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Abstract

We study the bond percolation problem in random graphs ofN weighted vertices, where eac
vertexi has a prescribed weightPi and an edge can connect verticesi andj with ratePiPj . The
problem is solved by theq → 1 limit of the q-state Potts model with inhomogeneous interacti
for all pairs of spins. We apply this approach to the static model havingPi ∝ i−µ (0 < µ < 1) so
that the resulting graph is scale-free with the degree exponentλ = 1+ 1/µ. The number of loops a
well as the giant cluster size and the mean cluster size are obtained in the thermodynamic
a function of the edge density, and their associated critical exponents are also obtained. Fin
scaling behaviors are derived using the largest cluster size in the critical regime, which is cal
from the cluster size distribution, and checked against numerical simulation results. We fin
the process of forming the giant cluster is qualitatively different between the cases ofλ > 3 and
2 < λ < 3. While for the former, the giant cluster forms abruptly at the percolation transition, fo
latter, however, the formation of the giant cluster is gradual and the mean cluster size for fiN

shows double peaks.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In the last few years graph theoretic approach has been of great value to characte
complex systems found in social, informational and biological areas. Here, a co
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system is represented as a graph or network whose vertices and edges stand
constituents and interactions. A simplestmodel for such is the random graph mod
proposed by Erd̋os and Rényi (ER)[1]. In the ER model,N number of vertices are prese
from the beginning and edges are added one by one in the system, connecting p
vertices selected randomly. Due to the randomness, the distribution of the number o
incident on each vertex, called the degree distribution, is Poissonian. However, many re
world networks such as the World-wide web, the Internet, the coauthorship, the p
interaction networks and so on display power-law behaviors in the degree distrib
Such networks are called scale-free (SF) networks[2]. Thanks to recent extensive stud
of SF networks, various properties of SF network structures have been uncovered[3–5].

There have been a few attempts to describe scale-free networks in the framew
equilibrium statistical physics, even though the number of vertices grows with time in
real-world networks[6–10]. In this approach, various mathematical tools develope
equilibrium statistical physics may be used to understand network structures. To pr
one needs to define equilibrium network ensembles with appropriate weights, whe
graph corresponds to one state of the ensemble. In a canonical ensemble, the nu
edgesL is fixed: given a degree distribution,pd(k), the mean degree〈k〉 ≡ ∑

kpd(k) is
obtained. Then the number of edges obtained through the relation,L = 〈k〉N/2, can be
fixed. A degree sequence specifies the number of vertices with degreek aspd(k)N [11,
12].

A grandcanonical ensemble can be also defined, where the number of edges
a fluctuating variable while keeping the SF nature of the degree distributions
grandcanonical ensemble for SF random graphs is realized in the static model intro
by Goh et al.[13] or in its generalized version investigated in Ref.[14]. The name ‘static
originates from the fact that the number of vertices is fixed from the beginning. Here ea
vertexi has a prescribed weightPi summed to 1 and an edge can connect verticesi and
j with ratePiPj [15–17]. A chemical potential-like parameterK that can be regarded a
“time” in the process of attaching edges controls the mean number of edges so th〈L〉
increases with increasingK.

As the parameterK increases, a giant cluster, or giant component, forms in the sys
Here the giant cluster means the largest cluster of connected vertices whose size isO(N).
Often such a giant cluster appears at the percolation transition point. In equili
statistical physics, the percolation problem can be studied through a spin model,q-
state Potts model in the(q → 1)-limit [18]. Using the relation, in this paper, we study t
evolution of SF random graphs from the perspective of equilibrium statistical physics. T
be specific, we construct theq-state Potts model, where the interaction strength betw
each pair of vertices is inhomogeneous on the complete graph. In this formulatio
since the interaction strengthK is tunable, the mean number of edges〈L〉 varies. Thus,
the grandcanonical ensemble is taken in the network representation. However, sin
number of spins (vertices) is fixed, the formulation corresponds to a canonical ens
in the spin-model representation. Note that our model is different from the one stud
Dorogovtsev et al.[19] where the Potts model is defined as a given fixed network so
each edge represents homogeneous interactions.
The formulation of the spin model facilitates explicit derivation of various properties of
the SF network. Thus we derive the formula for the giant cluster size, the mean cluster size,
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and in particular, the number of loops and clusters. These quantities are explicitly evaluat
analytically for the static model withPi ∝ i−µ (0 < µ < 1) in the thermodynamic limit a
a function of the edge density, and their critical properties are also studied. The d
exponentλ is related toµ by λ = 1+1/µ. Moreover, their finite-size scaling behaviors a
obtained using thefinite largest cluster size for finiteN that in turn is evaluated from th
cluster size distribution. From these, we are able to elucidate the process of formation
giant cluster. While for the caseλ > 3, the giant cluster forms abruptly at the percolat
transition pointKc, for the case 2< λ < 3 where most real world networks belong
however, the formation of the giant cluster is gradual and the mean cluster size for fiN

show double peaks.
In fact, the percolation problem of SF networks has been studied, but in a differen

that is, by removing vertices one by one as wellas their attached edges from an existing
network[20–22]. The percolation transition was understood by using the branching pr
approach, which is supposed to be valid near the percolation transition point, where th
network is sparse. In this paper, we provide the criterion for the validity of the bran
process approach for a general degree distribution, and show that the branching proc
the Potts model approaches are equivalent for the static model. Finally, note that wh
branching process approach cannot count the number of loops, the Potts model for
we use here enables us to count it.

This paper is organized as follows. We introduce inSection 2an ensemble of random
graphs where each vertex is weighted, and present inSection 3the Potts model formulatio
to derive graph theoretical quantities from its free energy. InSection 4, the connection
between the Potts model formulation and the branching process approach is discuss
general results ofSection 3are applied to the static model inSection 5to obtain explicitly
the giant cluster size, the mean cluster size and the mean number of loops and clus
function ofK. The cluster size distribution and the largest cluster size in finite size sys
are obtained inSection 6. The finite-size scaling is presented and compared with nume
simulation results inSection 7. Finally Section 8contains summary and discussion.

2. Random graphs with weighted vertices

Suppose that the number of verticesN is fixed (static) and each vertexi = 1, . . . ,N

is given a probabilityPi summed to 1. The ER model of random graphs correspon
assigningPi = 1/N for all i. To construct a SF graph, we usePi ∼ i−µ with 0 < µ < 1.
However, for the time being,Pi is arbitrary as long asPi � 1 for all i.

In each unit time duration, two verticesi andj are selected with probabilitiesPi and
Pj . If i = j or an edge connectingi andj already exists, do nothing; otherwise, an ed
is added between the verticesi andj . This process is repeated forNK times. Then the
probability that a given pair of verticesi andj (i �= j ) is not connected by an edge is giv
by (1 − 2PiPj )

NK 	 e−2NKPiPj , while that it does is 1− e−2NKPiPj . Here we used th
conditionPi � 1. The factor 2 comes from the equivalence of(ij) and(j i). We use the

“interaction” parameterK for later convenience which controls the edge density〈L〉/N .
Since each edgebij is produced independently, this process generates a graphG with
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probability

P(G) =
∏

bij ∈G

(
1− e−2NKPiPj

) ∏
bij /∈G

e−2NKPiPj

= e
−2NK

∑
i>j PiPj

∏
bij ∈G

(
e2NKPiPj − 1

)

(1)= e−NK(1−M2)
∏

bij ∈G

(
e2NKPiPj − 1

)
,

where we used the notationMn ≡ ∑N
i=1 Pn

i . By a graphG, we mean a configuratio
of undirected edges connecting a subset ofN(N − 1)/2 pairs of labeled verticesi =
1,2, . . . ,N .

We then evaluate the ensemble average of any graph theoretical quantityA by

(2)〈A〉 =
∑
G

P(G)A(G).

One example is the degreeki of a vertexi, the number of edges incident oni. To do this,
the generating function ofki , gi(ω) ≡ 〈ωki 〉, is first calculated as

(3)gi(ω) =
∏

j ( �=i)

[
e−2NKPiPj + ω

(
1− e−2NKPiPj

)]
.

From this, one has

(4)〈ki〉 = ω
d

dω
gi(ω)

∣∣∣∣
ω=1

=
∑
j ( �=i)

(
1− e−2NKPiPj

)
,

and the average degree〈k〉 is

(5)〈k〉 = 2〈L〉
N

= 1

N

∑
i

〈ki〉 = 1

N

∑
i �=j

(
1− e−2NKPiPj

)
.

