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On the evolution of scale-free graphs
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We study the evolution of random graphs where edges are amgety one between pairs of weighted ver-
tices so that resulting graphs are scale-free with the degrponent. We use the branching process approach
to obtain scaling forms for the cluster size distributionl sime largest cluster size as functions of the number of
edged. and verticedN. We find that the process of forming a spanning cluster isittizely different between
the cases of > 3 and 2< y < 3. While for the former, a spanning cluster forms abruptlg atitical number
of edged.c, generating a single peak in the mean cluster &zas a function oL, for the latter, however, the
formation of a spanning cluster occurs in a broad rande generating double peaks {g).

PACS numbers: 89.70.+c, 89.75.-k, 05.70.Jk

Recently, many studies have been performed on complewe study how the cluster evolution of SF graphs proceeds as
networks. Such studies are mostly influenced by the randoradges are added. Besides confirming the previous results in
graph theory proposed by Erdés and Rényi (EIR) [1]. In theRef. [8,110], we show that the process of forming a spanning
ER model,N number of vertices are present from the begin-cluster for the case of 2 y < 3 is fundamentally different
ning and edges are added one by one in the system, connefitem that ofy > 3. Wheny > 3, as in the case of the ER
ing pairs of vertices selected randomly. A remarkable tesulgraph, there exists a critical number of edggsat which a
ER obtained is that a giant cluster of siz¢N), a spanning spanning cluster forms through many small clusters coalesc
cluster, appears abruptly whénreaches its threshold value ing, and the mean cluster size diverges at fihiggN in the
L¢, which is0o(N). Note that the formation of such a span- thermodynamic limit. In other words, a percolation traiosit
ning cluster can be viewed as a percolation transition eccuroccurs at .. When 2< y < 3, however, large or small clusters
ring at the critical probabilityp. = 2L¢/N(N—1) = 0(1/N).  grow in a similar manner as a whole without sudden coales-
While the ER graph is pioneering, it is too random, and var-cence occurring. As a result, the mean cluster size does not
ious properties of the ER graph are not in accordance witlliverge anywhere, but instead exhibits two peakkpatand
those of complex networks recently discovered in real worldL»>. NearLp;, some small clusters merge together forming a
For example, the distribution of the number of edges indidenmuch larger one, but it does not span the entire system. After
on each vertex, called the degree distribution, is Poisgoni passinglLp, the largest cluster as well as smaller ones con-
for the ER graph, while it follows a power law for many real- tinue to grow, and the largest one becomes as large(blg
world networks, called scale-free (SF) netwotks [2.3, 4].  aroundLpp. Throughout this Letter, we will denote the case

It was shown that a SF network can be generated by follow©f Y > 4 as (1), 3<y <4 as (Il), and 2<y < 3 as (Ill). The
ing a similar way to used in the ER modgl [5, 6].numberof ~ Schematic diagram of the cluster formation is shown inHig. 1
vertices are present from the beginning and edges are add¥¥¢ obtain characteristic numbers of edges for each case as

one by one. For SF networks, however, each vertex with th& function ofN and summarize them in the phase diagram
index of an integef (i = 1,---,N) is not identical, but is as- Shown in Fig[R. Moreover, we derive scaling forms for the

signed a normalized weigh =i~/ Z?‘:l j~® with a control cluster size_ distribution and the largest cluster sizeyditally
parameten € [0,1). Each edge connects a pair of verticesand numerically. o N

