Available online at www.sciencedirect.com

sc:encE@DlHEcT” NUcLEAR[=]
PHYSICS

Nuclear Physics B 696 [FS] (2004) 351-380

www.elsevier.com/locate/npe

Evolution of scale-free random graphs: Potts model
formulation

D.-S. Le€", K.-I. Goh, B. Kahng, D. Kim

School of Physics and Center for Theoretical Phys&eoul National University, Seoul 151-747, South Korea
Received 7 April 2004; accepted 11 June 2004

Abstract

We study the bond percolation problem in random graph#’ afieighted vertices, where each
vertexi has a prescribed weigh; and an edge can connect verti¢eand j with rate P; P;. The
problem is solved by the — 1 limit of the ¢-state Potts model with inhomogeneous interactions
for all pairs of spins. We apply this approach to the static model ha®jing i ** (0 < 1 < 1) so
that the resulting graph icale-free with the degree exponént 1+ 1/u. The number of loops as
well as the giant cluster size and the mean cluster size are obtained in the thermodynamic limit as
a function of the edge density, and their associated critical exponents are also obtained. Finite-size
scaling behaviors are derived using the largest cluster size in the critical regime, which is calculated
from the cluster size distribution, and checked against numerical simulation results. We find that
the process of forming the giant cluster is qualitatively different between the cases &f and
2 < X < 3. While for the former, the giant cluster forms abruptly at the percolation transition, for the
latter, however, the formation of the giant cluster is gradual and the mean cluster size foNfinite
shows double peaks.
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1. Introduction

In the last few years graph theoretic apgeh has been of great value to characterize
complex systems found in social, informational and biological areas. Here, a complex
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system is represented as a graph or network whose vertices and edges stand for its
constituents and interactions. A simplesbdel for such is the random graph model
proposed by Erdis and Rényi (ER]1]. In the ER modelN number of vertices are present
from the beginning and edges are added one by one in the system, connecting pairs of
vertices selected randomly. Due to the randomness, the distribution of the number of edges
incident on each vertex, called the degreeritigtion, is Poissonian. However, many real-
world networks such as the World-wide web, the Internet, the coauthorship, the protein
interaction networks and so on display power-law behaviors in the degree distribution.
Such networks are called scale-free (SF) netwf2ksThanks to recent extensive studies
of SF networks, various properties of SF network structures have been uncf8+«sgd

There have been a few attempts to describe scale-free networks in the framework of
equilibrium statistical physics, even though the number of vertices grows with time in many
real-world networkg6—10]. In this approach, various mathematical tools developed in
equilibrium statistical physics may be used to understand network structures. To proceed,
one needs to define equilibrium network ensembles with appropriate weights, where one
graph corresponds to one state of the ensemble. In a canonical ensemble, the number of
edgesL is fixed: given a degree distributiop, (k), the mean degre&) = > kp, (k) is
obtained. Then the number of edges obtained through the reldtien{k) N /2, can be
fixed. A degree sequence specifies the number of vertices with degeg, (k)N [11,
12].

A grandcanonical ensemble can be also defined, where the number of edges is also
a fluctuating variable while keeping the SF nature of the degree distributions. The
grandcanonical ensemble for SF random graphs is realized in the static model introduced
by Goh et al[13] or in its generalized version investigated in H&#]. The name ‘static’
originates from the fact that the numbédnertices is fixed from the beginning. Here each
vertexi has a prescribed weigl#, summed to 1 and an edge can connect verticasd
Jj with rate P; P; [15-17] A chemical potential-like parametdf that can be regarded as
“time” in the process of attaching edges controls the mean number of edges $a)that
increases with increasing.

As the parametek increases, a giant cluster, or giant component, forms in the system.
Here the giant cluster means the largest cluster of connected vertices whos&Xixg .is
Often such a giant cluster appears at the percolation transition point. In equilibrium
statistical physics, the percolation problem can be studied through a spin mode}, the
state Potts model in thg — 1)-limit [18]. Using the relation, in this paper, we study the
evolution of SF random graphs from the pegsfive of equilibrium statistical physics. To
be specific, we construct thestate Potts model, where the interaction strength between
each pair of vertices is inhomogeneous oe ttomplete graph. In this formulation,
since the interaction strengtki is tunable, the mean number of eddés varies. Thus,
the grandcanonical ensemble is taken in the network representation. However, since the
number of spins (vertices) is fixed, the formulation corresponds to a canonical ensemble
in the spin-model representation. Note that our model is different from the one studied by
Dorogovtsev et al[19] where the Potts model is defined as a given fixed network so that
each edge represents homogeneous interactions.

The formulation of the spin model facilitates explicit derivation of various properties of
the SF network. Thus we derive the formula foe igiant cluster size, the mean cluster size,
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and in particular, the number of loops and clustdihese quantities are explicitly evaluated
analytically for the static model witl®?; oci 7* (0 < < 1) in the thermodynamic limit as

a function of the edge density, and their critical properties are also studied. The degree
exponent is related tqu by A = 1+ 1/u. Moreover, their finite-size scaling behaviors are
obtained using thénite largest cluster size for finit& that in turn is evaluated from the
cluster size distribution. From these, we are able to elucidate the process of formation of the
giant cluster. While for the case> 3, the giant cluster forms abruptly at the percolation
transition pointK,, for the case 2 A < 3 where most real world networks belong to,
however, the formation of the giant cluster is gradual and the mean cluster size foMfinite
show double peaks.

In fact, the percolation problem of SF networks has been studied, but in a different way,
that is, by removing vertices one by one as vasltheir attached edges from an existing SF
network[20-22] The percolation transition was understood by using the branching process
approach, which is supposed to be valid near plercolation transition point, where the
network is sparse. In this paper, we provide the criterion for the validity of the branching
process approach for a general degree distribution, and show that the branching process and
the Potts model approaches are equivalent for the static model. Finally, note that while the
branching process approach cannot count the number of loops, the Potts model formalism
we use here enables us to countit.

This paper is organized as follows. We introducésiction 2an ensemble of random
graphs where each vertex is weighted, and preseé3gation 3he Potts model formulation
to derive graph theoretical quantities from its free energySéation 4 the connection
between the Potts model formulation and the branching process approach is discussed. The
general results dbection 3are applied to the static model 8ection 5o obtain explicitly
the giant cluster size, the mean cluster size and the mean number of loops and clusters as a
function of K. The cluster size distribution and the largest cluster size in finite size systems
are obtained irsection 6 The finite-size scaling is presented and compared with numerical
simulation results irsection 7 Finally Section 8contains summary and discussion.

2. Random graphswith weighted vertices

Suppose that the number of vertichsis fixed (static) and each vertéex=1,..., N
is given a probability?; summed to 1. The ER model of random graphs corresponds to
assigningP; = 1/N for all i. To construct a SF graph, we uge~ i * with 0 < u < 1.
However, for the time being?; is arbitrary as long a®; « 1 for alli.