Also,

〈
k2
i

〉 = (
ω

d

dω

)2

gi(ω)

∣∣∣∣
ω=1

=
[ ∑

j ( �=i)

(
1− e−2NKPiPj

)]2

+
∑
j ( �=i)

e−2NKPiPj
(
1− e−2NKPiPj

)

(6)= 〈ki〉 + 〈ki〉2 −
∑
j ( �=i)

(
1− e−2NKPiPj

)2
.

We remark thatEq. (3)is rewritten as
(7)gi(ω) 	 e−(1−ω)〈ki〉
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with 〈ki〉 in Eq. (4)when|(1− ω)(1− e−2NKPiPj )| � 1 for all j ( �= i). It implies that the
probability thatki is equal tok, pd,i(k) = 〈δki ,k〉, is given by

(8)pd,i(k) = 1

k!
dk

dωk
gi(ω)

∣∣∣∣
ω=0

	 〈ki〉k
k! e−〈ki 〉

for k � 1. Other quantities are discussed later on.

3. Potts model

3.1. Potts model and random graph

It is well known that theq-state Potts model provides a useful connection betw
the geometric bond percolation problem and the thermal systems through the Ka
construction[18]. Theq → 1 limit of the Potts model corresponds to the bond percola
problem. The same approach can be used for the random graph problem. Fro
viewpoint of the thermal spin system, this is basically the infinite range model sin
pairs of spins interact with each other albeit with inhomogeneous interaction strength.

Consider theq-state Potts Hamiltonian given by

(9)−H = 2NK
∑
i>j

PiPj δ(σi , σj ) + h0

N∑
i=1

[
qδ(σi,1) − 1

]
,

whereK is the interaction,h0 is a symmetry-breaking field,δ(x, y) the Kronecker delta
function, andσi the Potts spins taking integer values 1,2, . . . , q ≡ r + 1. We use the
notationr ≡ q − 1. The partition functionZN(q,h0) can be written as

ZN(q,h0) = Tr e−H

(10)= Tr
∏
i>j

[
1+ (

e2NKPiPj − 1
)
δ(σi , σj )

]∏
i

eh0(qδ(σi ,1)−1),

where Tr denotes the sum overqN spin states. Expanding the first product and taking
Tr operation, one has

(11)ZN(q,h0) =
∑
G

∏
bij ∈G

(
e2NKPiPj − 1

) ∏
s�1

(
esrh0 + re−sh0

)nG(s)
,

wherenG(s) is the number ofs-clusters, a cluster withs vertices in a given graphG.
Comparing this withEq. (1), one immediately notices that

(12)ZN(q,h0) = eNK(1−M2)
∑
G

P(G)
∏
s�1

(
esrh0 + re−sh0

)nG(s)
.

∑

In particular,ZN(q,0) = eNK(1−M2)〈qC〉, whereC = s nG(s) is the total number of
clusters in graphG. ThusZN(q,0) is the generating function ofC.
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The magnetization of the Potts model is defined as

(13)m(q,h0) = 1

rN

∂

∂h0
lnZN(q,h0).

It can be written as

(14)m(q,h0) =
〈∑

clusters

[
esrh0−e−sh0

esrh0+re−sh0

](
s
N

)∏
clusters(e

srh0 + re−sh0)
〉

〈∏
clusters(e

srh0 + re−sh0)
〉 .

If we introduce the cluster size distributionP(s) ≡ n(s)(s/N) with n(s) = 〈nG(s)〉 and
the generating functionP(z) = ∑

s�1 P(s)zs , the magnetization is, whenq = 1,

(15)m(1, h0) =
∑
s�1

P(s)
(
1− e−sh0

) = 1−P
(
e−h0

)
.

The generating functionP(z) will be used inSection 6to investigate the asymptot
behavior of the cluster size distribution.

Whenh0 = 0, the magnetization vanishes for finiteN . However, when we take the lim
h0 → 0 after the thermodynamic limitN → ∞, the contribution from the largest clust
whose size isS can survive to give

(16)m(1, h0 → 0) =
〈

S

N

〉
,

if S/N is finite. Let us define a giant cluster by a cluster whose size isO(N). Then
m(1, h0 → 0) is the ratio of the giant cluster size toN , if it exists, and the system i
considered as being in the percolating phase ifm(1, h0 → 0) is non-zero. For simplicity
we will call m(1, h0 → 0) the giant cluster size and denote it bym.

The susceptibility defined asχ(q,h0) ≡ (1/q)(∂/∂h0)m(q,h0) on the other hand i
related to the mean cluster size:

(17)χ(1, h0 → 0) = lim
h0→0

lim
N→∞

∑
s

P (s)se−sh0 =
∑

s �=〈S〉
sP (s),

whereh0〈S〉 → ∞ is used with〈S〉 the ensemble average of the largest cluster size, w
we call simply the largest cluster size. We will denoteχ(1, h0 → 0) by s̄. Note that our
definition of s̄ is normalized with respect to the total number of vertices instead o
number of vertices belonging to finite clusters.

The number of loopsNloop is related to the total number of clustersC through

(18)Nloop = L − N + C.

SinceZN(q,0) ∼ 〈qC〉, one can notice that the number of loops per vertex〈Nloop〉/N is
given as

(19)
〈Nloop〉

N
= 〈L〉

N
− 1+ 1

N

∂

∂q

[
lnZN(q,0)

]
q=1.
We will denote〈Nloop〉/N by � and call it the number of loops for simplicity.
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3.2. Partition function

A convenient way to evaluate the partition function is to resort to the vector
representation where one associates anr-dimensional vector
S(σi) of unit length to each
spin valueσi , where 
S(1) = (1,0, . . . ,0) and 
S(σi) with σi = 2,3, . . . , q point to the
remainingr corners of ther-dimensional tetrahedron (SeeFig. 1). Then one can represe
the Kronecker delta function as a dot product between
S’s,

(20)δ(σi , σj ) = 1

q

(
r 
S(σi) · 
S(σj ) + 1

)
.

Using this, the interaction term inEq. (9)can be written as

(21)2NK
∑
i>j

PiPj δ(σi , σj ) = NK

(
1

q
− M2

)
+ rNK

q

(∑
i

Pi

S(σi)

)2

.

The perfect square is then linearized through the identity
∫

dy e−ay2+by = √
π/aeb2/(4a).

Thus we have

ZN(q,h0)

(22)

= Tr

[
e
NK( 1

q
−M2)

(
4πK

rqN

)− r
2

e
∑N

i=1 r 
h0· 
S(σi)

∫
d 
y e− rqN

4K
y2+rN

∑N
i=1 Pi 
y· 
S(σi)

]
,

where the integration is over ther-dimensional space and
h0 = (h0,0, . . . ,0). Now the Tr
operation can be performed for each spin independently. Defining

(23)ζ̃ (
h) = 1

q

q∑
σ=1

er 
h· 
S(σ ),

one then has

(24)ZN(q,h0) =
(

4πK

rqN

)− r
2

qNe
NK( 1

q
−M2)

∫
d 
y e− rqN

4K
y2+∑N

i=1 ln ζ̃ ( 
h0+NPi 
y).

Provided(1/N)
∑N

i=1 ln ζ̃ ( 
h0 + NPi 
y) has a well-defined limit asN → ∞, one can
apply the saddle point method toEq. (24), where the integral is replaced by the value
the integrand at its maximum. The maximum is for
y which is a solution of the saddle-poi
Fig. 1. Vector representations ofq-state Potts spins withq = 2, 3, and 4.
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equation

(25)
q

2K

y = 1

rN

N∑
i=1

∇
y ln ζ̃ ( 
h0 + NPi 
y).

