the SF features and follow the power
law. If one assumes that the vertex-load ‘ versus the rank s is of the power-law form
‘ ∼ ‘maxs−�, then one can easily see that

PL(‘) ∼ ‘�−1
min

‘�
(2)

for ‘min¡‘¡‘max with �= 1 + 1=� and

‘min ∼ ‘max=N� ∼




Nd if �¡ 1 ;

Nd=lnN if � = 1 ;

N 2−�d if �¿ 1 :

(3)
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For the bond-load problem, assuming the total number of bonds scales with N
as ∼ N 1+�, Eq. (3) is modi/ed to

‘min ∼ ‘max=N�(1+�) ∼




N 1−�d if �¡ 1 ;

N 1−�d=lnN if � = 1 ;

N 2−�(1+�)d if �¿ 1 :

(4)

When �¿ 0, we have an accelerated network [24].
In the following, we review the results reported in [25]. We generate several large

SF networks with tunable parameters and measure the load of all vertices. We /nd
indeed that the load distribution PL(‘) follows a power law PL(‘) ∼ ‘−�. Moreover,
the exponent � ≈ 2:2 we obtained is surprisingly robust, insensitive to the detail of
the SF network structure as long as the degree exponent is in the range, 2¡�6 3.
When �¿ 3, � increases as � increases, however. The universal behavior is also valid
for directed networks, when 2¡ {�in ; �out}6 3. Since the degree exponents in most of
real-world SF networks satisfy 2¡�6 3, the universal behavior is interesting.
First, we discuss the static model of SF network which is constructed as follows.

There are N vertices in the system from the beginning, which are indexed by an integer
i (i = 1; : : : ; N ). We assign the weight pi = i−� to each vertex, where � is a control
parameter in [0; 1). Next, we select two diNerent vertices (i; j) with probabilities equal
to the normalized weights, pi=

∑
k pk and pj=

∑
k pk , respectively, and add an edge

between them unless one exists already. This process is repeated until mN edges are
made in the system. Then the mean degree is 2m. Since edges are connected to a
vertex with frequency proportional to the weight of that vertex, the degree at each
vertex is given as

ki ∼
(
N
i

)�
(5)

and
∑

j kj = 2mN . Then it follows that the degree distribution follows the power law,
PD(k) ∼ k−�, where � is given by �=1+1=�. Thus, adjusting the parameter � in [0,1),
we can obtain various values of the exponent � in the range, 2¡�¡∞.
Once a SF network is constructed, we select an ordered pair of vertices (i; j) on

the network, and identify the shortest path(s) between them and measure the load on
each vertex along the shortest path using the modi/ed version of the breath-/rst search
algorithm introduced by Newman [26]. We have measured the load ‘i for the networks
with various �. It is found numerically that the load ‘i follows the formula,

‘i∑
j ‘j

∼ 1
N 1−�i�

; (6)

with �=0:80(5). The value of � is insensitive to diNerent values of the exponent � in
the range, 2¡�6 3 as shown in Fig. 2. The total load,

∑
j ‘j scales as ∼ N 2 logN

con/rming the small-world property that d ∼ lnN . From Eq. (6), it follows that the
load exponent is �=1+1=� ≈ 2:2(1), independent of � in the range, 2¡�6 3. Direct
measure of PL(‘) also gives � ≈ 2:2(1) as shown in Fig. 3. We also check � for
diNerent mean degrees m=2, 4 and 6, but obtain the same value, � ≈ 2:2(1) as shown
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Fig. 2. Plot of the normalized load ‘i=
∑
k ‘k versus vertex index i in double logarithmic scales for the

scale-free networks with diNerent degree exponents �=2:25 (×), 2.5 ( ), 2.75 (+), and 3.0 (♦). The solid
line is the linear /t and has a slope −0:80. Simulations are performed for N = 10; 000 and m = 2 and all
data points are averaged over 10 con/gurations.
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Fig. 3. Plot of the load distribution PL(‘) versus ‘ for various � = 2:25 (♦), 2.5 (�), 2.75 (©) and 3.0
( ) in double logarithmic scales. The linear /t (solid line) has a slope −2:2. Simulations are performed for
N = 10; 000 and m= 2 and all data points are averaged over 10 con/gurations. Lower inset: Same plot for
� = 4 (+), 5 (×), and ∞ (∗). The line having a slope −2:2 is drawn to compare the data with the case
for 2¡�6 3. Upper inset: Plot of PL(‘) versus ‘ for diNerent m = 2, 4 and 6, but for the same � = 2:5.

