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We introduce the notion of globally updating evolution for a class of weighted networks, in which the weight
of a link is characterized by the amount of data packet transport flowing through it. By noting that the packet
transport over the network is determined nonlocally, this approach can explain the generic nonlinear scaling
between the strength and the degree of a node. We demonstrate by a simple model that the strength-driven
evolution scheme recently introduced can be generalized to a nonlinear preferential attachment rule, generating
the power-law behaviors in degree and in strength simultaneously.
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Network research has arisen as the interdisciplinary sub-
ject for studying complex systems �1–7�. Although the binary
�on/off� picture of connectivity has been shown to be quite
informative and led to important progress in our understand-
ing of complex systems, such as the ubiquity of power laws
in its connectivity pattern, the degree distribution �8�, pd�k�
�k−�, one may need to put a step forward to describe them
more realistically. The weighted network, in which links be-
tween nodes in the network, or nodes themselves, bear non-
uniform weights, is one of the most straightforward generali-
zations in this direction �9–21�. The weight may represent
the intimacy between individuals in social networks, or the
bandwidths of routers and optical cables in the Internet. The
weighted network can be characterized by the generalized
adjacency matrix W whose element �wij� denotes the weight
of the link connecting the node i to j. By definition, wij =0
when there is no link between i and j. We will restrict our
interest here to the case of nonnegative weight, �wij �0� for
all �i , j� �22,23�. The strength s of a node �12�, given by

si = �
j=1

N

wij , �1�

generalizes the concept of the degree, the number of links it
has in binary networks. In terms of �wij�, the degree k of a
node may be written as

ki = �
j=1

N

sgn�wij� . �2�

The analysis of weighted networks has been hindered
mostly by the lack of large-scale data for the real networks.
Recently, Barrat et al. �12� made the first detailed compara-
tive analysis on the structure of weighted networks of the
real world, the scientific coauthorship network �SCN� and
the worldwide airport network �WAN�. For the SCN, the
weight of a link between two scientists is given roughly by
the frequency of their collaboration, the effective number of
papers they cowrote. For the WAN, the weight is taken as the
total number of passengers of the direct flights between two
connected cities. Interestingly, the two networks reveal quali-

tatively different organization of weight and network topol-
ogy. For the SCN, the strength of a node �scientist� scales
linearly with the degree, that is,

s�k� � k . �3�

On the other hand, the WAN exhibits a nonlinear scaling as

s�k� � k�, �4�

with �	1.5.
Later, Barrat, Barthelemy, and Vespignani �BBV� intro-

duced a simple evolution model for such weighted networks
�14�. Basically, the BBV model is similar to the Barabási-
Albert �BA� model of binary scale-free �SF� network �8� in
spirit, containing the growth and the preferential attachment
�PA� as basic ingredients. But the difference comes in the
aspects that �i� strength at each node and weight at each link
are introduced and �ii� the PA rule in the strength instead of
the degree is applied. That is, the probability �i that an ex-
isting node i will receive a connection from a newly intro-
duced node is proportional to its strength, �i�si. The
strength of the target node subsequently increases by a con-
stant amount � and so does the weight of the links incident
upon the target node in a linear fashion. Then the degree and
the strength scales linearly with each other and the distribu-
tions of them both follow power laws. On the other hand, the
nonlinear scaling Eq. �4� observed in the WAN requires dif-
ferent approaches. BBV proposed the nonlinear coupling be-
tween node strength and link weight, but a finite cutoff in
node strength was necessary to achieve the SF behavior in
both the degree and the strength distribution �24�.