In each unit time duration, two verticésand j are selected with probabilitie® and
P;. If i = j or an edge connectingand j already exists, do nothing; otherwise, an edge
is added between the verticegnd j. This process is repeated fofK times. Then the
probability that a given pair of verticésand;j (i # j) is not connected by an edge is given
by (1 —2P; Pj)NK ~ ¢=2NKFiP; '\hile that it does is 1 e 2VKFiPi Here we used the
condition P; « 1. The factor 2 comes from the equivalenceigf) and (ji). We use the
“interaction” parametek for later convenience which controls the edge dendity/ N.
Since each edgg;; is produced independently, this process generates a grapith
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probability
P(G) = l_[ (1_6_2NKPin) l_[ o—2NKP;P;
b,’jEG bij¢G
— o 2NKY. PP l_[ (eZNKP,-Pj _ 1)
b,’jEG
Ze*NK(lfMZ) 1_[ (eZNKP,'Pj _ 1)7
b,‘jEG

1)

where we used the notatiolf,, = vazl P!'. By a graphG, we mean a configuration
of undirected edges connecting a subsetNgiV — 1)/2 pairs of labeled vertices =

1,2,...,N.

We then evaluate the ensemble average of any graph theoretical quahtity

(A)=)_ P(GAG).
G

()

One example is the degrégof a vertexi, the number of edges incident onTo do this,
the generating function df, g;(w) = (0" ), is first calculated as

gi(w) = 1_[ [E_ZNKPiPJ _|_w(1_ e—ZNKP,-Pj)]-
J (D)
From this, one has

d —2NK P; P;
(ki) = = gi (@) T Z(l—e i,
J D)
and the average degrée is
L) 1 1 —2NK P; P;
<k)=T:NZ(ki>:ﬁZ(l_e ’)~
i i#]

Also,

d 2
(k?) = (‘“@) 8i ()

w=1

J (D) J(ED)
= (ki) + (ki)? — Z (1- eiZNKP"PJ')Z.
J D
We remark thaEg. (3)is rewritten as

gi(w) ~ e~ (L-o) (ki)

|: Z (1_6—2NKP,-P]-):| + Z ¢ 2NK P P; (1_

®3)

(4)

(%)

e—ZNKP,'Pj)

(6)

(7)
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with (k;) in Eq. (4)when|(1 — w)(1 — e 2NKPiPi)| « 1 for all j (). Itimplies that the
probability thatk; is equal tok, pg, i (k) = (5, k), is given by

k \k
T o) =&~
=0 k!

1
pd.ik) =

E dﬁgi (8)

for k > 1. Other quantities are discussed later on.

3. Pottsmodel
3.1. Potts model and random graph

It is well known that theg-state Potts model provides a useful connection between
the geometric bond percolation problem and the thermal systems through the Kasteleyn
constructiof18]. Theqg — 1 limit of the Potts model corresponds to the bond percolation
problem. The same approach can be used for the random graph problem. From the
viewpoint of the thermal spin system, this is basically the infinite range model since all
pairs of spins interact with each other albhgith inhomogeneous interaction strength.

Consider they-state Potts Hamiltonian given by

N
—H=2NKZPiPJ-8(Ui,oj)—I—hoZ[qS(oi,1)—1], (9)

i>j i=1
whereK is the interactiong is a symmetry-breaking field,(x, y) the Kronecker delta
function, ando; the Potts spins taking integer value2l...,q =r + 1. We use the
notationr = ¢ — 1. The partition functior¥ y (¢, ko) can be written as
Zy(g.ho)=Tre "
— Trl_[[1+ (eZNKP,'Pj _ 1)8(0’,‘, Uj)] HehO(QS(Gi,l)—l)’ (10)
i>j i

where Tr denotes the sum owg! spin states. Expanding the first product and taking the
Tr operation, one has

Zn(q,ho) = Z l_[ (eZNKP"Rf —1) l_[(e”ho + re*ShO)"Gm, (11)
G b,‘jGG s>1

whereng(s) is the number ofi-clusters, a cluster with vertices in a given graply.
Comparing this witteq. (1) one immediately notices that

Zn(q,ho) = NKQA=M2) Z P(G) H(e”ho + reﬂ'ho)nG(S). (12)
G s>1

In particular, Zy (g, 0) = eNKA=M2)(4C) 'whereC = 3" ng(s) is the total number of
clusters in graplt;. ThusZy (g, 0) is the generating function af.
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The magnetization of the Potts model is defined as
(q, ho) = 18|nZ(h) (13)
m(q, ho) = -5 T N(g,ho
It can be written as

rrho g7Y110

<chusteri srho+reﬂh0](%) Hcmsterée”h‘) + reﬂ'ho)>
(Hclusterée”ho + re*ShO)) :

If we introduce the cluster size distributidi(s) =n(s)(s/N) with n(s) = (ng(s)) and
the generating functio®(z) = Zgl P(s)z*, the magnetization is, when=1,

(14)

m(q, ho) =

m(L ho)=Y P(s)(1—e ") =1-P(e"0). (15)

s>1

The generating functiorP(z) will be used inSection 6to investigate the asymptotic
behavior of the cluster size distribution.

Whenhg = 0, the magnetization vanishes for finite However, when we take the limit
ho — 0 after the thermodynamic limiV — oo, the contribution from the largest cluster
whose size i can survive to give

m(1, ho — 0) =<%>, (16)

if S/N is finite. Let us define a giant cluster by a cluster whose siz@ (). Then
m(1, ho — 0) is the ratio of the giant cluster size 9, if it exists, and the system is
considered as being in the percolating phase(if, 1o — 0) is non-zero. For simplicity,
we will call m(1, ho — 0) the giant cluster size and denote ithy

The susceptibility defined ag(q, ho) = (1/q)(3/0ho)m(q, ho) on the other hand is
related to the mean cluster size:

— fm i —sho _
x(Lho—0)= fim fim 3 P(se" = Y;) SPs), (17)

whereho(S) — oo is used with(S) the ensemble average of the largest cluster size, which
we call simply the largest cluster size. We will dengtél, 1o — 0) by 5. Note that our
definition of 5 is normalized with respect to the total number of vertices instead of the
number of vertices belonging to finite clusters.

The number of loop¥jaop is related to the total number of clustershrough

SinceZy (g, 0) ~ (¢€), one can notice that the number of loops per vettégop) /N is
given as

(Nioop) (L) 190
;Vp ZW—1+N—[IHZN(Q O)] (19)

We will denote(Nioop) /N by £ and call it the number of loops for simplicity.




D.-S. Lee et al. / Nuclear Physics B 696 [FS] (2004) 351-380 357

3.2. Partition function

A convenient way to evaluate the partition function is to resort to the vector-spin

representation wherq one associatesﬂhnen§ional vectoﬁ(m) of unit length to each
spin valueo;, where S(1) = (1,0,...,0) and S(o;) with 6; = 2,3,...,¢ point to the
remainingr corners of the-dimensional tetrahedron (See. 1). Then one can represent
the Kronecker delta function as a dot product betwg&en

8(o1,07) = §(r§(ai)~§(oj)+l). (20)

Using this, the interaction term Bg. (9)can be written as

2
(ZPS@)) : (22)

The perfect square is then éiarized through the identity dy e=*2Y = /x Jaeb™/ ),
Thus we have

1
2NK Y PiPjs(0i.0}) = NK(; - M2> +

rNK
i>j q
Zn(q,ho)

_ Tr[eNK(qle) (4”K)§ezl{v=1rhﬂo~§(o,-) /dye*'ﬁ’zyszrrNZiN:l Pi}~§(ai)i|’
rqN

(22)

where the integration is over thredimensional space anlﬁb = (ho,0,...,0). Now the Tr
operation can be performed for each spin independently. Defining