(i,]) selected with probabilitysw;. Thus the ER graphis  Power-law degree distributior— The probability pq,; (k)
generated witlr = 0. The process of adding edges is repeatedhat a vertex has degreé follows approximately a Poisso-
until the total number of edges in the system reatheBhis ~ Nian form aspq;i (k) ~ (ki)exp(—(ki)) /K! for largek and large
process of constructing networks is called the static modelN. Here the average degree of the veitexgiven by(ki) =
WhenL is in the intermediate regime, < L < Ly = LN,  K(L)i~ 0, whereK(L) = (ki) = 2L/qn[1/(y— 1)], with

with L, being specified below, the degree distribution follows{n(X) = 3L1i7*. Note thatln(x) converges to the Riemann

a power law,pg(K) ~ kY with y =1+ 1/a € (2,0). How-  zeta function{(x) for x > 1 but scales asl’~*/(1—x) for
ever, wherL <L, (L > Ly), the network is too sparse (dense), x < 1. WhenL is small enough, most vertices have no edge.
so that the degree distribution does not follow the SF bettavi When(k;) ~ 1, thatis,L ~ L, = {n[1/(y—1)] ~ NO-2/(-1),

The static model was introduced to generate SF networks witthe SF behavior in the degree distribution begins to appear.
variousy, being used to study various problems. However, itWhenL >> L, the degree distribution is derived as

has not been studied yet how clusters evolve as the number of
edged. increases, which is the goal of this Letter.

The percolation problem of SF networks has been stud-
ied [7,18,19,L10], reversely, that is, by removing randomly-
selected vertices as well as their attached edges. In thisrLe wherec is given asc ~ (y— 1)[K(L)]Y"%/N.

N
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FIG. 1. Schematic picture for the comparison of cluster evoh s ~ L2/ (N7 A 2) s~ (L/N)" 2/

between (1,11) (a) and (ll1) (b).

R (z) can be obtained by invertig= w/f(w), and?(z) is

percolating phase then obtained by using (z) = zg(® (2)).

16) (A%) o (N%> O(N) o (N?ff) Critical point— The values ofr (1) and% (1) are 1 only

| : : : : when f’(1) < 1, while they are smaller than 1 whdf(1) >
0 L [Le: L] Le [Ly2] Lo L 1. Thus the conditiorf’(1) = 1, which is the same as the
scale-free condition (k?)/ (k) = 2 [13], leads to a characteristic number

of edged._,

FIG. 2: Schematic phase diagram of the static model. The B&ke
ior of the degree distribution appears betwegandL,. A spanning
cluster emerges af; for (1,11), and around_p, for (lll). The quanti-
tiesin [...] are only for (ll1).
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For largeN, L¢ is N(y—1)(y—3)/(2(y— 2)?) for (1,II), and
_ _ N2V-2/-1(y — 1)2/(2(y — 2)2Cn[2/(y - 1)]) for (Ill). We

Branching process approach- As L increases beyonid;,  will show later that for (1,1), a spanning cluster appeats a
small clusters form. However, clusters are still sparseafnd L, but for (l1l), the size of the largest cluster does not reach
tree structurel[1]. The formation of such sparse clustens cao(N) atL.. Thus more edges are needed to generate a span-
be understood through the multiplicative branching precesning cluster.
approachl[11]. Here we introduce the probability distribu- Cluster size distribution— The asymptotic behaviors of
tion P(s) as the number of vertices belongingselusters,  p(s) andR(s) for larges can be obtained from the singular
clusters withs vertices, divided byN [[12]. Also we define parts of ?(z) and® (z) asz— 1, respectively. In the static
another probability distributioR(s) as the number of edges model, the characteristic behaviors®fz) and (z) depend
followed by s-clusters divided by 2. The generating func- on the degree exponeptclassifying them into the three cases,
tions of those quantities are defined®&) = ysP(s)z> and (1), (I1), and (Ill). Each case is again classified into (ipstit-

% (2) = 3sR(s)Z, respectively. Both summations run over fi- jcal (L < L), (ii) critical (L = L¢), and (jii) supercritical cases
nite clusters only.[11], and then when clusters are spaese thL > L.). Our results forP(s) are listed in Table | for each
following relations hold: case.

