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Abstract. In the reaction–diffusion process A + B →∅ on random scale-free
(SF) networks with the degree exponent γ , the particle density decays with time
in a power law with an exponent α when initial densities of each species are the
same. The exponent α is known as α > 1 for 2 < γ < 3 and α = 1 for γ > 3.
Here, we examine the reaction process on fractal SF networks, finding that
α < 1 even for 2 < γ < 3. This slowly decaying behavior originates from the
segregation effect: fractal SF networks contain local hubs, which are repulsive
to each other. Those hubs attract particles and accelerate the reaction, creating
particle domains containing the same species of particles. Then, the reaction
takes place at the non-hub boundaries between those domains, and the particle
density decays slowly. Since many real SF networks are fractal, the segregation
effect has to be taken into account in the reaction kinetics among heterogeneous
particles.

Diffusion-limited reaction kinetics has been studied for a long time as an interdisciplinary
subject. It can be a model of electron–hole recombination in semiconductors [1] and annihilation
of primordial monopoles in the early universe [2, 3], etc. The annihilation process involving two
species of particles A and B, A + B →∅ is studied here, particularly on fractal scale-free (SF)
networks. When the densities of particles A and B are initially equal, the density of each species
ρA(t) or ρB(t) decays as a power law, that is, ρA(t) = ρB(t) ≡ ρ(t) ∼ t−α. In a mean-field (MF)
approximation, the density of particles decays as ρ(t) ∼ t−1, which is valid when the reaction
takes place in Euclidean space with the spatial dimension d > dc = 4. For d < dc, the exponent
α is reduced to α = d/dc, which is less than 1. The slow decaying behavior of particle density
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originates from the formation of A-rich or B-rich domains, and the reaction takes place at the
boundary of those domains in Euclidean space [4]–[6].

In complex networks, however, the particle density ρ(t) can decay faster than the MF
behavior ρ(t) ∼ t−1 in the long time limit [7]. This fast decay is caused by the existence of hubs,
at which particles gather through the diffusion process and then reactions take place frequently.
This phenomenon is related to the fact that the probability of finding a random walker at a node
is proportional to the degree of that node [8, 9]. For the uncorrelated SF networks, the particle
density ρ(t) was derived analytically for A + A →∅ [10] and A + B →∅ [11] as

1

ρ(t)
−

1

ρ(0)
=


t1/(γ−2), for 2 < γ < 3,

t ln t, for γ = 3,

t, for γ > 3,

(1)

where γ is the exponent of the degree distribution Pd(k) ∼ k−γ of the SF networks.
In this paper, we point out that the result (1) can be misleading when SF networks are

fractal [12, 13], where the particle density decays slowly with the exponent α 6 1, different from
formula (1). The fractal SF network is a network satisfying the fractal scaling NB(`B) ∼ `

−df
B ,

where NB is the number of boxes needed to cover the entire network with boxes of size `B. The
fractal scaling holds in the system where hubs are located separately from each other [14, 15].
Many SF networks observed in the real world are fractals. However, most artificial networks
including the Barabási and Albert (BA) model [16] are not fractals [17]. In fractal networks,
local hubs attract particles and accelerate the reaction. As a result, in the early time regime,
the particle density decreases rapidly with highly effective values of α. During the process,
the initial particle density fluctuation creates particle A-rich or particle B-rich domains.
Then, the reaction takes place only at the boundary between those domains, which are not hubs.
Thus the particle density decays slowly in the long time limit with α 6 1. Such a segregation
behavior can also occur in modular SF networks, even if they are non-fractal. The structural
feature of the modular network, being composed of a large number of links within modules but
a small number of links between modules, hampers the diffusion of particles across modules.

To study the two-species reaction A + B →∅ on fractal SF networks specifically, we first
recall the previous studies [5, 6] of the reaction kinetics taking place on the fractal structure
embedded in Euclidean space. In this case, the formula ρ(t) ∼ t−d/dc may be replaced with

ρ(t) ∼ t−ds/4, (2)

where ds is the spectral dimension of the fractal structure. The variable ds is related to the random
walk dimension dw and fractal dimension df as ds = 2df/dw. The random walk dimension is
defined through the anomalous power-law relationship between the mean-square displacement
〈`2(t)〉 of a diffusing particle and time t as 〈`2(t)〉 ∼ t2/dw . Formula (2) has been questioned,
however, because it does not take into account structural features in a given fractal structure
such as the degree of ramification. Nevertheless, it appears that numerical results are essentially
in agreement with the prediction (2) for many cases [18, 19]. In this paper, we show that in
contrast to the standard random SF network cases, for the fractal SF networks we study here,
even though they are SF, the particle density decays in the form given by (2).