When 
h0 = 0, 
y = 0 is always a solution ofEq. (25), but the spontaneous symmetr
breaking solutions (
y �= 0) with the Potts symmetry may appear for largeK. When
the symmetry-breaking field is applied along the 1-direction,
h0 = (h0,0, . . . ,0), the
non-trivial physically relevant solution ofEq. (25) is expected in the sub-manifo

y = (y,0, . . . ,0). The limit h0 → 0+ then selects one of theq equivalent spontaneou
symmetry-breaking solutions. With this in mind, we may restrict our attention to the
dimensional sub-manifold of
y in Eqs. (24) and (25). As a result, we then have, asN → ∞,

(26)
1

N
lnZN(q,h0) = ln q + K

(
1

q
− M2

)
− rF (y,h0),

with

(27)F(y,h0) = q

4K
y2 − 1

rN

N∑
i=1

ln ζ(h0 + NPiy, q),

where

(28)ζ(h, q) = 1

q

q∑
σ=1

erS1(σ ) = erh + re−h

1+ r
,

andy is the solution of the one-dimensional saddle-point equation,

(29)
q

2K
y = 1

r

N∑
i=1

Pi

∂

∂h0
ln ζ(h0 + NPiy, q).

Here, theq-dependence inF(y,h0) is not shown explicitly. Sincem = (1/(rN))(∂/∂h0) ×
lnZ, we see that

(30)m(q,h0) = − d

dh0
F(y,h0) = 1

rN

N∑
i=1

∂

∂h0
ln ζ(h0 + NPiy, q).

At this point, it is useful to take ther → 0 limit in Eqs. (27), (29), and (30), which yields,
with hi = h0 + NPiy,

(31)F(y,h0) = 1

4K
y2 − 1

N

N∑
i=1

(
e−hi − 1+ hi

)
,

wherey is the solution of

N∑

(32)

y

2K
=

i=1

Pi

(
1− e−hi

)
.
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The magnetization and the susceptibility reduce to

(33)m(1, h0) = 1

N

N∑
i=1

(
1− e−hi

)
,

and

χ(1, h0) = 1

N

N∑
i=1

e−hi

(
1+ NPi

dy

dh0

)

(34)= 1

N

N∑
i=1

e−hi +
(∑N

i=1 Pie
−hi

)2

(2K)−1 − ∑N
i=1 NP 2

i e−hi

,

respectively, where it is used that

(35)
dy

dh0
=

∑N
i=1 Pie

−hi

(2K)−1 − ∑N
i=1 NP 2

i e−hi

.

Thus the giant cluster size and the mean cluster size are obtained fromEqs. (33) and (34),
respectively, withh0 → 0.

Also, the number of clusters per vertex is

(36)
〈C〉
N

= 1− K − F(y,0)|q=1,

while that of loops is

(37)
〈Nloop〉

N
= 〈L〉

N
− K − F(y,0)

∣∣∣∣
q=1

,

wherey is given byEq. (32)with h0 = 0.
When h0 → 0, a non-trivial solution ofEq. (32)begins to appear when(2K)−1 <

N
∑N

i=1 P 2
i , which gives the following characteristic valueKc

(38)Kc = 1

2N
∑N

i=1 P 2
i

.

When Pi decays slower thani−1 and KPi � 1 for all i, 〈k〉 = 2K and 〈k2〉 =
(1/N)

∑N
i=1〈k2

i 〉 = 〈k〉 + N−1 ∑N
i=1〈ki〉2 = 2K + 4NK2 ∑N

i=1 P 2
i , which will be shown

below. Then the conditionK = Kc is equivalent to the well-known condition〈k2〉/〈k〉 = 2
[11]. Whether the percolation transition occurs atKc or not will be investigated for specifi
Pi ’s of the static model.

4. Branching process approach

The cluster size distributionP(s) can be obtained fromEqs. (32) and (33)using

m(1, h0) = 1 − P(e−h0) and P(s) = (1/s!)dsP(z)/dzs|z=0. However, the cluster size
distribution can also be obtained through the generating function approach or equivalently
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the branching process approach. Here, the presence of loops infinite clusters is neglecte
and each cluster in a given graph is considered as a tree generated by successive br
from an arbitrary vertex[23,24]. Consider the probability that a randomly chosen ve
belongs to as-cluster, which is justP(s). ThenP(s) can be written recursively as

(39)P(s) = δs,1pd(0) +
∑
k�1

pd(k)

k∏
i=1

∑
si

R(si)δ
∑

i si ,s−1,

wherepd(k) is the degree distribution andR(s) is the probability that a randomly-chos
edge has as-cluster at its one end, and thus equal to the number of edges follow
s-clusters divided by 2L. R(s) is obtained self-consistently as

(40)R(s) = δs,1rd(0) +
∑
k�1

rd (k)

k∏
i=1

∑
si

R(si )δ
∑

i si ,s−1,

whererd(k) is the probability that the vertex at either end of a randomly-chosen e
hask + 1 edges and thus is equal to(k + 1)pd(k + 1)/〈k〉. With the generating function
P(z) = ∑∞

s=1 P(s)zs andR(z) = ∑∞
s=1 R(s)zs , Eqs. (39) and (40)can be written in more

compact forms as

(41)P(z) = zg
(
R(z)

)
and

(42)R(z) = zf
(
R(z)

)
,

where g(ω) = ∑∞
k=0 pd(k)ωk and f (ω) = g′(ω)/〈k〉 = g′(ω)/g′(1). We mention tha

Eqs. (41) and (42)with z = 1 are equivalent to those derived by Molloy and Reed[11]
for a given degree sequence.

Eqs. (41) and (42)are the standard results. For the grandcanonical ensemble w
using, the generating functionsg(ω) and f (ω) are represented in terms ofgi(ω), the
generating function ofpd,i(k) in Eq. (3), as

g(ω) = 1

N

N∑
i=1

gi(ω),

(43)f (ω) = 1

N〈k〉
N∑

i=1

dgi(ω)

dω

with 〈k〉 = g′(1). In particular, if

(44)gi(ω) = e−(1−ω)2NKPi ,

which holds, for example, when 1−e−2NKPiPj � 1 for all i �= j , thenEqs. (41) and (42)of
the branching process approach are exactly equal toEqs. (33) and (32)of the Potts mode

formulation, identifyingz, P(z), andR(z) with e−h0, 1 − m(1, h0), and 1− y/(2K),
respectively.
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5. Percolation of the static model: thermodynamic limit

So far, our discussion applies to arbitraryPi . In this section, we specialize to the ca
of the static model,

(45)Pi = i−µ

ζN(µ)
(0< µ < 1).

Here ζN(x) ≡ ∑N
i=1 i−x , and in the limitN → ∞, it converges to the Riemann ze

functionζ(x) whenx > 1 and diverges asN1−x/(1− x) when 0< x < 1. In the margina
case withx = 1, it is calculated as lnN +γM with γM = 0.5772. . . , the Euler–Mascheron
constant. The sum appearing inEq. (31)is evaluated inAppendix Aas

Σ1(y) ≡ 1

N

N∑
i=1

e−NPiy

(46)= −�

(
1− 1

µ

)
(1− µ)

1
µ y

1
µ + 1− y + (1− µ)2

2(1− 2µ)
y2 + · · ·

for y(1− µ)Nµ � 1. This will be used repeatedly. We do not consider the marginal c
where 1/µ is an integer. The sums inEqs. (4) and (5)are evaluated usingΣ1(y) to give

(47)〈ki〉 = 2NKPi and 〈k〉 = 2〈L〉/N = 2K,

in the limit N → ∞ if KPi � 1 for all i or equivalently,K � ζN(µ) = O(N1−µ).
ThusK is 〈L〉/N . Under the same condition, the third term(1 − e−2NKPiPj )2 in Eq. (6)
does not contribute to〈k2〉 = (1/N)

∑N
i=1〈k2

i 〉 in the limit N → ∞, which gives〈k2〉 =
(1/N)

∑N
i=1[〈ki〉 + 〈ki〉2]. Moreover, rewritingEq. (3)as

(48)loggi(ω) =
∑
j ( �=i)

log
[
1− (1− ω)

(
1− e−2NKPiPj

)]

and expanding the right-hand side as a power series in(1 − ω) to apply the result o
Appendix A, we find thatEq. (44)holds for all range of 0< µ < 1 andK finite. Note
that(1− e−2NKPiPj ) is not small when 1/2< µ < 1 but the final result is the same as th
for 0 < µ < 1/2 where(1− e−2NKPiPj ) 	 2NKPiPj � 1 holds. Thus the degree of ea
vertexki follows the Poisson distribution and the branching process approach and th
model approach are equivalent for the static model as long asm ands̄ are concerned. Thi
is because thefiniteclusters remain effectively trees for allK.