Emergence of spanning cluster In cases of (i) and (ii),
the size of the largest clust&is obtained self-consistently
where g(w) = Y& opa(K)w* and f(w) = ¢(w)/(k) with through the relationy s .sP(s) = 1— S/N ysing P_(s) in Ta-
(K" = 52 k"pg(K). blell. For example, whe|ﬁ>(§) ~s', Sis obtained to be

To apply Eq. [2) to the static model, we use theS~ N". Thuswher = L (i), S~ N3 for (1) [1] and ~
following form valid in the limit 1— w < 1; g(w) ~  NO2/0"Yfor (II) [14]. For (Ill), using P(s) ~ (Ns/Lc)* Y,
(1/N)sN exp(k)(w—1)]. Then it is obtained thaz =  We obtainS~ N¥~2/("1), but we show below that this is not
W+ 3% an(1—w)" for K(L)(1—w) < 1, wherea; = f'(1), the incipient spanning cluster. The size of the largest-clus
ay a negative constant, and so on, while ter for the subcritical case (i) 8~ max{K(L)/|A],|A] %/}

for (1), ~ K(L)/|4| for (1), and ~ K(L) for (Ill), with A =
ly—2| . L (L—L¢)/Le.

Z=0+ ) an(l-0)"+AL-w)" ... ®3) In case of (jii), the theory of the multiplicative branch-
= ing process yields the size of anfinite cluster through
N(1—2(1)). Thus it can be identified with the largest clus-
ter if it is larger thanS at L. From Eg. [®), - 2(1) ~

(4)

R (2 =2H(%(2)) and ?(2)=29%(2), (2

for K(L)(1— w) > 1, where|x] is the floor function ok and
A=T(3—-y)[K(L)/NY-D]=2 The generating functiom =
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FIG. 3: Data collapse o8/N/T versusANY/¥ for Eq. [3) withy =
3.6, andN = 10*(A), 10°(¢), 16f(0), and 13 (). Heret = (y—
1)/(y—2) =13/8, p=(y—1)/(y—3) = 13/3, andL¢/N ~ 0.305
from Eq. [4) are used. Inset: the same data plotted vérgNscross
atL/N ~ L¢/N.

(2L/N)(1— % (1)), and the value of £ % (1) = 1— wis ob-
tained by solving Eq[3) wita= 1. Thus we obtainS~ APN

with B =1 for (I) andp = 1/(y— 3) for (ll) in the regime of
ANYM > 1, while S~ (L/N)YGYN for (Ill) when A > 1,

where a new scaling exponant 3 for (1) and(y—1)/(y—3)

for (II) was used. The behaviors of (i), (ii), and (iii) leanl &
scaling ansatz for (1,11),

S~ NYT W) (AN, (5)

wheret is given in Tabldll, an&(, ;) (x) is constant fofx| <
1 and behaves a8 for x> 1 and|x|~® for x < —1 with =2

for (1) and 1 for (I1). In the thermodynamic limit, a spanning

cluster emerges if onliy > L. On the other hand, for (ll1),
S~ NV2/-D gy (n), (6)

whereW ;) (x) is a constant fofx| < 1, behaving agl +x)

whenx ~ —1 andx"/(-Y) for x> 1. The size of the largest

cluster iso (NY-2/(y-1)) ‘which is not as large as(N), even
whenL > L, so thalc = 0 (N2Y-2/(y-1)) is not a percolation
threshold. The largest cluster si@eecome® (N) only when
L becomes as large agN).