- - 1 22
[hy==" "5, (23)
one then has

47TK _% 1_ N rgN o o
ZN(q.ho) = (rq—N> gNeVEG MZ)/dye_ZTy2+Z{\/:1|nC(ho+NP,y). (24)

Provided(1/N) Zf\'zllnf(ﬁo + N P;y) has a well-defined limit a& — oo, one can

apply the saddle point method Ex. (24) where the integral is replaced by the value of

the integrand at its maximum. The maximum is Jorhich is a solution of the saddle-point

q=2 q=3 q=4

7O\

Fig. 1. Vector representations gfstate Potts spins with = 2, 3, and 4.
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equation

N

- 1 ~ - -
%y:m E V)—,In;“(ho~|—NPl~y). (25)
i=1

When kg = 0, y = 0 is always a solution oEg. (25) but the spontaneous symmetry-
breaking solutions { # 0) with the Potts symmetry may appear for larle When

the symmetry-breaking field is applied along the 1-directibn= (ho, 0, ...,0), the
non-trivial physically relevant solution oEq. (25)is expected in the sub-manifold

y = (y,0,...,0). The limit g — 0" then selects one of thg equivalent spontaneous
symmetry-breaking solutions. With this in mind, we may restrict our attention to the one-
dimensional sub-manifold ofin Eqgs. (24) and (25As a result, we then have, as— oo,

1 1
S0 Z(g. ho) =Ing + K(g - M2> —rE(y. ho), (26)
with
F(y. ho) = —y - ZIn;(thPly 9. (27)
where
h —h
+re
h — "51(0) —, 28
¢(h.q) = Gzle T (28)

andy is the solution of the one-dimensional saddle-point equation,

—y— ZP—Incmowm 9. (29)

Here, the-dependence i (y, ho) is not shown explicitly. Since: = (1/(r N))(d/dhg) x
InZ, we see that

m(q. ho) = —%F(y ho) = : i%lng“(thNsz q)- (30)
At this point, it is useful to take the — 0 limit in Eqgs. (27), (29), and (30yvhich yields,
with h; = ho + N P;y,
1 1Y
F(y,ho)= 2y% = = (e =1+ h), (31)

=

wherey is the solution of

N
:ZPi(l—eihi). (32)
i=1
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The magnetization and the susceptibility reduce to

N

1
m(lho) =+ (-, (33)
i=1

and
N
1 . dy
1,ho) = — hil14 NP ——
Koo = 3 e (1+v22)

1o (XN, Prehi)?

=— ) e M4 , (34)
N= (2K)~t =YL NPZe i
respectively, where it is used that
@ _ YLy Pre" (35)

dho — (2K)-1— YN NP2e—hi

Thus the giant cluster size and the mean cluster size are obtaine@&&®n(33) and (34)
respectively, withhg — 0.
Also, the number of clusters per vertex is

C
while that of loops is
(Nloop> (L)
——=——-K—-—F(».0 , 37
y iy (».0) st (37)

wherey is given byEq. (32)with #o = 0.
When hg — 0, a non-trivial solution ofEq. (32) begins to appear whe(2K)~1 <
N YN, P?, which gives the following characteristic valie

1
2Ny N, PP
When P; decays slower thai~! and KP; « 1 for all i, (k) = 2K and (k%) =
NN k2 = (k) + NLYN  (ki)? = 2K + 4NK? YN 4 P2, which will be shown
below. Then the conditioR = K. is equivalent to the well-known conditig?) / (k) = 2

[11]. Whether the percolation transition occursator not will be investigated for specific
P;’s of the static model.

(38)

¢

4. Branching process approach

The cluster size distributio?(s) can be obtained fronqgs. (32) and (33using
m(1, hg) = 1 — P(e~"0) and P(s) = (1/s)d*P(z)/dz*|.—0. However, the cluster size
distribution can also be obtained through the generating function approach or equivalently
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the branching process approach. Here, the presence of lofipgerclusters is neglected

and each cluster in a given graph is considered as a tree generated by successive branchings
from an arbitrary vertex23,24] Consider the probability that a randomly chosen vertex
belongs to a-cluster, which is jusP(s). ThenP(s) can be written recursively as

k
P(s)=8,1pa@) + Y _ pa) [ [ D RGi)5, 5,51, (39)
k=1 i=1 s
wherep, (k) is the degree distribution anl(s) is the probability that a randomly-chosen
edge has a-cluster at its one end, and thus equal to the number of edges followed by
s-clusters divided by 2. R(s) is obtained self-consistently as

k
R(s)=8,1ra @)+ Y rat) [ D Rsi)8y 5 5-1. (40)
k=1 i=1 si
wherer, (k) is the probability that tb vertex at either end of a randomly-chosen edge
hask + 1 edges and thus is equalt+ 1) p;(k + 1)/ (k). With the generating functions
P(z) =Y 021 P(s)z" andR(z) = Y o4 R(s)z*, Egs. (39) and (403an be written in more
compact forms as

P(z) =28(R(2)) (41)

and

R(2) =zf (R(2)), (42)

where g(w) = Y 12, pa()ok and f(w) = ¢ (w)/{k) = g'(w)/g'(1). We mention that
Egs. (41) and (42)ith z = 1 are equivalent to those derived by Molloy and REEL|
for a given degree sequence.

Egs. (41) and (42are the standard results. For the grandcanonical ensemble we are
using, the generating functiongw) and f(w) are represented in terms @f(w), the
generating function op, ; (k) in Eq. (3) as

1 N
g(w) = N;gi(w),

1 dgi(w)
f(w) = W L do (43)
with (k) = g’(2). In particular, if
gi (C()) =e—(l—(u)2NKP," (44)

which holds, for example, when-1e=2NKFiPi « 1 foralli # j, thenEgs. (41) and (42)f
the branching process approach are exactly equadit (33) and (329f the Potts model
formulation, identifyingz, P(z), and R(z) with e™0, 1 — m(1, ho), and 1— y/(2K),
respectively.
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5. Percolation of the static model: ther modynamic limit

So far, our discussion applies to arbitrafy In this section, we specialize to the case
of the static model,
M

D)

Here ¢y (x) = Y i, and in the limitN — oo, it converges to the Riemann zeta
function¢ (x) whenx > 1 and diverges a&* /(1 — x) when O< x < 1. In the marginal
case withx =1, itis calculated as IV + y,; with yy;, = 0.5772.. ., the Euler—Mascheroni
constant. The sum appearingkiq. (31)is evaluated ilAppendix Aas

O<pu<l. (45)

i

N
= i —NP;y
T =5) e
i=1

1-w? ,
iz’ T (46)

for y(1 — w)N* > 1. This will be used repeatedly. We do not consider the marginal cases
where ¥ is an integer. The sums Eqgs. (4) and (5are evaluated usingi(y) to give

1 11
=—F<1—;)(1—,u)ﬂy# +1-y+

(ki)=2NKP; and (k)=2(L)/N = 2K, (47)

in the limit N — oo if KP; « 1 for all i or equivalently,K < ¢y(n) = O(NTH).
ThusK is (L)/N. Under the same condition, the third tetth— e=2VK*ii)2 in Eq. (6)
does not contribute t«?) = (1/N) Y"1 ; (k?) in the limit N — oo, which gives(k?) =
(1/N) Zf\]:l[(ki) + (k;)2]. Moreover, rewritinggq. (3)as

loggi(w) = Z |Og[1— (1—a))(1—672NKP"P~f)] (48)
J D)

and expanding the right-hand side as a power serigd in w) to apply the result of
Appendix A we find thatEq. (44)holds for all range of 6< © < 1 andK finite. Note
that(1 — e 2VKFiPiy is not small when 12 < 1 < 1 but the final result is the same as that
for 0 < < 1/2 where(1 — e 2NKFiPiy ~ 2N K P; P; < 1 holds. Thus the degree of each
vertexk; follows the Poisson distribution and the branching process approach and the Potts
model approach are equivalent for the static model as lomgasds are concerned. This
is because thénite clusters remain effectively trees for .