For convenience, we divide the range ofµ into the three cases, (I) 0< µ < 1/3,
(II) 1/3< µ < 1/2, and (III) 1/2< µ < 1.

5.1. Degree distribution

The asymptotic behavior of the degree distributionpd(k) is related to the behavior of it∑

generating functiong(ω) = k pd(k)ωk for ω near 1, which is equal toΣ1(2K(1−ω)) in
the limit N → ∞. The latter condition is necessary for the approximationPi(1− Pi) 	 Pi
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to be valid. FromEqs. (A.2) and (A.6), the degree distributionpd(k) is given by

(49)pd(k) = 1

k!
dk

dωk
g(ω)

∣∣∣∣
ω=0

	

 c1k

−1− 1
µ for 1 � k � kmax,

c2
kk

max
k! for k � kmax,

wherekmax is equal to〈k1〉 i.e., kmax = 2K(1 − µ)Nµ, c1 = (1/µ)[2K(1 − µ)]1/µ and
c2 = (1/N)

∑∞
r=0(−kmax)

rζ [µ(k + r)]/r! 	 e−kmax/N . From now on, we assume th
K� � K � Ku with K� ≡ N−µ/(2(1 − µ)) and Ku ≡ N1−µ/(2(1 − µ)), for which
1 � kmax� N so that there exists the regime ofk where the degree distribution follows
power lawpd(k) ∼ k−λ with

(50)λ = 1+ 1

µ
.

Since we are interested in the range 0< µ < 1, the degree exponentλ is larger than 2.

5.2. Giant cluster size

The giant cluster sizem can be evaluated byEq. (33)with hi = NPiy. In terms of
Σ1(y) evaluated inAppendix A, it is simply represented as

(51)m = 1− Σ1(y)

with y obtained by solvingEq. (32)

(52)
y

2K
=

N∑
i=1

Pi

(
1− e−hi

) = 1+ Σ ′
1(y),

whereΣ ′
1(y) = (d/dy)Σ1(y).

Wheny is small,Eq. (52)is expanded as

(I)
y

2K
	 y

2Kc

− (1− µ)3

2(1− 3µ)
y2,

(II)
y

2K
	 y

2Kc

− �

(
1− 1

µ

)
(1− µ)

1
µ

µ
y

1
µ

−1
,

(53)(III )
y

2K
	 −�

(
1− 1

µ

)
(1− µ)

1
µ

µ
y

1
µ

−1
,

for the three ranges ofµ, (I), (II), and (III), respectively. For (I) and (II), the characteris
valueKc defined by

(54)Kc = (1− 2µ)

2(1− µ)2

appears, which is justEq. (38)with Pi in Eq. (45).
WhenK < Kc for (I) and (II), or K = 0 for (III), Eqs. (52) or (53)has the solution

y = 0, and therefore, the giant cluster size is
(55)m = 0.
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That is, there is no giant cluster forK < Kc (I, II) or K = 0 (III). But a non-zero solution
for y occurs whenK > Kc (I, II) or K > 0 (III). It leads to the following giant cluster siz
m:

(I) m 	 y 	 2(1− 3µ)

(1− µ)(1− 2µ)
∆,

(II) m 	 y 	 1

1− µ

(
µ

(1− 2µ)�(1− 1
µ
)

) µ
1−2µ

∆
µ

1−2µ ,

(56)(III ) m 	 y 	
(2(1− µ)

1
µ |�(1− 1

µ
)|

µ

) µ
2µ−1

K
µ

2µ−1 ,

for ∆ ≡ K/Kc −1 (I, II) or K (III) small and positive. Here the relationm 	 y comes from
Eqs. (51) and (A.6). The giant cluster size is finite for∆ finite and positive, and thusKc is
the percolation transition point. If we define a critical exponentβ by m ∼ ∆β , its value is
1 (I) andµ/(1− 2µ) (II). For (III), m is finite for K finite, butK = 0 is not a percolation
transition point, which will be investigated further below.

The giant cluster sizem as a function ofK, which can be obtained numerically fro
Eqs. (51) and (52), is plotted for the case ofµ = 5/19 (λ = 1+1/µ = 4.8), 5/13 (λ = 3.6),
and 5/7 (λ = 2.4) in Fig. 2.

We mention that in Ref.[16], some rigorous bounds of the giant cluster size are der
for an ensemble similar to ours, but with a different form of the probabilities of ad
edges so that their results apply only to the caseλ > 3 of the static model.

5.3. Mean cluster size

The mean cluster sizēs or the susceptibilityχ(1, h0 → 0) in Eq. (34)is represented in
terms ofΣ1(y) in Appendix Aas

(57)s̄ = Σ1(y) + [Σ ′
1(y)]2

(2K)−1 − Σ ′′
1 (y)

,

wherey is the solution ofEq. (52)andΣ ′′
1 (y) = (d/dy)Σ ′

1(y).
WhenK < Kc for (I) and (II), y = 0 and thus

(58)s̄ = 1+ 2KKc

Kc − K

sinceΣ(0) = −Σ ′(0) = 1, andΣ ′′
1 (y) = 1/(2Kc). On the other hand, whenK > Kc, y is

non-zero but given byEq. (56), and one can see thatΣ(y) 	 1, Σ ′(y) 	 −1 and

(59)Σ ′′(y) 	
{ 1

2Kc
− ∆

Kc
(I),

1
2Kc

− 1−µ
2µ

∆
Kc

(II) .

From these relations, the mean cluster size forK aroundKc is obtained as{
c−
(60)s̄ 	 (−∆)
(∆ < 0),

c+
∆

(∆ > 0),
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Fig. 2. Giant cluster sizem, mean cluster sizēs, and number of loops� = 〈Nloop〉/N vs. K for µ = 5/19
(λ = 4.8) (a), µ = 5/13 (λ = 3.6) (b), andµ = 5/7 (λ = 2.4) (c). They are obtained by solving numerica
Eqs. (51), (57), and (64), respectively, together withEq. (52). The number of clusters per vertex not shown h
is 1− K + � and monotonically decreases withK from 1 to 0.

where

(61)c− = 2Kc, c+ =
{

2Kc (I),
2µ

1−2µ
Kc (II) .

s̄ diverges atKc both for (I) and (II). Thus, if we defineχ ∼ |∆|−γ , thenγ = 1 for both
(I) and (II).

For (III), y, the solution ofEq. (52)is zero only whenK is zero. We suppose thatK is
non-zero but small in the thermodynamic limitN → ∞. Then, fromEq. (A.6), it follows
that

Σ1(y) 	 1−
(

2B

µ

) µ
2µ−1

K
µ

2µ−1 +
(

2

µ

) 1
2µ−1

B
2µ

2µ−1 K
1

2µ−1 ,

Σ ′
1(y) 	 −1+ 1

2

(
2B

µ

) µ
2µ−1

K
1−µ
2µ−1 ,
(62)Σ ′′
1 (y) 	 1− µ

2µK
,
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whereB = (1− µ)1/µ|�(1− 1/µ)|. Then the mean cluster size is

s̄ 	 1−
(

2B

µ

) µ
2µ−1

K
µ

2µ−1 +
(

2

µ

) 1
2µ−1

B
2µ

2µ−1 K
1

2µ−1

+ 2µK

2µ − 1

(
1− 1

2

(
2B

µ

) µ
2µ−1

K
1−µ
2µ−1

)2

(63)	 1+ 2µ

2µ − 1
K − 4µ − 1

2µ − 1

(
2B

µ

) µ
2µ−1

K
µ

2µ−1 + µ2

2µ − 1

(
2B

µ

) 2µ
2µ−1

K
1

2µ−1 ,

for smallK. As shown in the numerical solutions for the mean cluster sizes̄ obtained from
Eqs. (57) and (52)plotted inFig. 2, the most important feature ofs̄ for (III) is that it does
not diverge at any value ofK but has only a finite peak atKp2 =O(1). It implies that there
is no phase transition for (III), i.e., 2< λ < 3.

5.4. Number of loops and clusters

The number of loops per vertex〈Nloop〉/N , which we denote by�, is also represente
in terms ofΣ1(y) as

(64)� = −F(y,0) = −1+ y − 1

4K
y2 + Σ1(y),

with y being the solution ofEq. (52).
WhenK < Kc for (I) and (II), andK = 0 for (III), the value ofy is zero andΣ1(0) = 1,

which leads to

(65)� = 0.