in the upper inset of Fig. 3. Thus, we conclude that the exponent � is a generic quantity
for this network. However, for �¿ 3; � depends on � in a way that it increases as �
increases. Eventually, the load distribution decays exponentially for � = ∞ as shown
in the lower inset of Fig. 3. Thus, the transport properties of the SF networks with
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Fig. 4. (a) Plot of the load distribution PL(‘) versus ‘ for the evolving model. The data are obtained for
�=2:25 (×), 2.5 ( ), 2.75 (+) and 3.0 (♦). The /tted line has a slope −2:2. (b) Plot of the load distribution
PL(‘) versus ‘ for the directed case. The data are obtained for (�in ; �out) = (2:1; 2:3) (♦), (2:1; 2:7) (+),
(2:5; 2:7) ( ) and (2:5; 2:2) (×). The /tted line has a slope −2:3.

�¿ 3 are fundamentally diNerent from those with 2¡�6 3. This is probably due to
the fact that for �¿ 3, the second moment of PD(k) exists, while for �6 3, it does
not. Note that Eqs. (5) and (6) combined gives a scaling relation between the load
and the degree for this network as

‘ ∼ k(�−1)=(�−1) : (7)

Thus, when and only when �= �, the load at each vertex is directly proportional to its
degree. Otherwise, it scales nonlinearly.
Next, we generate SF networks in an evolving way according to the method proposed

by Kumar et al. [27], which is similar to the method proposed by Simon in 1955 in their
idea [28]. The stochastic rule includes two ingredients, the duplication and the mutation.
At each time step, a new vertex is introduced and it creates m edges connecting to
existing vertices by the following rule: Select an existing vertex randomly. Associated
with it are m vertices to which edges were added previously at its creation. Add an
edge to the selected vertex or to any one of the associated vertices with probability
pK and 1−pK , respectively. Repeat this m times. The network generated in this way
exhibits a power law in its degree distribution, where the degree exponent is given by
�=(2−pK)=(1−pK). The BA model is the case when pK =0:5. Through this model,
we also obtain the load exponent � ≈ 2:2 for diNerent values of the degree exponent
in 2¡�6 3 as shown in Fig. 4a, which con/rms the previous result. The load-degree
scaling, Eq. (7), is also satis/ed.
Next, we consider the case of directed SF network. The directed SF networks are

generated following the static rule. In this case, we assign two weights pi = i−�out and
qi = i−�in (i = 1; : : : ; N ) to each vertex for outgoing and incoming edges, respectively.
Both control parameters �out and �in are in the interval [0; 1). Then two diNerent vertices
(i; j) are selected with probabilities, pi=

∑
k pk and qj=

∑
k qk , respectively, and an edge

from the vertex i to j is created with an arrow, i → j. The SF networks generated
in this way show the power law in both outgoing and incoming degree distributions
with the exponents �out and �in, respectively. They are given as �out = (1 + �out)=�out
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and �in = (1+�in)=�in. Thus, choosing various values of �out and �in, we can determine
diNerent exponents �out and �in. Following the same steps as for the undirected case, we
obtain the load distribution on the directed SF networks. The load exponent � obtained
is ≈ 2:3(1) as shown in Fig. 4b, consistent with the one for the undirected case, also
being independent of �out and �in in 2¡ {�out ; �in}6 3. Therefore, we conjecture that
the load exponent is a universal value for both the undirected and directed cases.
In conclusion, we have introduced a physical quantity, load {‘i} associated with

each vertex i motivated by the problem of data packet transport on networks. For the
SF networks generated in various ways, it is found that the load distribution follows a
power law, PL(‘) ∼ ‘−�. The load exponent � ≈ 2:2(1) turns out to be insensitive to
the details of the network structure, as long as the degree exponent � is in the range
(2; 3]. Moreover, it is also the same for both directed and undirected cases within our
numerical uncertainties. Therefore, we conjecture that the load exponent is a generic
quantity to characterize SF networks. Since the degree exponents for most of real-world
SF networks are in the range 2¡�6 3, the universal behavior we found may have
interesting implications to the interplay of their structure and dynamics, and could be
taken as a generic nature of the SF networks by which we can classify them into
universality classes. Work in this direction is in progress [23].
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