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Semiconductors with mobile dopants (SMDs), which are distinct from conventional semiconductors,

exhibit hysteretic current-voltage curves. The fundamental feature of this hysteresis curve is that it

exhibits two oppositely rotating directions, whose origin is not clarified yet. Here, we investigate

microscopic origin of the two types of curves and show that they result from the spatial

inhomogeneity of the mobile dopant distribution in the SMD. In particular, we observed an abnormal

modulation of the electronic energy band due to mobile dopants; lower (higher) density of dopants

near a metal-semiconductor interface lead to higher (lower) conductance, whereas the conventional

ionic models predict the reverse behaviors. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4811556]

The successful application of semiconductor devices is

attributable to their unique electrical properties, which are

sensitive to the internal configuration of their dopants.

Generally, dopants are assumed to be immobile. What hap-

pens if the dopants are mobile? Recent experimental research

on semiconductors with mobile dopants (SMDs) such as ox-

ygen vacancies (V••
O)1,2 indicates that there are conductance

changes due to the alteration of the internal dopant distribu-

tion in SMDs by an external electric stimulus, as illustrated

in Fig. 1(a).3 Due to this property, SMDs have received great

interest for applications such as resistive switching phenoe-

mena,4 neuroscience,5 and non-volatile memory devices.6–9

This conductance change results in a hysteretic current-

voltage (I-V) curve. Many studies have reported two types of

the I-V curves: the counter-figure-eight (cF8)7,9,12 and figure-

eight (F8)6,13 directional curves, which are shown in Figs.

1(b) and 1(c), respectively. Moreover, the coexistence of

both directions in a single sample has been reported.2,11,14

To understand the origin of the two directions, several

experiments and heuristic arguments have been presented.

For example, Yang et al.2 suggested that the cF8 and F8

curves are derived from the top and bottom Schottky interfa-

ces, respectively. However, Shibuya et al.11 hypothesized

that the cF8 curve arises from V••
O movement through con-

ducting filaments inside the sample, whereas the F8 curve

has a purely electronic origin. Subsequently, the same

authors suggested that the cF8 and F8 curves originate from

the respective inhomogeneous (or filamentary) and homoge-

neous distributions of V••
O parallel to the interface.14

Despite these experimental results and heuristic argu-

ments, the origin of the two ways of hysteretic I-V curves

has not been elucidated theoretically yet. In this study, we

theoretically demonstrate that the two ways of I-V hysteretic

curves intrinsically appear in the SMD, resulting from the

spatial inhomogeneous distribution of dopants. Interestingly,

our model clearly shows that there exists an abnormal

modulation of the interfacial electronic energy band when

most dopants are distributed near the Schottky interface.

Conventionally, the migration of donors in an n-type

semiconductor is known to cause the cF8 hysteresis curve.2

Consider an n-type Schottky contact, as shown in Fig. 1(a).

When a positive (negative) bias Vþ (V�) is applied, the do-

nor concentration qd becomes low (high) near the interface.

Then, the Schottky barrier width wsb increases (decreases)

because wsb / 1=
ffiffiffiffiffi
qd

p
,10 thus, the conductance decreases

(increases) as denoted by ‹ (›) in Fig. 1(b). This corre-

sponds to cF8 curve.

First of all, let us introduce a simple theoretical model in

one dimension to illustrate the mechanism of the two ways in

FIG. 1. (a) Schematics of a SMD. Dopants can be repelled or attracted by

applying a positive or negative bias, respectively. (b) and (c) are the sche-

matics for cF8 and F8 I-V hysteresis curves, respectively. (d)-(g) one-

dimensional SMD model. (d) and (e) show the dopant density distribution

qdðxÞ for the far-from-Schottky and near-Schottky cases, respectively. (f)

and (g) show the effects of donor movement on the Schottky barrier for the

far-from-Schottky and near-Schottky cases, respectively.
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SMD depending on the initial dopant distribution. In this

model, the semiconductor is in contact with the metals located

at x ¼ 0 and x¼ L to form the Schottky and Ohmic interfaces

(Fig. 1(d)) with the boundary conditions ECðx ¼ 0Þ ¼ E0 and

ECðx ¼ LÞ ¼ 0, respectively. We consider two different cases

of initial dopant density distributions: dopants are located (i)