On the other hand, whenK > Kc for (I), (II), or K > 0 for (III), the value of� is not zero.
From the behavior ofΣ1(y) for smally andEq. (56), one can see that for∆ > 0 (I, II) or
K > 0 (III),

(66)� 	




2
3

(1−3µ)2

(1−2µ)3∆
3 (I),

1
2

( µ

(1−2µ)�(1− 1
µ

)

) 2µ
1−2µ ∆

1
1−2µ (II),

2µ−1
4

( 2(1−µ)
1
µ |�(1− 1

µ
)|

µ

) 2µ
2µ−1 K

1
2µ−1 (III ).

The exact solutions for� are shown inFig. 2. The number of clusters is simply related to�

as〈C〉/N = 1− K + �.

6. Cluster size distribution and largest cluster size
Beyond the largest cluster size or the mean cluster size, the whole distribution of cluster
sizeP(s) for the static model can be derived fromEqs. (32) and (33), which gives the
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parametrized equations forP(z) = 1− m(1, h0 = − ln z) as

z = 1− y
2K∑N

i=1 Pie−NPiy
= −1− y

2K

Σ ′
1(y)

,

(67)P(z) = z

N

N∑
i=1

e−NPiy = zΣ1(y),

whereΣ1(y) in Appendix Ais used.P(s) is obtained byP(s) = (1/s!)(ds/dzs)P(z)|z=0.
In particular,P(s) for s � 1 is contributed to by such a singular term as(z0 − z)x with x

a non-integer inP(z). The functional form ofP(z) depends onPi for 1 � i � N . In this
section, we solveEqs. (32) and (33)whenPi is given byEq. (45)to find the cluster size
distributionP(s). Furthermore, we derive the largest cluster size〈S〉 before a giant cluste
appears through the following relation[25]

(68)
∑

s �=〈S〉
P(s) = 1− 〈S〉

N
,

which is equivalent to the relationm(1, h0 → 0) = 〈S〉/N in the limit h0〈S〉 → ∞ in
Eq. (16).

6.1. µ = 0: Erdős–Rényi model

Before considering the case of 0< µ < 1 in Eq. (45), we first consider the Erd̋os–Rényi
model withPi = 1/N corresponding to the case ofµ = 0. In this case, the parametriz
equations forP(z), Eq. (67)is simply written as

z =
(

1− y

2K

)
ey,

(69)P(z) = ze−y.

If we considery as a function ofz, it has the propertiesy(z = 0) = 2K anddy/dz < 0
for 0 � z < z0 ≡ e2K−1/2K. On the other hand,P(z = 0) = 0 andP(z) is an increasing
function ofz. By substitutingz = 1, we find that the giant cluster sizem = 1−P(1) is non-
zero forK > Kc = 1/2, and especially,m is given bym 	 2∆ for 0 < ∆ = K/Kc −1 � 1.

Aroundz0, the functiony(z) becomes singular asy(z) 	 2K −1+[4Ke1−2K]1/2(z0 −
z)1/2. Also,P(z) has the square-root singularity atz0 as

(70)P(z) 	 1

2K
−

(
e1−2K

K

) 1
2

(z0 − z)
1
2 .

DifferentiatingP(z) at z = 0, one can obtainP(s), which is given for larges as

P(s) = 1

s!
ds

dzs
P(z)

∣∣∣∣
z=0

	 −
(

e1−2K

K

) 1
2

z
−s+ 1

2
0

�(s − 1
2)

�(s + 1)�(−1
2)( 1−2K+ 1 ) 1
(71)	 e s0

4πK

2

s− 3
2 e

− s
s0 ,
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where�(−1/2) = −2π1/2 is used ands0 ≡ 1/ lnz0. One can notice thatz0 = 1, s0 → ∞,
andP(s) ∼ s−3/2 atKc . When|∆| � 1, the cut-offs0 is approximately 2/∆2.

The presence of the cut-offs0 means that a cluster of sizes larger thans0 can be found
only with the exponentially small probability∼ e−s/s0. Thus, the largest cluster is as lar
ass0 before a giant cluster appears.〈S〉 increase asK approachesKc. However, in finite
size systems, the largest clusters cannot grow infinitely asK → Kc, which is obvious from
Eq. (68). Suppose that〈S〉 is much less thans0. Then, one can easily see thatS ∼ N2/3

applyingEq. (71)to Eq. (68). It indicates that in the regime ofK wheres0 � N2/3, or
−1 � ∆N1/3 < 0, 〈S〉 is O(N2/3). For K > Kc , the largest cluster size in the finite si
system is given byNm 	 2N∆ only whenN∆ � N2/3. To summarize,〈S〉 is given by

(72)〈S〉 ∼




1
∆2 (∆N

1
3 � −1),

N
2
3 (|∆N

1
3 | � 1),

N∆ (∆N
1
3 � 1).

The regime ofK satisfying|∆N1/3| � 1 in finite size systems shrinks to a pointKc in
the thermodynamic limitN → ∞, which we will call the critical regime. If we introduce
scaling exponent̄ν to describe the critical regime as|∆N1/ν̄ | � 1, ν̄ = 3 in the ER model

6.2. The case(I): 0 < µ < 1/3

As shown inAppendix A, Σ1(y) has a singular term with theµ-dependent exponent i
its expansion iny, which allowsP(z) to have singularity other than the square-root o
for the ER model.

The first relation ofEq. (67)is expanded iny as, usingEq. (A.2),

(73)z =
∞∑

n=0

any
n,

where the first few coefficients are

a0 = 1,

7a1 = 1

2Kc

− 1

2K
= ∆

2K
,

(74)a2 = −
[

1

2
(1− µ)3N3µ−1ζN(3µ) − ∆

4KKc

]
.

Here, the critical pointKc(N) is given by

(75)Kc(N) = 1

2(1− µ)2N2µ−1ζN(2µ)
.

When 0� µ < 1/2, the solutiony of Eq. (73)with z = 1 is 0 and thusP(1) = 1 for a1 < 0
while y is a positive value andP(1) < 1 for a1 > 0. Therefore,Kc(N) is the percolation
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transition point and indeed, converges to theKc in Eq. (54)in the thermodynamic limi
N → ∞. However, when 1/2 < µ < 1, Kc(N) = O(N−(2µ−1)) andy satisfyingEq. (73)
with z = 1 is∼ N−µ∆ for K > Kc(N), which goes to zero in the thermodynamic limit.
means thatKc(N) is not the percolation transition point for 1/2 < µ < 1.

Wheny � N−µ/(1− µ), Eq. (A.6)should be used and thus

(76)z = 1− y

2K
+

� 1
µ

−1�∑
n=1

a′
ny

n + Ay
1
µ −1 + · · · ,

wherea′
1 = 1/(2Kc), a′

n = an for n � 2, andA = �(2− 1/µ)(1− µ)1/µ−1.
Similarly to the ER model, when 0< µ < 1/3, the value ofm = 1 − P(1) is nonzero

for K > Kc =O(1), and thusKc can be identified with the percolation transition point.
The leading singular term of the functiony(z) varies depending onz. First, when

1− s−1
m � z < z0 = 1+ s−1

0 with

s0 ≡ 16K2|a2|
∆2 ,

(77)sm ≡ 2K(1− µ)2N2µ

2K|a2| − ∆(1− µ)Nµ

(
∆ <

4K|a2|
(1− µ)Nµ

)
,

the functiony(z) is represented as, fromEq. (73),

(78)y(z) 	 ∆

4K|a2| + (z0 − z)
1
2

|a2| 1
2

.

Notice thaty(z) with z � 1− s−1
m satisfies the relationy(z) � N−µ/(1− µ). Next, when

z � 1− s−1
m , y(z) is expanded fromEq. (76)as

(79)y(z) 	 ∆

4K|a2| + |a2|− 1
2

[
z0 − z + · · · + A

(
∆

4K|a2| + (z0 − z)
1
2

|a2| 1
2

) 1
µ

−1] 1
2

.

This implies thaty(z) has the square-root singularity as inEq. (78)except for the case o
∆ < 0 and 1− s−1

0 � z � 1− s−1
m , wherey(z) is given by

(80)y(z) 	 2K

|∆|(1− z) + · · · + A

(
2K

|∆|
) 1

µ

(1− z)
1
µ

−1 + · · · .