For convenience, we divide the range ofinto the three cases, (I) @ u < 1/3,
(IN1/3<u<1/2,and () /2 < < 1.

5.1. Degree distribution
The asymptotic behavior of the degree distributigiik) is related to the behavior of its

generating functiog(w) =, pa (k) for w near 1, which is equal t&1 (2K (1 — w)) in
the limit N — oo. The latter condition is necessary for the approximatigil — P;) >~ P;
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to be valid. FronEgs. (A.2) and (A.6)the degree distributiop, (k) is given by

k

pa(k) = E wg(w) (49)

1
e ™ for 1 <k < kmax
w=0 N

k
c2fme for k> kmax

wherekmay is equal to(k1) i.e., kmax= 2K (1 — w)N*, ¢1 = (1/w)[2K (1 — w)]¥* and
c2=(1/N) Zfio(—kmax)’é[u(k +r)]/r! ~ e *max/N . From now on, we assume that
Ky < K < K, with K, = N"*/(2(1 — p)) and K, = N¥#/(2(1 — w)), for which
1« kmax < N so that there exists the regimelofvhere the degree distribution follows a
power lawp, (k) ~ k= with

x:1+1. (50)
w

Since we are interested in the range & < 1, the degree exponehts larger than 2.
5.2. Giant cluster size

The giant cluster size: can be evaluated biq. (33)with #; = N P;y. In terms of
X1(y) evaluated imlAppendix A it is simply represented as

m=1-—X1(y) (51)
with y obtained by solvingeq. (32)
N
=2 P(l-e ) =14 X0, (52)
i=1

whereX;(y) = (d/dy) Z1(y).
Wheny is small,Eq. (52)is expanded as

y oy A=,

O k= T 2a_30
1
y oy _NA—wE 1y
L o)
1
y o 1\A=—wr 14

for the three ranges oqf, (1), (I1), and (lll), respectively. For (1) and (I1), the characteristic
value K. defined by

_ Q-2
2(1—p)?
appears, which is jugiq. (38)with P; in Eq. (45)

WhenK < K. for (I) and (1), or K = 0 for (lll), Egs. (52) or (53has the solution
y =0, and therefore, the giant cluster size is

(54)

¢

m=0. (55)
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That is, there is no giant cluster fé&f < K. (I, Il) or K = 0 (Il). But a non-zero solution
for y occurs wherk > K, (I, 1) or K > 0O (lll). It leads to the following giant cluster size
m:

213w
YT A ma—2m

i) mey~ ( " )lz“m“zu
- (1-2)T (1 — 35 ’

1 4
20— ITA—DINTT
K21, (56)
"

fora=K/K.—1(l,1)or K (lll) small and positive. Here the relatiem~ y comes from
Egs. (51) and (A.6)The giant cluster size is finite fat finite and positive, and thuk.. is
the percolation transition point. If we define a critical exporgbly m ~ A? | its value is
1 () andu/(1—2w) (). For (1), m is finite for K finite, butK = 0 is not a percolation
transition point, which will be investigated further below.

The giant cluster size: as a function ofK, which can be obtained numerically from
Egs. (51) and (52)s plotted for the case ¢f =5/19 . =1+1/u =4.8),5/13 (. = 3.6),
and 57 (A =2.4) inFig. 2

We mention that in Re{16], some rigorous bounds of the giant cluster size are derived
for an ensemble similar to ours, but with a different form of the probabilities of adding
edges so that their results apply only to the case3 of the static model.

h m

12

[

) m:y:(

5.3. Mean cluster size

The mean cluster sizeor the susceptibilityy (1, 7o — 0) in Eq. (34)is represented in
terms of ¥1(y) in Appendix Aas

(212

s=X% — 57
§=XZ1(y) + 2K 1 - 570 (57)
wherey is the solution oEq. (52)and 27 (y) = (d/dy) X1 ().
WhenK < K. for (1) and (Il), y = 0 and thus
2K K.
s=1 58
=1t g (58)

sinceX(0) = —X"(0) =1, andX{ (y) = 1/(2K.). On the other hand, wheki > K., y is
non-zero but given big. (56) and one can see that(y) ~ 1, X’'(y) ~ —1 and

" 2_11<r - KAc (l)’
RS TN ) (59)
2K, 2u K. .

From these relations, the mean cluster sizekfaaroundk . is obtained as

= A 0’
fx] T (4=<09 (60)
© (40,
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Fig. 2. Giant cluster sizex, mean cluster siz&, and number of loopg = (Njgop)/N vs. K for u = 5/19

(AL =4.8) (a),x =5/13 (. = 3.6) (b), andu = 5/7 (A = 2.4) (c). They are obtained by solving numerically
Egs. (51), (57), and (64)espectively, together witkq. (52) The number of clusters per vertex not shown here
is 1— K + ¢ and monotonically decreases wikhfrom 1 to 0.

where

2K, .

e Ke (). (61)

C_ = ZKC, C+ = {

5 diverges atk. both for (1) and (Il). Thus, if we defing ~ |A|~Y, theny =1 for both
(N and (11).

For (Ill), y, the solution ofEq. (52)is zero only wherk is zero. We suppose thét is

non-zero but small in the thermodynamic limNit— oco. Then, fromEq. (A.6), it follows
that

2B\ %1 _u_ 2 = 2w 1
El(y) ~ 1 | — K21 + | — B2n-1 K 2u-1 s
158 W

, 1/2B\ %1 1u
T = -1+ 5( == K701,
"w
1—u
>y~ 2 62
1 7K (62)



D.-S. Lee et al. / Nuclear Physics B 696 [FS] (2004) 351-380 365

whereB = (1 — u)Y#|I'(1 — 1/w)|. Then the mean cluster size is

) (%)ﬁTu <2fﬁ:m1
s~1—| — K21 + | — B2w-1 K 2u-1
m n

% B 2
e A=
2u—1 2\

n 2

~1q 2t K—4ﬂ_1(§3&1Kﬁ3+-’ﬂ (ggthm“, (63)
2u—1 2u—1\ u 2u—1\ u

for small K. As shown in the numerical solutions for the mean clustersatained from

Egs. (57) and (52plotted inFig. 2, the most important feature &ffor (I1l) is that it does

not diverge at any value df but has only a finite peak & ,> = O(1). Itimplies that there

is no phase transition for (Ill), i.e.,2 » < 3.