far from (Fig. 1(d)) and (ii) near (Fig. 1(e)) the Schottky inter-

face. For simplicity, we assume that the dopant density distri-

bution qdðxÞ is constant in space. Then, for doped region,

qd ¼ Q=ðL� ‘Þ in the region [x ¼ ‘, L] for the far-from-

Schottky case and qd ¼ Q=‘ in [x¼ 0, ‘] for the near-

Schottky case, where Q is the total amount of dopants in a

semiconductor and assumed to be a conserved quantity. For

undoped region, qd ¼ 0. This simplification is very useful to

capture the essential mechanism of the two ways of the hys-

teresis curves. We assume that the electrons are fully depleted

in the doped region for analytic calculation. Non-constant

qdðxÞ and not-fully depleted cases will be treated numerically

later. Under this simplified circumstance, the position-

dependent conduction band ECðxÞ can then be calculated by

solving the Poisson’s equation,15 r2ECðxÞ ¼ eqscðxÞ=�,
where e is the electronic charge, qscðxÞ is the space charge

density, and � is the permittivity of the semiconductor. Note

that qscðxÞ ¼ qqdðxÞ, where q is the dopant charge. Here, we

deal with the case q > 0 (n-type semiconductor).

We first consider the far-from-Schottky case. The

Poisson’s equations for ECðxÞ in the regions x < ‘ and x > ‘
become d2ECðxÞ=dx2 ¼ 0 and d2ECðxÞ=dx2 ¼ qeQ=�ðL� ‘Þ,
respectively. Using the boundary conditions, ECðx ¼ 0Þ
¼ E0 and ECðLÞ ¼ 0, and continuity at x ¼ ‘, we can easily

obtain ECðxÞ in the whole range. Particularly for x < ‘, we

obtain that

ECðxÞ ¼ f1xþ E0; where f1 ¼ �
E0

L
� qeQðL� ‘Þ

2�L
: (1)

Here, f1 is the slope of EC in the undoped region. If ‘ is ini-

tially located at in Fig. 1(f) and a positive bias Vþ is

applied, ‘ increases as the direction ! ! . Then f1
increases or the slope in the undoped region becomes less

steeper (Eq. (1)) as shown in Fig. 1(f), which makes the

Schottky barrier width wsb thicker. Therefore, the conduct-

ance decreases, which corresponds to the conductance

change denoted by ‹ in Fig. 1(b). If a negative bias V� is

applied to this low conductance state, ‘ will change reversely

as ! ! . Then the conductance increases as denoted

by › in Fig. 1(b). This result agrees with the conventional

explanation for cF8 curve.

For the near-Schottky case, the calculation for ECðxÞ can

be performed similarly. The Poisson’s equations for x < ‘
and x > ‘ become d2ECðxÞ=dx2 ¼ qeQ=�‘ and d2ECðxÞ
=dx2 ¼ 0, respectively. For x > ‘, we obtain that

ECðxÞ ¼ f2ðx� LÞ; where f2 ¼ �
E0

L
þ qeQ‘

2�L
: (2)

If initial ‘ is located at in Fig. 1(g), Vþ makes ‘ increase as

the direction ! ! . Then, by the similar explanation

as the far-from-Schottky case, wsb becomes thinner as shown

in Fig. 1(g) and the conductance increases, which corresponds

to the conductance change denoted by fi in Fig. 1(c). If V� is

applied to this high conductance state, reverse process occurs,

which causes the conductance decreases as denoted by fl in

Fig. 1(c). Therefore, this result verifies that F8 curve intrinsi-

cally appears in SMD without the assumption of the electronic

function or the two Schottky interfaces.

Now, using numerical simulations, let us generalize the

above analysis in three dimension without the assumptions

of uniform qdðxÞ and fully depleted doped region. For quan-

titative calculation, we use the parameters for Pt-SrTiO3 con-

tact. Let us consider a three-dimensional lattice (lattice

constant a ¼ 0:39 nm) whose lengths in x-, y-, and z-direc-

tions are Lx, Ly, and Lz, respectively, as shown in Fig. 2(a).

Here, Lx ¼ Ly ¼ Lz ¼ 27:3 nm for manageable calculation.

Two different metals are in contact with the lattice at x ¼ 0

and x ¼ Lx forming Schottky and Ohmic contacts, respec-

tively. Donors (V••
O) were distributed on the lattice depending

on qdðxÞ.
Then the position-dependent conduction band

ECðxi; yj; zkÞ can be calculated numerically by solving

the Poisson’s equation, r2ECðxi; yj; zkÞ ¼ eqscðxi; yj; zkÞ=�.
However, the calculation of EC is not straightforward because