Such regime ofz exists whens0 � sm.
Different singularities ofy(z) depending on the range ofz and∆ shown inEqs. (78)–

(80)are inherited toP(z) by the relationP(z) = zΣ1(y), and in turn, causeP(s) to behave
distinctively depending on the range ofs and∆. When∆ � −N−µ, s0 is much less than
sm and  s− 3

2 e
− s

s0 (1 � s � s0),

− 1
 (81)P(s) ∼  (|∆|s) µ (s0 � s � sm),

s− 3
2 e

− s
s0 (s � sm).
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P(s) for 1 � s � s0 is related toEq. (79), that fors0 � s � sm to Eq. (80), and that for
s � sm to Eq. (78). On the other hand, when∆ � −N−µ, the regime ofz wherey(z)

follows Eq. (80)vanishes butP(s) is simply given by

(82)P(s) 	 s− 3
2 e

− s
s0

for all s.
When∆ � −N−µ, the cluster size distribution decays exponentially fors � sm, so the

largest cluster is as large assm ∼ Nµ/|∆|. When∆ � −N−µ, the cluster size distributio
takes the same form as that for the ER model, and the critical regime is specified w
same exponent̄ν = 3. Consequently,

(83)〈S〉 ∼




Nµ

|∆| (∆ � −N−µ),

1
|∆|2 (−N−µ � ∆ � −N− 1

3 ),

N
2
3 (|∆N

1
3 | � 1),

N∆ (∆N
1
3 � 1),

whereEq. (56)is used to obtain〈S〉 for ∆ � N−1/3.

6.3. The case(II): 1/3< µ < 1/2

Eqs. (73) and (76)are valid also for 1/3 < µ < 1/2. However, one should note that t
singular termy1/µ−1 is the next leading term toy in Eq. (76), which causesP(z) to have
anµ-dependent singularity other than the square-root one even in the critical regime.

Now we consider the singularity of the functiony(z). As for 0 < µ < 1/3, when
1 − s−1

m � z � z0 = 1 + s−1
0 with s0 andsm in Eq. (77), y(z) is given byEq. (78). Note

thata2 = O(N3µ−1) for µ > 1/3. y(z) for z � 1− s−1
m is obtained by invertingEq. (76).

When∆ > 0, if the regime 1− s−1
c � z � 1− s−1

m with

(84)sc ≡ 1− µ

1− 2µ

(
|A|1− µ

µ

) µ
1−2µ |∆|− 1−µ

1−2µ ,

exists,y(z) in that regime is given as

y(z) 	
(

µ∆

2K|A|(1− µ)

) µ
1−2µ

(85)+
[

2µ

1− 2µ

(
∆

2K

) 3µ−1
1−2µ

(
|A|1− µ

µ

)− µ
1−2µ

] 1
2

(zc − z)
1
2 + · · · ,

with zc = 1+ s−1
c . When∆ < 0 and 1− s−1

c � z � 1− s−1
m , y(z) is given by

( ) 1
(86)y(z) 	 2K

|∆|(1− z) − |A| 2K

|∆|
µ

(1− z)
1
µ −1 + · · · .
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Finally, both for∆ > 0 and∆ < 0, if z is in the regimez � 1 − max{s−1
c , s−1

m }, y(z)

exhibits the following singularity as

(87)y(z) 	
(

1− z

|A|
) µ

1−µ + · · · .
The functional form of the cluster size distribution varies depending ons and∆. When

∆ � −N−(1−2µ), P(z) has three different singularities,Eqs. (78), (86), and (87), in the
corresponding regimes ofz, and thusP(s) is given as

(88)P(s) 	




s
− 1

1−µ (1 � s � sc),

(|∆|s)− 1
µ (sc � s � sm),

s− 3
2 e

− s
s0 (s � sm).

When−N−(1−2µ) � ∆ � N−(1−2µ), P(z) is contributed to byEqs. (78) and (87), which
leads to

(89)P(s) 	
{

s
− 1

1−µ (1 � s � sm),

s− 3
2 e

− s
s0 (s � sm).

Finally, when∆ � N−(1−2µ), the regime ofz whereEq. (78)is valid disappears, and

(90)P(s) 	
{

s
− 1

1−µ (1 � s � sc),

s− 3
2 e

− s
sc (s � sc),

asEqs. (85) and (87)imply.
The largest cluster size followssm up to ∆ ∼ −N−(1−2µ) beyond which〈S〉 is

O(N1−µ) as shown byEq. (68). The comparison ofN1−µ and the giant cluster siz
mN ∼ N∆µ/(1−2µ) given in Eq. (56) indicates that the largest cluster size is given
the latter when∆ � N−(1−2µ). In summary, the largest cluster size is

(91)〈S〉 ∼




Nµ

|∆| (∆N1−2µ � −1),

N1−µ (|∆N1−2µ| � 1),

N∆
µ

1−2µ (∆N1−2µ � 1),

and the exponent̄ν is 1/(1− 2µ) for 1/3< µ < 1/2.

6.4. The case(III): 1/2 < µ < 1

For 1/2 < µ < 1, the value ofKc(N) given inEq. (75)is O(N−(2µ−1)) and thus, for
all finite K > 0, the giant cluster sizem = 1 − P(1) is non-zero in the thermodynam
limit N → ∞. However,m is given as∼ Kµ/(2µ−1), which isO(N−µ) aroundKc(N)

and vanishes in the thermodynamic limitN → ∞. We consider finite size systems whe
Kc(N) is non-zero but finite and investigate how the cluster size distribution and the la
cluster size behave aroundKc(N).

−1
Following the same step as for 0< µ < 1/2, one finds that when 1−s−1
m � z � 1+s0

with s0 and sm in Eq. (77), y(z) is given byEq. (78). Eq. (76)applies to the case of
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z � 1− s−1
m . If the regime 1− s−1

c � z � 1− s−1
m with

(92)sc ≡ 1− µ

2µ − 1

(
A

1− µ

µ

)− µ
2µ−1

K
− 1−µ

2µ−1 ,

exists,y(z) is given by

(93)

y(z) 	
(

2KA
1− µ

µ

) µ
2µ−1 +

[
2µ

2µ − 1
(2K)

3µ−1
2µ−1

(
A

1− µ

µ

) µ
2µ−1

] 1
2

(zc − z)
1
2 + · · · ,

with zc = 1+ s−1
c . In the regimez � 1− max{s−1

c , s−1
m }, y(z) is given by

(94)y(z) 	 2K(1− z) + A(2K)
1
µ (1− z)

1
µ

−1 + · · · .
WhenK � Kc(N), the generating functionP(z) is evaluated byEqs. (78) and (94)to

give the cluster size distributionP(s) as follows:

(95)P(s) 	



(
s
K

)− 1
µ (1 � s � sm),

N− 3µ−1
2 s− 3

2 e
− s

s0 (s � sm),

where the factorN−(3µ−1)/2 comes from|a2|−1/2. Eq. (95)is valid whensm < sc . When
K � Kc(N), the regime ofz whereEq. (78)applies disappears andP(z) is evaluated using
Eqs. (93) and (94). Consequently,P(s) is

(96)P(s) 	



(
s
K

)− 1
µ (1� s � sc),

K
3µ−1

2(2µ−1) s− 3
2 e

− s
sc (s � sc),

for K � Kc(N).
The largest cluster is as large assm approximately up toKc(N) and is given bymN in

Eq. (56)for K � Kc(N). That is,

(97)〈S〉 ∼
{

KNµ (K � Kc(N)),

NK
µ

2µ−1 (Kc(N) � K � 1).

This result implies that the largest cluster size is stillO(N1−µ) even whenK > Kc(N)

unlessK � Kc(N), consistent withEq. (56). The conditionsK � Kc(N) andK � Kc(N)

can be rewritten as∆ � 1 and∆ � 1 with ∆ = K/Kc(N) − 1, and thus the exponentν̄ to
define the critical regime is infinity for 1/2< µ < 1. The absence of a critical regime wi
a finite ν̄ means that there is no percolation transition in the evolution of scale-free graph
with 2 < λ < 3, as the absence of a divergence in the mean cluster size does.

7. Numerical simulations and finite size scaling
In this section, we derive the finite-size scaling forms of the giant cluster sizem, the
mean cluster sizēs, and the number of loops� and check against their numerical data from
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simulations for the static model. Investigating the cluster size distribution and the la
cluster size, we identified the critical regimes and the corresponding scaling var
which enables us to predict the scaling behaviors ofm, s̄, and�.