Here, we first generate a fractal SF tree structure through the multiplicative branching
process. At each branching step, a node creates its m branches (offsprings) with probability
pm ∼ m−γ (m > 1). It has to satisfy the criticality condition 〈m〉 =

∑
∞

m=0 mpm = 1 [13].
Then, the resulting tree structure is a SF tree with the degree exponent γ . Such a random
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Figure 1. The particle density as a function of time on the CBT with various
degree exponents. Guidelines have slopes 0.40 (top) and 0.34 (bottom).

Table 1. Comparison of the exponent α numerically obtained, denoted as αnum,
with ds/4 for various degree exponent γ ’s for the CBT. For comparison, we also
list the MF value obtained from formula (1).

γ αnum ds/4 MF value

2.5 0.4(1) 0.38 2.00
2.7 0.36(1) 0.35 1.43
3.5 0.35(1) 0.33 1.00
4.0 0.34(1) 0.33 1.00
4.5 0.34(1) 0.33 1.00

critical branching tree (CBT) structure is a fractal SF network with the fractal dimension
df = (γ − 1)/(γ − 2) for 2 < γ < 3 and df = 2 for γ > 3. The spectral dimension is [20, 21]

ds =


2(γ − 1)

2γ − 3
, for 2 < γ < 3,

4

3
, for γ > 3.

(3)

We measure particle density ρ(t) as a function of time t in the form

1

ρ(t)
−

1

ρ(0)
∼ tα. (4)

We find that the particle density decays quickly in the short time regime, followed by a slow
decay in the long time regime as shown in figure 1. Indeed, the numerically obtained values
listed in table 1 are close to the ones obtained from the formula ds/4, and are different from the
ones obtained from formula (1).

Next, we study the reaction kinetics on deterministic fractal SF networks, the so-called
(u, v)-flower and (u, v)-tree networks, introduced and modified in [22] and in [23], respectively.
These networks are hierarchical networks, generated iteratively from a simple basic structure to
higher level ones. Each link in the nth generation is replaced by two parallel paths that are
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Figure 2. The particle density of A or B species as a function of time for the
(u, v)-flower networks. Guidelines have slopes 0.43 (top) and 0.38 (bottom).

Table 2. Comparison of the exponent α numerically obtained, denoted as αnum,
with ds/4 for various degree exponent γ ’s for the (u, v)-flower networks. For
comparison, the MF value obtained from (1) is 1.0.

(u, v) γ αnum ds/4

(2,2) 3 0.53(1) 0.5
(2,4) 3.58 0.45(1) 0.43
(3,3) 3.58 0.43(1) 0.41
(2,6) 4 0.43(1) 0.42
(4,4) 4 0.38(1) 0.38

Table 3. The same as table 2 but for the (u, v)-tree networks.

(u, v) γ αnum ds/4

(2,2) 3 0.34(1) 0.33
(2,4) 3.58 0.37(1) 0.36
(3,3) 3.58 0.31(1) 0.31
(2,6) 4 0.38(1) 0.38
(4,4) 4 0.31(1) 0.30

u and v links long. The detailed rule can be found in [23]. Depending on the rule, constructed
networks are either the flower structure, which contains loops, or trees. These networks are
fractal SF networks with the degree exponent, γ = 1 + ln(u+v)

ln 2 , the fractal dimension, df =
ln(u+v)

ln u ,
and the spectral dimension, ds =

2 ln(u+v)

ln uv
for flowers and 2 ln(u+v)

ln u(u+v)
for trees. Numerical values of

the exponent α are close to those from α = ds/4 as can be seen in tables 2 and 3 for the flower
and tree structures, respectively. Some numerical data are shown in figure 2.
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Figure 3. Plot of QAB, NAB and NAA versus time t for a (3,3)-flower network.
The slopes of the guidelines are −0.65, −0.78 and −1.43 from the top.