In this Brief Report, we propose a packet transport-driven
evolution model of weighted SF network, which can illus-
trate the nonlinear relationship Eq. �4�. We first point out that
the weight used for the WAN in Ref. �12� is actually the
amount of traffic through the link. From this perspective, the
evolution of such weighted network should be viewed as
packet transport-driven. The distinguishing point here is that
the traffic flowing through the network is determined in a
nonlocal manner, in high contrast to the local weight evolu-
tion rule as formulated in the BBV model �14�. A measure of
such traffic over the �binary� network is the quantity called
the load �25�, or the betweenness centrality �26�. The load of
a node, the vertex load, is defined by the effective number of
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data units passing through that node when every pair of
nodes in the network sends and receives unit data in unit
time step. The data are assumed to be delivered only along
the shortest path�s� between the pair. When the data encoun-
ter a branching point during the transport, they are supposed
to be divided evenly by the number of branches. Thus the
load quantifies the level of traffic, albeit in an idealized way.
One can also define the link load in a similar fashion, as the
effective number of data units passing through a given link.
For SF networks, the load of each node is heterogeneous,
and its distribution follows a power law, pL�����−� �25,27�.
If the ranks of a node in degree and in load are preserved,
then the scaling relation,

�i � ki
�, �5�

holds for each node i, where �= ��−1� / ��−1�. This relation
is valid in the BA-type model and the Internet �28�.

The weight of a link wij and the product of the degrees of
the nodes at its ends kikj are found to be related as a power
law, wij ��kikj�	, and 		1/2 for the WAN �12�. Interest-
ingly, the same half-power scaling was observed in the meta-
bolic network of Escherichia coli, between the metabolic
flux of a reaction and the degrees of the participating me-
tabolites �18�. It is worthwhile to note that such a correlation
has also been observed in the relation of the link load �ij
versus kikj for binary networks �18,29�. We show in Fig. 1�a�
such a relation for the BA model �8�, finding a slightly dif-
ferent scaling exponent 		0.63. So we may regard the link
load in the binary network as an approximation of the weight
in the weighted networks characterized by the traffic level,
such as the WAN. Although actual traffic level may well
depend also on more complicated factors such as the geo-
graphic distances between the airports and the queuing and
transit delays at the airports, we exploit this idea as a starting
point for further discussion below. In this setting, the
strength of a node is given approximately by the load of the
node itself, i.e.,

si = �
j�i

�ij � �i, �6�

since the vertex load of a node is roughly one half of the sum
of the link loads of the links connected to that node for large
� as shown in Fig. 1�b�.

When the relation �5� holds, the strength and the degree of
a given node scale nonlinearly as si�ki

�. Then the applica-
tion of BBV scheme leads to �i�si�ki

� with �
1 in most
cases. Such a super-PA in degree breaks the power-law de-
gree distribution �30� as well as Eq. �5� itself. To obtain a SF
network, one must use the sub-PA in strength,

�i � si
� � �i

� �7�

with �=1/�. At a first glance, one may think that this rule of
sub-PA in strength would not generate a SF strength distri-
bution, however, we can achieve a SF strength distribution
with the strength being the load.

To demonstrate the above idea, we simulate a growing
network as follows. �i� Initially, m0=3 nodes are introduced
and they are fully connected, and we calculate the load at
each node. �ii� At each time step, a new node is added, and
attaches m=2 links to existing nodes selected following the
PA rule �i��i

�. �iii� The load of each node is recalculated.
This process is repeated N times. Figures 2�a� and 2�b� show
the simulation results, the degree and the strength �or load�
distributions of the packet transport-driven growth network
for the cases of �1=1 and �2=1/�	0.6. Indeed we can see
that for the �=1 case, the power-law behaviors of the degree
and the strength distributions break down, while for �=0.6,
the model reproduces both the power laws with the degree
exponent �	3 and the load exponent �	2.2, equivalent to
those of the BA model. These measured values of � and � are
consistent with �=0.6 through the relation �= ��−1� / ��
−1�. Other structural properties such as the clustering and the

FIG. 1. �a� Link load �ij vs the product of the two degrees kikj of
the nodes at each end of the link in the BA model with the system
size N=103. Data points are logarithmically binned to reduce fluc-
tuation. The straight line with slope 0.63 is drawn for reference; �b�
relation between the node strength �the sum of the link loads at-
tached to the node� and the load of the node. As indicated by the
guideline with slope 1, they scale linearly for large �.