Let us sketch the numerical procedure briefly. At each step, we pick two vertii

and j , with probabilitiesPi and Pj , respectively. Then we put an edge betweeni and
j unless there is one already. Repeat the procedure until there areL edges made in th
system. The generation of random numbers with non-uniform probability densityPi is the
most time-consuming part here. One efficient way is to use, e.g., Walker’s algorithm[26]
combined with the so-called Robin Hood method[27], which is explained inAppendix B.
This method is exact and takes time ofO(N) to set up a table andO(1) to choose a
vertex, making a large-size simulation feasible. Once a graph is constructed, the c
are identified by the standard breadth-first search, during which we can extract the size
the largest cluster, the mean cluster size excluding the largest one as defined inEq. (17),
and the number of clusters within the graph. Recall that the number of clusters is related
the number of loops byEq. (18). We choose three values ofµ, µ = 5/19 (λ = 4.8), 5/13
(λ = 3.6), and 5/7 (λ = 2.4) as representatives of the regime (I), (II), and (III), respectiv
We perform the simulations for the system sizeN up to 107, and the ensemble average
evaluated with at least 103 runs.

Now we first consider the regime 0< µ < 1/2 or λ > 3. The scaling behaviors of th
giant cluster sizem in this regime are shown inEqs. (83) and (91)and can be written as

(98)m = N− β
ν̄ Ψ(I),(II)

(
∆N

1
ν̄
)
,

where the scaling exponentsβ andν̄ are given by

β =
{

1 (0< µ < 1
3),

µ
1−2µ

(1
3 < µ < 1

2),

(99)ν̄ =
{

3 (0 < µ < 1
3),

1
1−2µ

(1
3 < µ < 1

2).

The scaling functionΨ(I,II)(x) behaves as

(100)Ψ(I,II)(x) ∼
{

const (x � 1),

xβ (x � 1).

The critical pointKc can be found numerically by plottingmNβ/ν̄ vs. K as shown in
Fig. 3, which are in good agreement withEq. (54). In Fig. 4, the plots ofmNβ/ν̄ vs.∆N1/ν̄

are shown forµ = 5/19 and 5/13, respectively. The data collapse confirming the sca
behaviors inEq. (98).

In the critical regime, the cluster size distribution follows the power lawP(s) ∼ s−τ

with τ = 3/2 for (I) and 1/(1 − µ) for (II). Then the mean cluster size in the critic
regime is given bȳs ∼ 〈S〉2−τ sinces̄ = ∑

s �=〈S〉 sP (s). Since〈S〉 ∼ N1−β/ν̄ in the critical

regime as inEq. (98), the mean cluster size is represented ass̄ ∼ N(1−β/ν̄)(2−τ ) = N1/ν̄ ,
which leads to, combined withEq. (60),
(101)s̄ = N
1
ν̄ Φ(I,II)

(
∆N

1
ν̄
)
,
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Fig. 3. Plots ofmNβ/ν̄ vs.K for µ = 5/19 (a) andµ = 5/13 (b). The number of verticesN is 104(�), 105(�),
106(�), and 107(©). The data cross atKc = 0.435(1) (a) andKc = 0.306(2) (b), respectively, which are in
accordance with 0.436 and 0.305 fromEq. (54).

Fig. 4. Data collapse of scaled giant cluster sizesmNβ/ν̄ , mean cluster sizes̄s/N1/ν̄ , and number of loops�N
plotted vs.∆N1/ν̄ for µ = 5/19 (upper) andµ = 5/13 (lower).N is 104(�), 105(�), 106(�), and 107(©).

where the scaling functionΦ(I,II)(x) behaves as

(102)Φ(I,II)(x) ∼
{

const (x � 1),

x−1 (x � 1).

Plots ofs̄/N1/ν̄ vs.∆N1/ν̄ for µ = 5/19 and 5/13 are shown inFig. 4.

Since the giant cluster size and the mean cluster size correspond to the first and second

derivative of the free energy with respect to the external field, respectively, it is natural
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that both have the same scaling variable. Therefore, the number of loops, correspon
the free energy itself, is also described in terms of the scaling variable∆N1/ν̄ with ν̄ in
Eq. (99). Considering the number of loops forK > Kc given inEq. (66), one can see tha

(103)� = 1

N
Ω(I,II)

(
∆N

1
ν̄
)
,

where the scaling functionΩ(I,II)(x) behaves as

(104)Ω(I,II)(x) ∼
{

const (x � 1),

xν̄ (x � 1).

This implies that� is O(N−1) in the critical regime, which is supported by the numeri
simulation results inFig. 4.

Next, we consider the regime 1/2 < µ < 1. From the largest cluster size shown
Eq. (97), the giant cluster sizem can be written as

(105)m ∼ N−µ Ψ(III )(∆),

where the functionΨ(III )(x) behaves as

(106)Ψ(III )(x) ∼
{

const (x � 1),

x
µ

2µ−1 (x � 1).

Notice thatm increases smoothly passingKc(N) as manifested by∆ not scaling withN .
Similarly, the number of loops� represented in terms of the scaling variable∆ around
Kc(N) should exhibit the following scaling behaviors to satisfyEq. (66):

(107)� = 1

N
Ω(III )(∆),

where the scaling functionΩ(III )(x) behaves as

(108)Ω(III )(x) ∼
{const (x � 1),

x
1

2µ−1 (x � 1).

Data collapse ofmNµ and�N vs.∆ is shown inFig. 5.
The numerical data of the mean cluster size are shown inFig. 6. As N increases, the

mean cluster sizēs approaches the exact solution inEq. (57)represented by the solid lin
in Fig. 6. It does not diverge at any value ofK, but instead its peak height decreases aN

increases. We additionally find that the mean cluster sizes̄ has a small peak atKp1, which
scales asN1−2µ as shown in the inset ofFig. 6. The value ofKp1 is not equal toKc(N)

although they are the same order ofN . The reason for the peak atKp1 is as follows.
As K increases, the largest cluster size〈S〉 and the mean cluster sizes̄ = ∑

s �=〈S〉 sP (s)

also increase. However, asK approachesKc(N), the cluster size distributionP(s) begins
to develop the exponential decaying part in its tail, i.e., fors � sc. sc decreases with
increasingK after K passesKc. At Kp1, 〈S〉 and sc are equal. AfterK passingKp1,
the mean cluster size is dominated bysc, which makes̄s decrease forK > Kp1. However,
the mean cluster size increases again as soon asK becomes much larger thanKp1 or

Kc(N) because the prefactorK1/µ of the cluster size distributionP(s) for 1 � s � sc
increases with increasingK. The mean cluster size decreases only after the second peak at
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Fig. 5. Data collapse of the scaled giant cluster size (a) and number of loops (b) vs.∆ for µ = 5/7. N is 104(�),
105(�), 106(�), and 107(©).

Fig. 6. Mean cluster sizēs as a function ofK in semi-logarithmic scales withµ = 5/7 for N = 104(�), 105(�),
106(�), and 107(©). In addition to the peak atKp1, another peak is shown atKp2 	 0.1N for N = 105, 106,

and 107, respectively. The solid line represents the exact solution obtained fromEqs. (52) and (57). The measured
values ofKp1 (©) as a function ofN are plotted in the inset together with the guide line whose slope is 1− 2µ

for comparison.

Kp2 =O(1), wheresc =O(1), as shown inFig. 6as well as in the exact solution inFig. 2.
SinceKp2 =O(1), a giant cluster exists aroundKp2.

8. Summary and discussion

In this paper, we have studied the percolation transition of the SF random g
constructed by attaching edges with probability proportional to the products of two v
weights. By utilizing the Potts model representation, the giant cluster size, the

cluster size, and the numbers of loops and clusters are obtained from the Potts model
free energy in the thermodynamic limit. Our general formula for the giant cluster size and
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Fig. 7. Schematic picture for the comparison of cluster evolution between the case ofλ > 3 (a) and of 2< λ < 3
(b).

the mean cluster size are equivalent to those results obtained for a given degree se
if the latter expressions are averaged over the grandcanonical ensemble. The Pott
formulation allows one to derive other quantities such as the number of loops easily.
this approach, we then investigated the critical behaviors of the SF network realized
static model in detail. Furthermore, to derive the finite size scaling properties of the
transition, the cluster size distribution and the largest cluster size in finite size syste
also obtained and used. We found that there is a percolation transition forλ = 1+ 1/µ > 3
so that a giant cluster appears abruptly whenK = 〈L〉/N is equal toKc given byEq. (54)
while such a giant cluster is generated gradually without a transition for 2< λ < 3. Thus
the process of formation of the giant cluster for the case of 2< λ < 3 is fundamentally
different from that ofλ > 3.