5.4. Number of loops and clusters

The number of loops per verté¥ioop) /N, which we denote by, is also represented
in terms of X1 (y) as

1
(=—F(y,00=-14y— Ry%zl(y), (64)

with y being the solution oEqg. (52)
WhenK < K. for (I) and (ll), andK = O for (lll), the value ofy is zero and¥1(0) = 1,
which leads to

£=0. (65)

On the other hand, wheki > K., for (1), (1), or K > 0 for (lll), the value of¢ is not zero.
From the behavior o1 (y) for smally andEq. (56) one can see that fat > 0 (I, II) or
K >0 (1),

2(1-3w)? 43

3 (1*2103 A (l),
21 1

1 ®  \Tou pAT-2

'~ 2Qk@wwﬁﬂ i AT an, (66)
1
_1,21- T @A=Ly, 2 1
2[L4 l( (1—p) ll ( #)|)2#71K2M71 (”l)

The exact solutions fat are shown irFig. 2 The number of clusters is simply related/to
as(C)/N=1—K +¢.
6. Cluster sizedistribution and largest cluster size

Beyond the largest cluster size or the mean cluster size, the whole distribution of cluster
size P(s) for the static model can be derived fraags. (32) and (33)which gives the



366 D.-S. Lee et al. / Nuclear Physics B 696 [FS] (2004) 351-380

parametrized equations fét(z) =1 — m(1, ho=—1Inz) as
SN Pe NPy D6
z N
_ —NPiy _
P@= ) e M =251, (67)

i=1
whereX1(y) in Appendix Ais used.P(s) is obtained byP (s) = (1/s!)(d*/dz*)P(2)|;=o0.
In particular,P(s) for s > 1 is contributed to by such a singular term(ag — z)* with x

a non-integer inP(z). The functional form ofP(z) depends orP; for 1 <i < N. In this
section, we solvé&qgs. (32) and (33\vhen P; is given byEq. (45)to find the cluster size
distribution P (s). Furthermore, we derive the largest cluster gigebefore a giant cluster
appears through the following relati¢2b]

Y ro=1-4) (68)
s#(S)

which is equivalent to the relatiom(1, hg — 0) = (S)/N in the limit ho(S) — oo in
Eqg. (16)

6.1. 1 = 0: Erd6s—Rényi model

Before considering the case okOu < 1 in Eq. (45) we first consider the Efs—Rényi
model with P, = 1/N corresponding to the case pf= 0. In this case, the parametrized
equations fofP(z), Eq. (67)is simply written as

_(1_ Y\
°= (1 ZK)e}’
Pz) =ze . (69)

If we considery as a function ot, it has the properties(z = 0) = 2K anddy/dz <0
for 0< z < zo = e?A~1/2K. On the other hand?(z = 0) = 0 andP(z) is an increasing
function ofz. By substituting; = 1, we find that the giant cluster size=1—P(1) is non-
zeroforK > K. =1/2, and especiallyy is givenbym ~2Afor0< A=K/K. -1« 1.

Aroundzo, the functiony(z) becomes singular agz) ~ 2K — 1+ [4K ¢} 2K11/2(z4 —
2)¥2. Also, P(z) has the square-root singularityzatas

1 1-2K\ 3
7>(z):§—<€[< )2(zo—z)%. (70)

Differentiating’P(z) atz = 0, one can obtai®(s), which is given for large as

N_<el—2K>%ZH% Fis—3)
~ VK ) res+urd

s

1d
P(s) = ;d—zsP(Z)

z=0
1
1-2K+ %

% 3 _5
:<4717K) s 2e¢ ‘0, (71)
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wherel'(—1/2) = —2712 is used andg = 1/ Inzo. One can notice thatp = 1, so — oo,
andP(s) ~s~%2 atK.. When|A| <« 1, the cut-offsg is approximately 2A2.

The presence of the cut-off means that a cluster of sizdarger tharnsg can be found
only with the exponentially small probability ¢ /0. Thus, the largest cluster is as large
asso before a giant cluster appeats) increase ak approache& .. However, in finite
size systems, the largest clusters cannot grow infinitelf as K., which is obvious from
Eq. (68) Suppose thatS) is much less thasy. Then, one can easily see that- N2/3
applyingEq. (71)to Eq. (68) It indicates that in the regime of wheresg > N%/3, or
—1« ANY3 <0, (S) is O(N%3). For K > K., the largest cluster size in the finite size
system is given byVm ~ 2N A only whenN A > N%/3. To summarize(S) is given by

L (AN« -1,
(S)~ Y NE (aN3| <), (72)

NA (AN3>1).
The regime ofK satisfying|AN/3| « 1 in finite size systems shrinks to a poikit in

the thermodynamic limitv — oo, which we will call the critical regime. If we introduce a
scaling exponeni to describe the critical regime #aN1/7| « 1, b = 3 in the ER model.

6.2. Thecas€l):0<u <1/3

As shown inAppendix A X1(y) has a singular term with the-dependent exponentin
its expansion iny, which allowsP(z) to have singularity other than the square-root one
for the ER model.

The first relation oEq. (67)is expanded iry as, usingeq. (A.2),

o0
Z:Zanyn’ (73)
n=0
where the first few coefficients are
ap=1,
1 1 A
Ta1 = - =

T 2K, 2K 2K’

1
ag= —[5(1 — 13N ey (B - ] (74)

4K K,
Here, the critical poinK.(N) is given by

1
2(1— p)2N2 2oy ()

When 0< < 1/2, the solutiorny of Eq. (73)with z =1is 0 and thug?(1) =1 fora; <0
while y is a positive value an®(1) < 1 for a; > 0. Therefore K.(N) is the percolation

K:(N) =

(75)
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transition point and indeed, converges to #igin Eq. (54)in the thermodynamic limit
N — oo. However, when 12 < . < 1, K.(N) = O(N~@*~D) andy satisfyingEq. (73)
withz=1is~ N~"A for K > K.(N), which goes to zero in the thermodynamic limit. It
means thaK . (N) is not the percolation transition point foy2< u < 1.

Wheny > N7*/(1— n), Eqg. (A.6)should be used and thus

L1l
K 1

z=1—§+ o apy Ay (76)
n=1

wherea; = 1/(2K.), a, = a, forn >2,andA =T'(2 - 1/pn)(1 — w¥/+-1.
Similarly to the ER model, when @ u < 1/3, the value ofn = 1 — P(1) is nonzero
for K > K. = O(1), and thuskK, can be identified with the percolation transition point.
The leading singular term of the function(z) varies depending on. First, when
1-s5t«z <zo:1+salwith

16K 2|ay|
=Tz
2K (1— pn)2N2 4K
Sy = d=w p < AKlaal ) (77)
2K|azl = A1 — w)NH 1—p)N*-
the functiony(z) is represented as, froky. (73)
1
A (z0—12)2
(z) ~ 78
YT Kl T (78)

Notice thaty(z) with z > 1 — snjl satisfies the relation(z) < N7* /(1 — ). Next, when
7« 1—s.1 y(2) is expanded fronkg. (76)as

101 9.1
1 A 7Z0—2)2 \ # 2
+ laz| 2[zo—z+---+A( +(° 1) ) } . (79
4K |az| las|2

(@)~ —2
Y7 4K az)

This implies thaty(z) has the square-root singularity askn. (78)except for the case of
A<Oand 1- syt <z < 1— 5,1, wherey(z) is given by

1
)’(Z)—E(l—z)-}-'---}-A(E) 1-2) + .- (80)

Such regime ot exists wheryg < s, .