To check such scaling behaviors&fwe perform numeri-
cal simulations foly = 3.6 andy = 2.4. As shown in Figd13
and [3, the data 08/N(-2/0~1) with differentN collapse
with the scaling variablesANY/" for y = 3.6 (Il), and A for
y= 2.4 (Ill), respectively. Foy = 3.6, Lc/N ~ 0.305 theoret-
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FIG. 4: Data collapse 08/N(Y-2/(y-1) versusA for Eq. [@) with
y=24 andN = 10*(A), 10°(¢), 168(0), and 13(0). Here
Le/N%7 ~ 2.08 from Eq. [@) is used. Inset: plot &at L. ver-
sus N for y = 2.4(0), 2.6(¢), and 28(0), being in accordance
with S~ N(V-2)//(y-1) represented by the dotted, dashed-dotted, and
dashed line, respectively.

edges, which continues up to= L¢, and then a spanning
cluster forms by the abrupt coalescence of those smallhist
as shown in FidJ1. Since we do not count the spanning cluster
in calculating(s), (s) decreases rapidly dspassed. Thus

the mean cluster size exhibits a peak at L, which diverges

in the thermodynamic limiN — c. The scaling behaviors of
SandP(s) in Tablell lead to another scaling ansatz

(s) = N'H d(ANYH), ()

where®(x) is a constant whefx| < 1, and behaves as!
whenx > 1, and|x|~* for (1) and x| ~(¥-3/(v-2) for (Il) when

x <« —1. Such behaviors can be confirmed with numerical
data fory = 3.6 in Fig.[3.

For (IlIl), however, the mean cluster size does not diverge
at any value ol but has two blunt peaks (Fifl 6). First, it
has a small peak dt = Lpz, but it increases again dsin-
creases beyonty;. Edges newly introduced either create
new clusters of size larger than 1 or merge small clusters to
the larger one with size not as large@8\). WhenL reaches
Lp2 = 0(N) where the second peak arises, the largest clus-
ter becomes as large agN). WhenL is nearLc, (s) can
be evaluated througks) = ¥s:ssP(s), and it follows that
(s) —1~ min{sc&y, S*V}1, wheres; is a characteristic clus-
ter size defined in Tab[@ I, and the constant term 1 originates
from the isolated vertices whose fraction is nearly 1. Sice

ically obtained in Eq.[T4) is confirmed by the data crossing afS) increases (decreases) with increadirfor L > Le, (s) is

Le/N =~ 0.306(2).

maximal atS= s, occurring al.p; = bLc = 0 (N2V-2)/(y-1))

Mean cluster size— The difference in the cluster evolution With b being a constant depending gnThat is verified nu-
for (1), (I1), and (Ill) appears more apparently in the mean merically as shown in the inset of Fig. 6. Hog < L <N,

cluster size(s) defined ags) = ys.sSP(s). The quantity(s)
is similar to the susceptibility defined in the percolatibadry
but here we exclude the largest cluster evenlfer L. For

(1,IN), as L increases, many small clusters grow by attaching

using(s) = #’(1), we obtain(s) to be
y-1

se1rstoe (L) e (57 @



Summary— We have studied how clusters of SF graphs
are created and evolve as the number of edges increases.
We obtained the cluster size distribution, the largesttelus
size, and the mean cluster size as functions of the numbers of
edgesL and verticedN. Those quantities behave differently
wheny > 3 and 2< y < 3. For the former, a giant spanning
cluster forms through a sudden coalescence of small cjster
exhibiting a percolation transition, while for the latt&rioes
gradually, and the mean cluster size shows double peaks at
distinct numbers of edge&p; andLpp. This result implies
that the fragmentation process of SF graphs under random
0.2 0.25 03 0.35 0.4 failures on edges is_ qualitatively similar to (differe[mrfm)

L/N the one under intentional attack whe 3 (2 <y < 3) [4,18].
Finally, it is noteworthy that recently Aiellel al. [15] studied
FIG. 5: Mean cluster sizés) as a function ofL/N with y=3.6  the possibility of forming a spanning cluster for gividrand
for N = 104(A), 1CP(¢), 16°(0), and 1G(0). The peak heights L = (N/2){(y—1)/{(y) as a function of, and found that a
increase withN. The inset shows the data collapse of the rescaledgspanning cluster can exist only fgr< v, ~ 3.48. However,
mean cluster sizés) /NY/H versusANY/¥. the way of constructing a SF graph in their model is different

(s

from ours.
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