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Hybrid phase transition into an absorbing state: Percolation and avalanches
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Interdependent networks are more fragile under random attacks than simplex networks, because interlayer
dependencies lead to cascading failures and finally to a sudden collapse. This is a hybrid phase transition (HPT),
meaning that at the transition point the order parameter has a jump but there are also critical phenomena related
to it. Here we study these phenomena on the Erdős-Rényi and the two-dimensional interdependent networks and
show that the hybrid percolation transition exhibits two kinds of critical behaviors: divergence of the fluctuations
of the order parameter and power-law size distribution of finite avalanches at a transition point. At the transition
point global or “infinite” avalanches occur, while the finite ones have a power law size distribution; thus the
avalanche statistics also has the nature of a HPT. The exponent βm of the order parameter is 1/2 under general
conditions, while the value of the exponent γm characterizing the fluctuations of the order parameter depends on
the system. The critical behavior of the finite avalanches can be described by another set of exponents, βa and
γa . These two critical behaviors are coupled by a scaling law: 1 − βm = γa .
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I. INTRODUCTION

Hybrid phase transitions (HPTs) in complex networks have
attracted substantial attention. In these transitions, the order
parameter m(z) exhibits behaviors of both first-order and
second-order transitions simultaneously as

m(z) =
{

0 for z < zc,

m0 + r(z − zc)βm for z � zc,
(1)

where m0 and r are constants and βm is the critical exponent
of the order parameter, and z is a control parameter. Examples
include the k-core percolation [1–3], generalized epidemic
spreading [4–6], and synchronization [7–9].

Percolation in the cascading failure (CF) model [10–
17] on interdependent multilayer random, Erdős-Rényi (ER)
networks is another example. In this CF model the process is
controlled by the mean degree z of the networks [18]. When a
node on one layer fails and is deleted, it leads to another failure
of the counterpart node in the other layer of the network.
Subsequently, links connected to the deleted nodes are also
deleted from the networks. This process continues back and
forth, always eliminating the possibly separated finite clusters
until a giant mutually connected component (MCC) remains
or the giant component gets entirely destroyed as a result of
the cascades [11]. As nodes are deleted in such a way, the
behavior is similar to that at a second-order phase transition
until the transition point zc is reached from above. Beyond
that, as z is further decreased infinitesimally, the percolation
order parameter drops suddenly to zero indicating a first-order
phase transition. Thus a HPT occurs at z = zc. This transition
may be regarded as a transition to an absorbing state [19].

In the CF model one has to distinguish between clusters
and avalanches. Clusters are MCCs [20]. Avalanches consist
of MCCs separated from the giant component as a consequence
of a triggering removed node and the subsequent cascade [11].
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The avalanche sizes depend on the control parameter, the
triggering nodes, and on the network configurations. We call
global avalanches with size equal to the order parameter
“infinite”; the others are the “finite” avalanches. The size
distribution of finite avalanches follows power law at zc [11],
provided the infinite avalanche is discarded. This fact suggests
that the avalanche dynamics at zc exhibits a critical pattern. The
finite MCCs at zc mostly consist of one or two nodes [10,21],
which is in discord with the power-law behavior of the cluster
size distribution at a transition point characteristic of the
conventional second-order percolation transition [22,23]. As
the avalanches show critical behavior but the clusters do not,
an important challenge emerges: how to relate the critical
behavior of the order parameter to the avalanche dynam-
ics in a single theoretical framework. Further fundamental
questions have been still open, such as how the fluctuations
of the order parameter behave at the critical point, whether
the scaling relation holds between critical exponents of the
order parameter exponent, the susceptibility exponent and
the correlation size exponent, and whether the hyperscaling
relation is valid. These questions are not limited to the CF
model, but are also relevant to other systems undergoing HPT
driven by avalanche dynamics, for instance, k-core percolation
model [3].

One of the main difficulties in answering those questions
has been the need for major computational capacity. Thanks to
the efficient algorithm introduced recently by our group [24],
we are now able to address those important unsolved problems.
In this paper, we report about large scale simulations and
analytical results on the CF model of interdependent networks.
Based on them we have constructed a theoretical framework
connecting the critical behaviors of the order parameter and
the avalanche dynamics and have understood the nature of the
hybrid percolation transition.

In this paper we study the interdependent CF model for
coupled ER networks and two-dimensional square lattices
(2D). The control parameter for ER (2D) interdependent
networks is the average degree z of a node (the fraction q
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of original nodes kept in a layer); the order parameter m is the
size of the giant mutually connected cluster per node.