Different singularities ofy(z) depending on the range ofand A shown inEgs. (78)—
(80)are inherited t&P(z) by the relatiorP(z) = z ¥1(y), and in turn, cause (s) to behave
distinctively depending on the rangesond A. WhenA « —N~#, sg is much less than
sm and

“2¢ 0 (1Ks<Ks0),
P$)~ 1 (A1) (50< 5 < 5m), (81)
e 0 (s3> 85m).
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P(s) for 1 < s < sp is related toEq. (79) that forsg < s < s, t0 Eq. (80) and that for
s > s;; to EQ. (78) On the other hand, when » —N~#, the regime of; wherey(z)
follows Eq. (80)vanishes buf (s) is simply given by

P(s) Zs_ge_% (82)

for all s.

WhenA « —N~#, the cluster size distriliion decays exponentially fers s,,, so the
largest cluster is as large as ~ N*/|A|. WhenA > —N~#, the cluster size distribution
takes the same form as that for the ER model, and the critical regime is specified with the
same exponent= 3. Consequently,

M (A< =N,

A
1
() a7 (N TPKAK-NTI),

NE (AN <),
NA (AN3 > 1),

N

(83)

wIN

whereEq. (56)is used to obtairiS) for A > N~1/3.
6.3. Thecas@l):1/3<u<1/2

Egs. (73) and (763re valid also for 13 < 1« < 1/2. However, one should note that the
singular termy/#~1 is the next leading term to in Eq. (76) which cause$(z) to have
an u-dependent singularity other than the sepieoot one even in the critical regime.

Now we consider the singularity of the function(z). As for 0 < u < 1/3, when
1— st <z < z0=1+s5" with so ands,, in EqQ. (77) y(z) is given byEq. (78) Note
thatay = O(N3*~1) for u > 1/3. y(z) for z <« 1 — s, is obtained by invertingq. (76)
WhenA > 0, if the regime 1- 5. « z < 1 — s, with

N

1— 1— T 1-

se=—E (1A ==E) A, (84)
1-2u w

exists,y(z) in that regime is given as

"

o= (seiiam)
Y=\ 2k1a1a— )

2 A 2 1 ~ 3

M % —p\ T 1

- | — Al —— c—2)2 cee 85
+[1—2u<21<> (' I ) ](Z o 89

with ze = 1+s.1. WhenA <0 and 1- s, « z < 1— 5,1, y(2) is given by

1
y(Z)—m(l—Z)—VN(m) Q-2 "+ (86)
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Finally, both forA > 0 andA < 0, if z is in the regimez < 1 — maxX{s; %, 5,1}, y(2)
exhibits the following singularity as

1—z\ ™
y(z):<|A|Z>l + e (87)

The functional form of the cluster size distribution varies dependingamd A. When
A <« —N~1720 P(z) has three different singularitieEgs. (78), (86), and (87)n the
corresponding regimes ef and thusP (s) is given as

1
s (1 L5 KL 8¢),
_1
P) =0 (A1) F  (sc K 5 K 5m), (88)
53¢ (s> Sm).

When—N-1-2 « A « N~(A=20 P(z) is contributed to byEgs. (78) and (87)which
leads to

|-

s K (1<<S<<Sm)a
B (s> sm).

e
Finally, whenA 3 N~1-2 the regime ot whereEq. (78)is valid disappears, and

P(s) ~ { (89)

Nw
Sl=

N

1

s Tm
3

(1<ks < se),
sT3¢ % (s > s¢),
asEgs. (85) and (87mply.

The largest cluster size follows, up to A ~ —N~(1=2% peyond which(S) is
O(N¥ ") as shown byEq. (68) The comparison ofv1~* and the giant cluster size

mN ~ NAM1=21 given in Eq. (56)indicates that the largest cluster size is given by
the latter whem > N~(1=2%)_ |n summary, the largest cluster size is

P(s) ~ { (90)

M (ANT-2 < —),
(8) ~ NI (JANY21| « 1), (91)

NATZ  (ANY20 1),
and the exponentis 1/(1 —2u) for 1/3 < u < 1/2.

6.4. Thecas@ll):1/2<u<1

For 1/2 < u < 1, the value ofK.(N) given inEq. (75)is O(N~*=D) and thus, for
all finite K > 0, the giant cluster sizes = 1 — P(1) is non-zero in the thermodynamic
limit N — co. However,m is given as~ K*/@#=D 'which is O(N~*) aroundK.(N)
and vanishes in the thermodynamic limit— co. We consider finite size systems where
K.(N) is non-zero but finite and investigate how the cluster size distribution and the largest
cluster size behave arourd (N).

Following the same step as forOu < 1/2, one finds thatwhen-ds,* <« z <« 1455+
with so ands,, in Eq. (77) y(z) is given byEg. (78) Eqg. (76)applies to the case of
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7« 15,1 Ifthe regime 1- 5.1 < z < 1 — s, with

"
1-— 1—p\ 2z T a1

se= P (az"H) T ke, (92)
2u—1 "w

exists,y(z) is given by

M I 1
1— 2u=1 2 3u—1 1— 2u=17]2
y(z):(zm—“)“ +[ & <21<>2Z1<A_“>” ] S S
w 2n—1 W

with z. = 1+ s 1. In the regimez < 1 — max(s; %, 5,1}, y(2) is given by

Y(2) ~ 2K (1—2)+ AQK)E (L= )i Lo, (94)

WhenK < K.(N), the generating functio®(z) is evaluated byegs. (78) and (940
give the cluster size distributioA(s) as follows:

_1
(%) " A<Ls K sm),

3pu—1

P(S‘): 3 _5
2 57 2e 0 (s>5m),

(95)

where the factoN —G#~1/2 comes fromas| /2. Eq. (95)is valid whens,, < s.. When
K > K.(N), the regime ot whereEq. (78)applies disappears afitlz) is evaluated using
Egs. (93) and (94)ConsequentlyP (s) is

_1

(£)7n (1<Ks <K se),
3=l 3 _ s

K22-Dg~2¢ 5% (s3> 5¢),

for K > K.(N).
The largest cluster is as large gsapproximately up t&.(N) and is given byn N in
Eq. (56)for K > K.(N). That is,

(s {KN“ (K SKc(N)),
NKZ T (K.(N) <K < 1).

P(s) ~ (96)

(97)

This result implies that the largest cluster size is €B{IN1~#) even whenk > K.(N)
unlessk > K.(N), consistent witheq. (56) The conditionK < K.(N) andK > K .(N)
can be rewritten ag <1 andA > 1 with A = K/K.(N) — 1, and thus the exponento
define the critical regime is infinity for/2 < u < 1. The absence of a critical regime with
a finite v means that there is no percolation triéing in the evolution of scale-free graphs
with 2 < A < 3, as the absence of a divergence in the mean cluster size does.

7. Numerical simulations and finite size scaling

In this section, we derive the finite-size scaling forms of the giant clustemsjzbe
mean cluster sizg, and the number of loopsand check against their numerical data from
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simulations for the static model. Investigating the cluster size distribution and the largest
cluster size, we identified the critical regimes and the corresponding scaling variables,
which enables us to predict the scaling behaviona of, and¢.