qscðxÞ 6¼ qqdðxÞ. Therefore, we use the self-consistent relaxa-

tion method to obtain qsc and EC simultaneously; we divide

qsc into two parts: qsc ¼ qþ � q�, where qþ and q� are the

densities of positive and negative charges, respectively. Let

us focus on highly electron-doped semiconductors, where the

density of donors is sufficiently high compared with the hole

density. Then qþ � qqdðxÞ. q�ðxi; yj; zkÞ corresponds to the

density of electrons and is determined by the following

equation:10 q�ðxi;yj;zkÞ¼2Nc=
ffiffiffi
p
p Ð1

0
dgg0:5=ð1þexp½g�b

fEF�ECðxi;yj;zkÞg�Þ; where b is the inverse temperature and

Nc is the effective density of the states in the conduction

FIG. 2. (a) Configuration of the simulation. Donors are denoted by yellow

circles. (b) Periodic potential energy of the donors, where local minima corre-

spond to the lattice sites. Grey, orange, and purple curves denote the periodic

potential energies when Vext is zero, negative, and positive, respectively. U0

is the energy barrier height against the movement of a donor. Donors move

according to the hopping probabilities p0, pþ1, and p�1 (Eq. (3)).
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band. In this simulation, we used Nc¼2:5�1019 cm�3: how-

ever, we also confirmed that the essential feature of the simu-

lation is not changed by variation of Nc. Note that we set

EF¼Vext, where Vext is applied voltage between two electro-

des, and assume that the barrier height at the interface is in-

dependent of the dopant density.13 Thus, we can set up the

boundary conditions at x¼0 (ideal Schottky) and x¼Lx

(ideal Ohmic) interfaces as ECð0;y;zÞ¼0:9 eV (Ref. 16) and

ECðLx;y;zÞ¼Vext, respectively. Here, we neglect the small

image-charge effect due to large � for SrTiO3. Inserting

qþðxi;yj;zkÞ and q�ðxi;yj;zkÞ into the Poisson’s equation, we

obtain ECðxi;yj;zkÞ and qscðxi;yj;zkÞ simultaneously. To con-

firm the validity of this technique, we calculate ECðxi;yj;zkÞ
for a silicon semiconductor with various doping concentra-

tions. The results are presented in supplemental material

(SM), section 1.21

Next, using the obtained ECðxi; yj; zkÞ, the electric cur-

rent I of the major carriers (i.e., electrons) can be estimated

with the following formula:17

I ¼
X

j;k

4epme

bh3

ð1
0

dExPj;kðExÞln
f ðn� ExÞ

f ðn� Ex � VextÞ

� �
;

where me is the free electron mass, h is Planck’s constant,

n ¼ maxðEF � ECÞ, and f ðxÞ ¼ 1þ ex. Pj;kðExÞ is the transi-

tion probability that an electron with x-directional energy Ex

will tunnel through the Schottky barrier at y ¼ yj and z ¼ zk.

In the discrete lattice, Pj;kðExÞ can be written as Pj;kðExÞ
� exp

�
�a
P

i a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ECðxi; yj; zkÞ � Ex

p �
; where the summation

index i extends over all cases satisfying ECðxi; yj; zkÞ > Ex

and a ¼ 1:025 eV�0:5Å
�1

. Note that this formula includes

the contributions from the thermionic emission as well as the

field emission.

We assume a simple hopping motion of V••
O along the x-

direction for the donors under a periodic potential with a bar-

rier height U0, as shown in Fig. 2(b). We also assume that a

constant electric field E ¼ �Vext=Lx is formed throughout

the semiconductor. The validity of the constant E-field

approximation is discussed in SM section 2.21 Thus, when a

negative (positive) Vext is applied, the periodic potential

energy for the donors increases (decreases) with a slope of E,

as shown in Fig. 2(b). Then, the heights of the left and right

energy barriers, compared to the local minimum, become

approximately U0 � aE=2 and U0 þ aE=2, respectively. The

probability of remaining at the original site xi (p0) is given

by the probability that the donor cannot overcome a lower

barrier among the two. So, p0 ¼ 1� expð�bðU0 � ajEj=2ÞÞ.
When Vext > 0, the probability of moving to site xi�1 (p�1) is

the half of the probability that the donor overcomes the left

or higher barrier. Another half of the probability should be

counted for moving to the opposite direction. So,

p�1 ¼ 0:5 expð�bðU0 þ ajEj=2ÞÞ. By combining all of the

similar terms, we obtain

pþ1 ¼ 0:5e�bU0 ½ebjEja=2 þ 2sgnðVextÞsinhðbjEja=2Þ�;
p�1 ¼ 0:5e�bU0 ½ebjEja=2 � 2sgnðVextÞsinhðbjEja=2Þ�;

p0 ¼ 1� e�bðU0�jEja=2Þ;

(3)

where sgnðxÞ ¼ �1, 0, and 1 when x < 0, x¼ 0, and x > 0,

respectively. For simplicity, we consider only a hardcore

repulsion interaction between the two donors.