FIG. 2. Cumulative distributions for the degree �a� and the
strength �b� of the packet transport-driven network growth with Eq.
�7�. The open circles denote the data for �=1 and the filled circles
for �=0.6. The guidelines have slopes −2.0 �a� and −1.2 �b�. Note,
the humps for large degrees and large strengths in the case of �
=1, indicating the breakdown of the SF nature. The local clustering
function C�k� �c� and the average neighbor degree function knn�k�
�d� for the network with �=0.6. The filled circles denote the
weighted version of the corresponding quantities introduced in Ref.
�12� and the cross symbols the original binary version of them.
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degree mixing are also similar to those of the BA model
�Figs. 2�c� and 2�d��. It is of no surprise because this model
with �=1/� is nothing but the BA model rephrased in terms
of the strength-driven evolution.

Note that in our model, the link weight update is carried
out through the change of the load, which occurs by global
reorganization of shortest pathways within the network. As
pointed out earlier, the load accounts for the traffic level only
in an approximated manner. The general framework de-
scribed in the paper, however, does not depend on what to
use as the traffic measure as long as the scaling relation Eq.
�4� holds for that quantity.

Surely, it is not always the case that the weight of a link is
determined by the level of traffic. In the SCN, for example,
the weight measures the direct affinity between the scientists,
which is primarily determined by their own attributes which
is local in character. Indeed, for SCN we can see no appre-
ciable correlation between the weight and the link load of a
link, as shown in Fig. 3. In such a case, the BBV scheme
could be more suitable than ours. Thus in the weighted net-
work modeling, one has first to discriminate properly what
the nature of the weight is in the system one wants to de-
scribe.

Finally, we like to emphasize again the difference be-
tween the strength used here and that of the BBV model. We
also compare them with the vertex load directly measured.
For the purpose, we measure the strength si of node i based
on Eq. �1� where the weight wij is given as the link load �ij,
that is, si=� j�ij, and compare it with the vertex load �i mea-
sured directly from the BBV network and the quantity si

�BBV�

defined in the BBV model �14�. We note that si and
�i � si

�BBV�� are updated globally �locally� when a new node is
added in the system. As shown in Fig. 4, we can find the
scaling behaviors of s���k1.33, which is consistent with the
one obtained from the formula, ��k��−1�/��−1�, and s�BBV�

�k. Those results support our claim.

To conclude, we have introduced the notion of globally
updating evolution in a class of weighted networks, in which
the weight is characterized by the level of traffic flowing
through the links. The link load is used as a measure of the
traffic in our model. This model explains the generic nonlin-
ear scaling between the strength �traffic� and the degree, ob-
served in, e.g., the WAN. We have also shown that the gen-
eralization of strength-driven evolution into the nonlinear PA
in strength is necessary to produce a network which is SF
both in degree and in strength.

Note added: Recently we have learned of a recent work
by Bianconi �32� which introduced a model generating the
nonlinear scaling relation between strength and degree, Eq.
�4�. The model succeeds to obtain the nonlinear relationship
by decoupling the evolution of the network topology �de-
gree� and the weights. Although that model seems to be dif-
ferent from our conceptual model at first, the two models
share important aspects. First its binary network structure
grows following the BA model and second, the weights are
updated nonlocally rather than locally as was assumed in the
BBV model. Moreover, Guimerà and Amaral �33� introduced
a model to illustrate the traffic in the WAN. The model also
contains the rule of adding internal links between existing
nodes, which are chosen by the PA rule combined with the
ingredient of reducing traveling length. Such a rule is applied
to all nodes in the network, not limited to neighbors of a
newly added node, which needless to say accounts for global
updating of traffic pathways. Such global reorganization of
weights produces the nonlinear relationship between strength
and degree, which is the main conclusion of the work.

We would like to thank Mark Newman for making the
arXiv.org coauthorship network data available. This work is
supported by the KOSEF Grant No. R14-2002-059-01000-0
in the ABRL Program.

FIG. 3. Histogram of the links having the link load �ij and the
link weight wij in the coauthorship network of cond-mat subset of
arXiv.org �31�. The gray level denotes the number of links in each
bin, in logarithm with base 10.

FIG. 4. Strength s�k� based on the link load ���, the load ��k�
based on the vertex load ���, and the BBV strength s�BBV��k� ���
vs the degree k for the BBV model network with system size N
=104, the number of links emanating from a new node m=1, and
the weight increment w0=�=1.0. The slopes of the guide lines are
1.33 �dotted� and 1.0 �dashed�, respectively.