Let us sketch the numerical procedure briefly. At each step, we pick two vertices
and j, with probabilitiesP; and P;, respectively. Then we put an edge betweéesnd
j unless there is one already. Repeat the procedure until theie edges made in the
system. The generation of random numsbeith non-uniform probability density; is the
most time-consuming part here. One efficiamy is to use, e.g., Walker’s algorithf26]
combined with the so-called Robin Hood metHad], which is explained ilAppendix B
This method is exact and takes time @fN) to set up a table and®(1) to choose a
vertex, making a large-size simulation feasible. Once a graph is constructed, the clusters
are identified by the standard breadth-fiestich, during which we can extract the size of
the largest cluster, the mean cluster size excluding the largest one as defitgpd 17)
and the number of clusters within the grapledall that the number of clusters is related to
the number of loops b¥q. (18) We choose three values af © =5/19 (A = 4.8), 5/13
(L, =3.6),and 57 (. = 2.4) as representatives of the regime (1), (I1), and (Ill), respectively.
We perform the simulations for the system si¥eup to 10, and the ensemble average is
evaluated with at least 20uns.

Now we first consider the regime© < 1/2 or A > 3. The scaling behaviors of the
giant cluster sizen in this regime are shown iEgs. (83) and (91and can be written as

_B 1
m=N “I/(|),(||)(AND), (98)
where the scaling exponemsandv are given by

{1 (O</,L<%),

1 1
24 (§ <M< 2),

_ |3 O<p<3).
V= i 1 1 1 (99)
o (3<n<3)
The scaling function ;i) (x) behaves as
const (x «1),
7 ~ 100
i (x) {xﬂ > D). (100)

The critical pointK. can be found numerically by plotting N#/¥ vs. K as shown in
Fig. 3 which are in good agreement wity. (54) In Fig. 4, the plots ofn N/? vs. AN/Y
are shown fow =5/19 and 513, respectively. The data collapse confirming the scaling
behaviors irEq. (98)

In the critical regime, the cluster size distribution follows the power Rw) ~ s~ *
with T = 3/2 for (I) and 1/(1 — w) for (ll). Then the mean cluster size in the critical
regime is given by ~ (5)2"" sinces = Y s s P(s). Since(S) ~ N1~#/7 in the critical
regime as irEq. (98) the mean cluster size is represented asN 1—#/M(@-1) — N1/V,
which leads to, combined witag. (60)

5=NToqn(ANT), (101)
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Fig. 3. Plots ofn N#/7 vs. K for u =5/19 (a) andu = 5/13 (b). The number of vertice¥ is 10*(A), 1P(<),
108(0), and 1@(0). The data cross &k = 0.435(1) (a) andK. = 0.306(2) (b), respectively, which are in
accordance with @36 and B05 fromEq. (54)
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Fig. 4. Data collapse of scaled giant cluster size€?/?, mean cluster sizesy N/7, and number of loopgN
plotted vs.ANY7 for u = 5/19 (upper) andk = 5/13 (lower).N is 10*(A), 10°(<), 108(0), and 16(0).

where the scaling functio® i) (x) behaves as

const (x 1),
D11y (x) ~ { 102
() 1 > D). (102)
Plots ofs /N7 vs. AN/ for u = 5/19 and 513 are shown irfFig. 4.
Since the giant cluster size and the mean cluster size correspond to the first and second
derivative of the free energy with respect to the external field, respectively, it is natural
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that both have the same scaling variable. Therefore, the number of loops, corresponding to
the free energy itself, is also described in terms of the scaling variahl&’ with v in
Eqg. (99) Considering the number of loops f&r > K. given inEq. (66) one can see that

1 1
E:NQ“JU(AN?), (103)
where the scaling functiof®( i1, (x) behaves as
const (x 1),
a1y (x) ~ { 5 (104)
X x>1).

This implies that? is O(N 1) in the critical regime, which is supported by the numerical
simulation results ifFig. 4.

Next, we consider the regime/2 < u < 1. From the largest cluster size shown in
Eq. (97) the giant cluster size: can be written as

m~ N"* dq(4), (105)
where the function;(x) behaves as

const (x«1),
Yy (x) ~ { B (106)
x2=1 (x> 1).
Notice thatm increases smoothly passig.(N) as manifested byt not scaling withn .
Similarly, the number of loopg represented in terms of the scaling variallearound
K.(N) should exhibit the following scaling behaviors to satiEfy. (66)

1
l=—5 A), 107
N i (A) (107)
where the scaling functiof®(x) behaves as
const (x«1),
a1y (x) ~ { 1 (108)
x2=1 (x> 1).

Data collapse oft N* and¢N vs. A is shown inFig. 5.

The numerical data of the mean cluster size are showkign6. As N increases, the
mean cluster size approaches the exact solutionkiy. (57)represented by the solid line
in Fig. 6. It does not diverge at any value &f, but instead its peak height decrease#/as
increases. We additionally find that the mean clustersizas a small peak & ,1, which
scales asv1~2* as shown in the inset dfig. 6. The value ofK 1 is not equal toK.(N)
although they are the same order 8f The reason for the peak &,; is as follows.
As K increases, the largest cluster siz and the mean cluster side=} g sP(s)
also increase. However, & approache& . (N), the cluster size distributioR (s) begins
to develop the exponential decaying part in its tail, i.e., fop s.. s, decreases with
increasingK after K passesK.. At K,1, (S) ands. are equal. AfterK passingk 1,
the mean cluster size is dominatedshywhich makes decrease foK > K 1. However,
the mean cluster size increases again as sooki &scomes much larger thaki,; or
K.(N) because the prefactdl/* of the cluster size distributio® (s) for 1 <« s < s
increases with increasingj. The mean cluster size decreases only after the second peak at
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14 + (a)

-1 -0.5 0 0.5 1 1 0.5 0 0.5 1

Fig. 5. Data collapse of the scaled giant cluster size (a) and number of loops fbfarsu = 5/7. N is 10*(A),
10°(¢), 10P(), and 16 (Q).

1.10

1.05

1.00 ==

0.001 0.01 0.1

Fig. 6. Mean cluster sizeas a function ofk in semi-logarithmic scales with =5/7 for N = 104 (), 10°(<),
10°(0), and 16(0). In addition to the peak ak 1, another peak is shown &t, ~ 0.1N for N = 10°, 1¢P,

and 10, respectively. The solid line represents the exact solution obtainedHgsn(52) and (57)The measured
values ofK ,1 (O) as a function ofV are plotted in the inset together with the guide line whose slope-i2/1
for comparison.

K2 = O(1), wheres. = O(1), as shown irFig. 6as well as in the exact solution Kig. 2
SinceK 2 = O(1), a giant cluster exists arourid,.

8. Summary and discussion

In this paper, we have studied the percolation transition of the SF random graphs
constructed by attaching edges with probability proportional to the products of two vertex
weights. By utilizing the Potts model representation, the giant cluster size, the mean
cluster size, and the numbers of loops and clusters are obtained from the Potts model
free energy in the thermodynamic limit. Our general formula for the giant cluster size and
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(a) 0 0O | [, ~o
Oo (o .
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K<K. K=K K>K,
® 5 O | [ o900 ] |
ooog OOQO OQ:O" "©°

K<K, K=K, K=K, K»K,

Fig. 7. Schematic picture for the comparison of cluster evolution between the case®f{a) and of 2< 1 < 3

(b).

the mean cluster size are equivalent to those results obtained for a given degree sequence
if the latter expressions are averaged over the grandcanonical ensemble. The Potts model
formulation allows one to derive other quantities such as the number of loops easily. Using
this approach, we then investigated the critical behaviors of the SF network realized by the
static model in detail. Furthermore, to derive the finite size scaling properties of the phase
transition, the cluster size distribution and the largest cluster size in finite size systems are
also obtained and used. We found thairthis a percolation transition far=1+1/u > 3

so that a giant cluster appears abruptly wikes:- (L)/N is equal toK. given byEqg. (54)

while such a giant cluster is generated gradually without a transition foi 2 3. Thus

the process of formation of the giant cluster for the case aefR2< 3 is fundamentally
different from that of > 3.