Here, we adopted the thermal acceleration mechanism18

applied for SrTiO3, which takes into account the Joule heat-

ing effect to reproduce the experimentally observed fast-

switching time (�10�6 s). So, high temperature b � 15 eV�1

(800 K) can be used for hopping with U0 ¼ 1:01 eV.18 Note

that our simulation results based on this constant-high-tem-

perature assumption essentially do not change, even though

we take into account temperature change due to variations in

the external voltage. Here, the attempt frequency for the hop-

ping is 1013 Hz.19

Using the above equations, we simulated the case in

which the donors move from the Ohmic to the Schottky

interface. Initially, the donors were uniformly distributed

with a density of 1019 =cm3.18 Using Eq. (3), we pushed the

donors toward the Ohmic interface by applying a positive

bias, the red curve in Fig. 3(a). Then, we applied a negative

voltage Vext ¼ �1:875 V to attract donors towards the

Schottky interface. Here, the donor density at xi is defined as

�qðxiÞ � nðxiÞ=ðLyLzÞ, where nðxiÞ is the number of donors at

the x ¼ xi plane. Here, � ¼ 100�0 (Ref. 20) in high electric

field (�0 is the permittivity in free space), with periodic

boundary conditions in the y- and z-directions. Fig. 3(a)

shows the time-dependent distribution of the donors. The

distribution moved toward the Schottky interface over time.

The conductance Gð� I=VextÞ during the attraction pro-

cess is calculated at 0.1 V as a function of time t. As indi-

cated in Fig. 3(b), the G-t plot can be divided into two

regions: for t < 7:5 ls, G increases as a function of t, and for

t > 7:5 ls, G decreases. When comparing the distributions

shown in Fig. 3(a), G increased (decreased) when most

FIG. 3. (a) Changes in the donor density distribution from t¼ 0 to 14 ls

when a negative bias is applied. (b) Changes in the conductance as a func-

tion of time. (c) and (d) show changes of the Schottky barrier when most

donors are distributed in the far-from-Schottky and near-Schottky regions,

respectively. In all figures, red, cyan, blue, green, and gold are used to repre-

sent data collected at t¼ 0, 1, 7.5, 10, and 12 ls, respectively.
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dopants were distributed in the far-from-Schottky (near-

Schottky) region.

The two different t-dependences of G come from the

different modulation behaviors of the Schottky barrier dur-

ing the attraction process. For each t, we obtained ECðxiÞ by

calculating ECðxi; yj; zkÞ at Vext ¼ 0 and averaging over yj

and zk. Fig. 3(c) shows ECðxiÞ when most dopants were dis-

tributed in the far-from-Schottky region (i.e., t < 7:5 ls). In

this case, the pulling of the donors toward the Schottky

interface resulted in a decrease in the Schottky barrier

width, and G increased. Fig. 3(d) presents the case ECðxiÞ
where most dopants were distributed in the near-Schottky

region (i.e., t > 7:5 ls). In this case, the attraction of the do-

nor increased the Schottky barrier width rather than decreas-

ing it. These results agree with those of the one-dimensional

SMD model.

We also simulated I-V curves under a repetitive voltage

sweep, with different initial donor distributions. Here, it took

0:1 ls for each voltage point and voltage gap is 0.027 V.

When most donors were initially distributed in the far-from-

Schottky (near-Schottky) region as shown in Fig. 4(a) (Fig.

4(c)), cF8 (F8) curve is generated as shown in Fig. 4(b)

(Fig. 4(d)), which corresponds to the direction of Fig. 1(b)

(Fig. 1(c)). Furthermore, the direction of the I-V curve can

be changed by applying a large bias, as indicated in Fig. 4.

In conclusion, we introduced the SMD model which

demonstrates that two opposite hysteresis curves intrinsically

appear in the SMD due to the inhomogeneous dopant density

distribution. From this theoretical analysis, we can control the

type of the I-V curve by modulating the mobile dopant distri-

bution. The theoretical result we obtained in the letter may

become a fundamental basis for further development of SMD.
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FIG. 4. If the donors are initially distributed in the far-from-Schottky region

(a), the voltage sweep results in a cF8 I-V curve (b). If the donors are ini-

tially distributed in the near-Schottky region (c), a F8 curve (d) is obtained.

By applying a large negative bias to the lattice exhibiting a cF8 direction,

we can attract donors into the near-Schottky region, and then the direction

of I-V curve will change to F8 way. The opposite effect can be obtained by

applying a large positive bias.
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