BRIEF REPORTS PHYSICAL REVIEW E 72, 017103 �2005�

017103-3



�1� R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 �2002�.
�2� S. N. Dorogovtsev and J. F. F. Mendes, Evolution of Networks

�Oxford University Press, Oxford, 2003�.
�3� M. E. J. Newman, SIAM Rev. 45, 167 �2003�.
�4� R. Pastor-Satorras and A. Vespignani, Evolution and Structure

of Internet �Cambridge University Press, Cambridge, 2004�.
�5� A.-L. Barabási and Z. N. Oltvai, Nat. Genet. 5, 101 �2004�.
�6� E. V. Koonin, Y. I. Wolf, and G. P. Karev, Power Laws, Scale-

free Networks and Genome Biology �Landes Bioscience,
Georgetown, 2004�.

�7� D. J. Watts, Annu. Rev. Sociol. 30, 243 �2004�.
�8� A.-L. Barabási and R. Albert, Science 286, 509 �1999�.
�9� S. H. Yook, H. Jeong, A.-L. Barabási, and Y. Tu, Phys. Rev.

Lett. 86, 5835 �2001�.
�10� J. D. Noh and H. Rieger, Phys. Rev. E 66, 066127 �2002�.
�11� L. A. Braunstein, S. V. Buldyrev, R. Cohen, S. Havlin, and H.

E. Stanley, Phys. Rev. Lett. 91, 168701 �2003�.
�12� A. Barrat, M. Barthelemy, R. Pastor-Satorras, and A. Vespig-

nani, Proc. Natl. Acad. Sci. U.S.A. 101, 3747 �2004�.
�13� E. Almaas, B. Kovacs, T. Vicsek, Z. N. Oltvai, and A.-L.

Barabási, Nature �London� 427, 839 �2004�.
�14� A. Barrat, M. Barthelemy, and A. Vespignani, Phys. Rev. Lett.

92, 228701 �2004�.
�15� W. Li and X. Cai, Phys. Rev. E 69, 046106 �2004�.
�16� K. Park, Y.-C. Lai, and N. Ye, Phys. Rev. E 70, 026109

�2004�.
�17� C. Li and G. Chen, cond-mat/0311333 �2003�.
�18� P. J. Macdonald, E. Almaas, and A.-L. Barabási, cond-mat/

0405688 �2004�.
�19� E. Almaas, P. L. Krapivsky, and S. Redner, Phys. Rev. E 71,

036124 �2005�.
�20� T. Antal and P. L. Krapivsky, Phys. Rev. E 71, 026103 �2005�.
�21� S. N. Dorogovtsev and J. F. F. Mendes, cond-mat/0408343

�2004�.
�22� M. E. J. Newman, Phys. Rev. E 70, 056131 �2004�.
�23� J.-P. Onnela, J. Saramäki, J. Kertesz, and K. Kaski, Phys. Rev.

E 71, 065103 �2005�.
�24� A. Barrat, M. Barthelemy, and A. Vespignani, Phys. Rev. E

70, 066149 �2004�.
�25� K.-I. Goh, B. Kahng, and D. Kim, Phys. Rev. Lett. 87, 278701

�2001�.
�26� L. C. Freeman, Sociometry 40, 35 �1977�.
�27� K.-I. Goh, E. Oh, H. Jeong, B. Kahng, and D. Kim, Proc. Natl.

Acad. Sci. U.S.A. 99, 12583 �2002�.
�28� K.-I. Goh, E. Oh, B. Kahng, and D. Kim, Phys. Rev. E 67,

017101 �2003�.
�29� P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han, Phys. Rev. E

65, 056109 �2004�.
�30� P. L. Krapivsky and S. Redner, Phys. Rev. E 63, 066123

�2001�.
�31� M. E. J. Newman, Proc. Natl. Acad. Sci. U.S.A. 98, 404

�2001�.
�32� G. Bianconi, cond-mat/0412399 �2004�.
�33� R. Guimerà and L. A. N. Amaral, Eur. Phys. J. B 38, 381

�2004�.

BRIEF REPORTS PHYSICAL REVIEW E 72, 017103 �2005�

017103-4