In particular, the difference between the SF graphs with 3 and 2< 2 < 3 is
manifested in the mean cluster size. Ros 3, asK or the number of edges increases,
many small clusters grow by attaching edges, which continues &p=oK ., and then a
giant cluster forms by the abrupt coalescence of those small clusters as shBignin
Since we do not count the giant cluster in calculatiay, 5 decreases rapidly a&
passesK.. Thus the mean cluster size exhibits a peakkat K., which diverges in
the thermodynamic limitv — oco. On the other hand, for 2 1 < 3, the role ofK, is
replaced byk ,1 which is ~ O(N~G~»/G=D) put after a small peak, the mean cluster
sSize increases again after passikig: as seen irFig. 6. edges newly introduced either
create new clusters of size larger than 1 or merge small clusters to the larger one with its
size not as large a8(N). Only whenk reachesX 2, the network is dense enough for the
giant cluster to swallow up other clusters to redso® adding more edges. The evolution
of the static model as the density of edges increases is summarigegd &

Due to the characteristics of the power-law degree distribution of scale-free graphs, the
cluster size distributions exhibit crossover behaviors such that they follow different power
laws depending on the cluster size for givienin particular, for 3< A < 4, the scaling
exponents8 and v depend on the degree exponantontinuously while they are equal
to the conventional mean-field values for> 4. We have not considered the marginal
cases where/l thusa is an integer value where logarittic corrections appear as seen in
Eqg. (A.7).
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percolating phase
O(N‘ﬁ) O(N‘ﬁ) o) O(N%)
(:) [2{ I_Kc:Kle Kc[}(pZ] [éu K

scale-free

Fig. 8. Schematic phase diagram of the static model. Theebavior of the degree distribution appears between
K¢ andK,. A giant cluster emerges & for (1), (Il), and aroundk ,, for (Ill). The quantities in- - -] are only
for (I11).

The static model considered in this paper, though algebraically tractable, does not have
correlations between edges that are important in real world networks. Extension of this
work to the cases allowing correlations is left for the future work.
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Appendix A. Theevaluation of X1(y)

We derive the sums
1N
— —NP;
T =g e (A1)
i=1
whereP; =i "/t () (0< pn < 1) with ¢y () = vazli‘” asinEq. (45)
Let us introduceyy = %y, which is equal tal — w)y in the thermodynamic limit

N — oo we are interested in. TheBy(y) = YV, s(i) with s(x) = e VN /N,
First consider the regime whepg N* « 1. ThenX1(y) is simply expanded as

1A (="
D=5 ( n,) (N N®Y" Ex ()
n=0 ’

L] ~
- (_1)71 n 1 (_1)11 n
zznz(1_m)y1v+ﬁ D NN e ), (A-2)
=0 n=l1+1]

with | x | being the greatest integer less than or equal to

On the other hand, in the limigy N* — oo, the second summation gives rise to a
non-analytic term. Since(x) and its derivatives at = 1 andx = N have the properties
sM (1) = O(N#—Le=WN"y ands™ (N) = O(N~"~1) with n > 0, the Euler—Maclaurin
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formula[28] enables us to evaluae; (y) inthe limit N — oo andyy N* — oo as follows:
N N

1
>1(y) =/dxs(x) =/dx Ne—yzv(g)“
1 1
117
4 l—l _;
= —y2 /dzz ne
Wy
YN
11 1
I W
where the incomplete Gamma functibigs, x) is defined as
o0
F(s,x)z/dtt“le*’. (A.4)

X

The incomplete Gamma function can be expressed as

® L—s]

n L—s) _\n
F(s,x):/dtf'l|:e Z ( nt') Z (—1) :|

n=0 n=0 n!
o —  (=D)"
=/dtt3 l|: Z :|
0 n=[—s]+1 m
—/dtts_1|: i (—z)"}
0 n=|—s]+1 n!
e [—s]
s—1 (_t)n
+/dtt [nZ:(:)—”! ]
I e e S L
=T(s) nz:;)in!(ﬁn)x , (A.5)

where it is used thalf' (s) = [~ dt *"[e™ ZL YJ( )" /n!], and therefore, it follows
that

0]

(-D" 1) 1
21()’)227)’7\/_F<1_ —)y”- (A.6)
= nl(1— pn) w) N

As u — 1/m with m an integer, a logarithmic term is developed as

0]

_ =n" ., =" B 1 1
El(y)_,gln!(l—un)yNjL(m oih [InyN ym L5t +—_J

(A.7)
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since

. (G m 1 %
;'L“m[m!(l—um)” - F<1_ ﬁ)yN}

_ G [1_1+(%—m>lnyN}
(1—pum)I'(m + 1) 1+M(l_m)

[(m) *u
(=yn)" 1 1
R LR A R | (A-8)

where it is used thaf (z)I'(1 — z) = =/ sinz andl (m) / T (m) = —ym + Y neq[1/n —
1/(n4+m —1)].

Appendix B. Walker algorithm

Suppose we want to choose discrete random numbgss, ..., xy, with probabil-
ities p1, p2, ..., pn, respectively, wherep;’s are arbitrary yet properly normalized as
Zf\'zl pi = 1. Walker algorithm enables one to choosis with appropriate frequencies
by picking a single random numberQr < 1. To do this, however, we have to set up a
table{(g;, y;)}. The table is made in the following way.

(1) Initializeg;’'s asq; = Np;, (i =1,2,..., N).

(2) Divide x;’s into the poor(g; < 1) and the rich(g; > 1).

(3) Pick a poor, sap, and arich, say.

(4) Fill the shortage op, 1 — ¢gp, fromr.

(5) p records the donatarasyp =r.

(6) gr is updated agy < gr — (1 —gqp).

(7) If r becomes poor by the donation, i.g.,< 1, r enters the list of the poor out of that
of the rich.

(8) Repeat (3)—(7) until there are no poor left (hence the name Robin Hood method).

The donate-and-fill steps (3)—(7) are performed at mbst1 times, thus the table-making
procedure takes time @ (N). In its original introductior{26], Walker proposed the step
(3) as “pick the poorest and the richest”, whiinvolves additional sorting operation,
increasing the computational cost. The present scheme follows the implementation of
Zaman[27]. The table-making process can be visualized for a simple 3 case as in
Fig. 9.

With the table{(g;, y;)} at hand, one picks a random numbek(Q- < 1. Divide
x =rN + 1 into the integer part = |x] and the remainded = x — n. If d < ¢,, we
choosey,, otherwise choosg,. With this scheme one can draw discrete random numbers
x;'s with appropriate probabilitieg;’s.
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Fig. 9. lllustration of the table-making procedure in the Walker algorithmAfee 3. The heights of the white
bars in (c) indicateg; /N and the figures in the shaded boxes
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