To check whether the segregation of A-rich or B-rich domains occurs, we examine a
quantity,

QAB(t) =
NAB

NAA + NBB
, (5)

where NAB(t) is the number of (A, B) pairs located as nearest neighbors averaged over different
initial configurations. NAA and NBB are similarly defined [24]. If there are a few pairs of different
species at neighbor nodes QAB → 0, whereas QAB → 1 when particles are mixed randomly.
Since the particle density decreases in time, their separation becomes large and two particles
are hardly found as nearest neighbors. We examine NAB and NAA independently as a function of
time. Interestingly, they decrease with time in a power-law manner as shown in figure 3, which
can be explained as follows:

Firstly, we examine NAA. The linear size `d of a domain containing a species grows with
time as ∼ t1/dw . A typical closest distance `AA between two particles of the same species scales
as ∼ (1/ρ)1/df . Assuming that ρ(t) ∼ t−ds/4, one can obtain that `AA ∼ t1/(2dw) [5]. When ds 6 2,
the case in which we are interested in this paper, random walks are compact within the diffusion
volume `

df
d , and thus that is also valid within the volume `

d f
AA. The probability of finding two

such particles as nearest neighbors is 1/`
df
AA. Thus NAA scales as (1/`

d f
AA)ρ(t). That is,

NAA(t) ∼ t−ds/2. (6)

Secondly, we examine NAB(t). When two particles of different species come to be nearest
neighbors in the diffusion process, they can annihilate at the next step with a finite probability.
Thus, we may set NAB(t) ∝ dρ/dt , and obtain that

NAB(t) ∼ t−ds/4−1. (7)

Next, QAB is obtained as ∼ tds/4−1 using equations (6) and (7). In table 4 the results
obtained from simple arguments are compared with numerical ones.

To confirm that the segregation is caused by local hubs in the fractal structures, we destroy
the local hubs by rewiring the links in the (3,3)-flower network while conserving the degree
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Table 4. Comparison of the exponents NAA and NAB between theoretical and
numerical values for various embedded spaces, one-dimensional regular lattice
(1 dim), two-dimensional square lattice (2 dim), CBT with γ = 2.5 and γ =

4.0 and (3,3)-flower hierarchical network. The discrepancy for the case CBT
(γ = 2.5) is probably caused by the disassortative mixing in the degree–degree
correlation [25].

NAA NAB

Space ds/2 Num. (ds/4) + 1 Num.

1 dim 0.5 0.49(1) 1.25 1.28(2)
2 dim 1.0 0.99(1) 1.50 1.59(1)
CBT (γ = 2.5) 0.75 0.58(1) 1.38 1.28(1)
CBT (γ = 4.0) 0.67 0.66(1) 1.33 1.32(2)
(3,3)-flower 0.82 0.78(1) 1.41 1.43(2)
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Figure 4. The particle density versus time on rewired networks from a (3,3)-
flower network. The slope increases as the fraction f of rewired links increases
from f = 0 to f = 0.5. For the f = 0 and f = 0.5 cases, the slopes are close to
α ≈ 0.43 and 1.04, respectively. Since γ ≈ 3.58 > 3, α = 1 is the MF result.

distribution. Figure 4 shows that the exponent α changes from α ≈ 0.43 to the MF value α = 1
as the number of rewired links increases. Moreover, QAB does not decrease monotonically for
the rewired networks as shown in figure 5.

The World Wide Web [26] is a prototypical example of a fractal network in the real world.
We obtain that the particle density decreases slowly as ρ(t) ∼ t−0.54 on this network (figure 6).
The Internet at the autonomous system (AS) level2 is, however, not one. This may be caused by
the geographical effect. Due to this non-fractality, the segregation does not occur in the Internet,
and thus the particle density decreases quickly with exponent α ≈ 1.8 for the Internet topology
in the year 2004 as shown in figure 6. This property can be used beneficially when one designs
a protocol for a P2P network, a virus–antivirus annihilation robot, etc [27].

2 The NLANR provides Internet routing related information based on BGP data (see http://moat.nlanr.net/).
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Figure 5. Plot of QAB as a function of t for the rewired networks used in figure 4.
The slope of the solid line is −0.65.
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Figure 6. The particle densities as a function of time on the World Wide Web
( ) and the Internet at the AS level collected in the year 2004 (•). The slopes of
guidelines are 0.54 for the World Wide Web and 1.8 for the Internet.

It is worth noting that whereas the decaying behavior obeying formula (1) applies to the
BA model when m, the number of incoming links at each time step, is larger than 1, it is not so
for the BA tree network with m = 1. This is because the tree structure has no alternative paths,
which enhances segregation. Thus, the particle density decays slowly with exponent α ≈ 0.5,
even though the BA tree is not fractal.

In summary, the segregation effect in the two-species annihilation reaction dynamics has
to be taken into account when the dynamics takes place on fractal, modular, or tree networks. In
this case, the role of hubs is different from that of random SF networks and the particle density
decays slowly in a power-law manner with exponent less than 1, even though these networks
are SF.
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