In particular, the difference between the SF graphs withλ > 3 and 2< λ < 3 is
manifested in the mean cluster size. Forλ > 3, asK or the number of edges increas
many small clusters grow by attaching edges, which continues up toK = Kc, and then a
giant cluster forms by the abrupt coalescence of those small clusters as shown inFig. 7.
Since we do not count the giant cluster in calculating〈s〉, s̄ decreases rapidly asK
passesKc. Thus the mean cluster size exhibits a peak atK = Kc , which diverges in
the thermodynamic limitN → ∞. On the other hand, for 2< λ < 3, the role ofKc is
replaced byKp1 which is ∼ O(N−(3−λ)/(λ−1)), but after a small peak, the mean clus
size increases again after passingKp1 as seen inFig. 6: edges newly introduced eithe
create new clusters of size larger than 1 or merge small clusters to the larger one w
size not as large asO(N). Only whenK reachesKp2, the network is dense enough for t
giant cluster to swallow up other clusters to reduces̄ on adding more edges. The evoluti
of the static model as the density of edges increases is summarized inFig. 8.

Due to the characteristics of the power-law degree distribution of scale-free grap
cluster size distributions exhibit crossover behaviors such that they follow different p
laws depending on the cluster size for givenλ. In particular, for 3< λ < 4, the scaling
exponentsβ and ν̄ depend on the degree exponentλ continuously while they are equ
to the conventional mean-field values forλ > 4. We have not considered the margin

cases where 1/µ thusλ is an integer value where logarithmic corrections appear as seen in
Eq. (A.7).
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Fig. 8. Schematic phase diagram of the static model. The SF behavior of the degree distribution appears betw
K� andKu . A giant cluster emerges atKc for (I), (II), and aroundKp2 for (III). The quantities in[· · ·] are only
for (III).

The static model considered in this paper, though algebraically tractable, does no
correlations between edges that are important in real world networks. Extension
work to the cases allowing correlations is left for the future work.
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Appendix A. The evaluation of Σ1(y)

We derive the sums

(A.1)Σ1(y) ≡ 1

N

N∑
i=1

e−NPiy,

wherePi = i−µ/ζN(µ) (0< µ < 1) with ζN(µ) = ∑N
i=1 i−µ as inEq. (45).

Let us introduceyN ≡ N1−µ

ζN (µ)
y, which is equal to(1 − µ)y in the thermodynamic limi

N → ∞ we are interested in. ThenΣ1(y) = ∑N
i=1 s(i) with s(x) = e−yN(N/x)µ/N .

First consider the regime whereyNNµ � 1. ThenΣ1(y) is simply expanded as

Σ1(y) = 1

N

∞∑
n=0

(−1)n

n! (yNNµ)nζN(µn)

(A.2)=
� 1

µ
�∑

n=0

(−1)n

n!(1− µn)
yn
N + 1

N

∞∑
n=� 1

µ +1�

(−1)n

n! (yNNµ)nζ(µn),

with �x� being the greatest integer less than or equal tox.
On the other hand, in the limityNNµ → ∞, the second summation gives rise to
non-analytic term. Sinces(x) and its derivatives atx = 1 andx = N have the properties
s(n)(1) = O(Nµn−1e−yNNµ

) ands(n)(N) = O(N−n−1) with n � 0, the Euler–Maclaurin



378 D.-S. Lee et al. / Nuclear Physics B 696 [FS] (2004) 351–380

formula[28] enables us to evaluateΣ1(y) in the limitN → ∞ andyNNµ → ∞ as follows:

Σ1(y) =
N∫

1

dx s(x) =
N∫

1

dx
1

N
e−yN( N

x
)µ

= 1

µ
y

1
µ

N

∞∫
yN

dz z
−1− 1

µ e−z

(A.3)= 1

µ
y

1
µ

N �

(
− 1

µ
,yN

)
,

where the incomplete Gamma function�(s, x) is defined as

(A.4)�(s, x) ≡
∞∫

x

dt ts−1e−t .

The incomplete Gamma function can be expressed as

�(s, x) =
∞∫

x

dt ts−1

[
e−t −

�−s�∑
n=0

(−t)n

n! +
�−s�∑
n=0

(−t)n

n!

]

=
∞∫

0

dt ts−1

[ ∞∑
n=�−s�+1

(−t)n

n!

]

−
x∫

0

dt ts−1

[ ∞∑
n=�−s�+1

(−t)n

n!

]

+
∞∫

x

dt ts−1

[ �−s�∑
n=0

(−t)n

n!

]

(A.5)= �(s) −
∞∑

n=0

(−1)n

n!(s + n)
xn+s,

where it is used that�(s) = ∫ ∞
0 dt ts−1[e−t − ∑�−s�

n=0 (−t)n/n!], and therefore, it follows
that

(A.6)Σ1(y) =
∞∑

n=0

(−1)n

n!(1− µn)
yn
N − �

(
1− 1

µ

)
y

1
µ

N .

As µ → 1/m with m an integer, a logarithmic term is developed as

Σ1(y) =
∞∑ (−1)n

yn
N + (−1)m

ym
N

[
− lnyN − γM + 1+ 1 + · · · + 1

]

(A.7)

n�=m
n!(1− µn) (m − 1)! 2 m − 1
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since

lim
1
µ →m

[
(−1)m

m!(1− µm)
ym
N − �

(
1− 1

µ

)
y

1
µ

N

]

= (−yN)m

(1− µm)�(m + 1)

[
1− 1+ ( 1

µ
− m) lnyN

1+ �′(m)
�(m)

( 1
µ

− m)

]

(A.8)= (−yN)m

(m − 1)!
[
− lnyN − γM + 1+ 1

2
+ · · · + 1

m − 1

]
,

where it is used that�(z)�(1 − z) = π/sinπz and�′(m)/�(m) = −γM + ∑∞
n=1[1/n −

1/(n + m − 1)].

Appendix B. Walker algorithm

Suppose we want to choose discrete random numbersx1, x2, . . . , xN , with probabil-
ities p1,p2, . . . , pN , respectively, wherepi ’s are arbitrary yet properly normalized∑N

i=1 pi = 1. Walker algorithm enables one to choosexi ’s with appropriate frequencie
by picking a single random number 0� r < 1. To do this, however, we have to set up
table{(qi, yi)}. The table is made in the following way.

(1) Initializeqi ’s asqi = Npi , (i = 1,2, . . . ,N ).
(2) Dividexi ’s into the poor(qi < 1) and the rich(qi > 1).
(3) Pick a poor, sayp, and a rich, sayr.
(4) Fill the shortage ofp, 1− qp, from r.
(5) p records the donatorr asyp = r.
(6) qr is updated asqr ← qr − (1− qp).
(7) If r becomes poor by the donation, i.e.,qr < 1, r enters the list of the poor out of th

of the rich.
(8) Repeat (3)–(7) until there are no poor left (hence the name Robin Hood method

The donate-and-fill steps (3)–(7) are performed at mostN −1 times, thus the table-makin
procedure takes time ofO(N). In its original introduction[26], Walker proposed the ste
(3) as “pick the poorest and the richest”, which involves additional sorting operatio
increasing the computational cost. The present scheme follows the implementa
Zaman[27]. The table-making process can be visualized for a simpleN = 3 case as in
Fig. 9.

With the table{(qi, yi)} at hand, one picks a random number 0� r < 1. Divide
x = rN + 1 into the integer partn = �x� and the remainderd = x − n. If d < qn, we

choosexn, otherwise chooseyn. With this scheme one can draw discrete random numbers
xi ’s with appropriate probabilitiespi ’s.
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Fig. 9. Illustration of the table-making procedure in the Walker algorithm forN = 3. The heights of the white
bars in (c) indicatesqi/N and the figures in the shaded boxesyi .
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