To describe the HPT, we introduce two sets of critical
exponents. The set {βm,γm,ν̄m} is associated with the or-
der parameter and its related quantities, and the other set
{τa,σa,γa,ν̄a} is associated with the avalanche size distribution
and its related ones. The subscripts m and a refer to the order
parameter and avalanche dynamics, respectively: the exponent
βm is defined by the behavior of the order parameter [Eq. (1)],
and γm is the exponent of the susceptibility χ ≡ N (〈m2〉 −
〈m〉2) ∼ (z − zc)−γm , where N is the system size. The exponent
ν̄m is defined by the finite size scaling behavior of the
order parameter: m − m0 ∼ N−βm/ν̄m at z = zc. The exponents
τa , σa , and ν̄a characterize the avalanche size distribution
ps ∼ s−τa

a f (sa/s
∗
a ), where sa denotes the avalanche size and

f is a scaling function. Here s∗
a is the characteristic avalanche

size, which behaves as ∼(z − zc)−1/σa for N → ∞ and s∗
a ∼

N1/σa ν̄a is its finite size scaling at zc. The exponent γa deter-
mines the scaling of the mean size of finite avalanches 〈sa〉 ∼
(z − zc)−γa . Although one may think naively that the exponents
ν̄m and ν̄a would be the same and γm and γa are as well, it
reveals that they are not the same. However, we will show that
they are related to each other in some unconventional way.

II. MAIN RESULTS

The numerically estimated values of the critical exponents
for the ER case are listed in Table I, together with those of the
2D case. For the ER and 2D cases, the hyperscaling relation
ν̄m = 2βm + γm holds even though data collapsing for the 2D
case is not as satisfactory as for the ER case. The relation
σaν̄a = τa does not hold (Secs. IV and V).

The few analytic results related to CF model have been lim-
ited so far to locally treelike graphs where the exponent of the
order parameter was found to be βm = 1/2 and the exponent
τa of the avalanche size distribution ps is τa = 3/2, with the
definition ps ∼ s−τa at zc. We show that βm = 1/2 is valid not
only for treelike networks but generally for interdependent net-
works with random dependency links (Sec. VI A). Moreover,
we also show that the two sets of critical exponents {βm,γm,ν̄m}
and {τa,σa,γa,ν̄a} are not independent of each other. They are
coupled through the relation m(z) + ∫ z0

z
〈sa(z)〉dz = 1, where

z0 is the mean degree at the beginning of cascading processes.
This leads to dm(z)/dz = 〈sa(z)〉 and yields 1 − βm = γa

(Sec. VI B). Our numerical values support this relation.

We classify avalanches in the critical region as finite
and infinite avalanches. Infinite avalanche means that the
avalanche size is as large as the order parameter. Thus, when
it occurs, the GMCC completely collapses, and the system
falls into an absorbing state. We find that the mean number
of hopping steps denoted as 〈t〉 between the two layers in
avalanche processes depends on the system size N in different
ways for the different types of avalanches: 〈t〉 ∼ ln N for
finite avalanches, and ∼N1/3 for infinite avalanches on the
ER interdependent network (Sec. IV C).

III. SIMULATION METHOD

The numerical test of the relevant quantities had been a
challenging task. Recently, however, efficient algorithms have
been developed [24], in which the sizes of not only a GMCC
but also other MCCs can be measured with computational time
of O(N1.2), as compared to the earlier O(N2) complexity.
(For other algorithms, see Refs. [21] and [25]). Now we
can investigate critical properties of the hybrid percolation
transition of the CF model thoroughly by measuring various
critical exponents including susceptibility and correlation size
that were missing in previous studies [21] for both the ER and
two-dimensional (2D) lattice interdependent networks.

IV. SIMULATION RESULTS ON THE ER
INTERDEPENDENT NETWORKS

We first describe the simulation results on the double-layer
ER random networks. On each layer, an ER network is
constructed, with N nodes in both, which are kept fixed. Each
node in one layered network has a one-to-one partner node
in the other network. The number of occupied edges M in
each layer is controlled. The control parameter z is defined
as the mean degree z = 2M/N . Using the algorithm [24],
we measure the size of GMCC as a function of z. The order
parameter m(z) is defined as the size of the GMCC per node,
which behaves according to Eq. (1). To trigger an avalanche
and to measure its size, we remove a randomly chosen node
in one layer and measure the subsequent decrements of
the GMCC size, which sum up to the avalanche size. Then
we recover the removed nodes and repeat the above process
to obtain a reliable statistics of the avalanche size distribution
for a given point z. We simulate 104 network configurations
for each system size N/105 = 4, 16, 64, and 256, and 103

TABLE I. List of numerical values of the critical exponents for various cases. m and a in the second column mean the cases related to the
order parameter and avalanche, respectively.

β τ σ γ ν̄

Ordinary ER 1 1.5 0.5 1 3
m 0.5 ± 0.01 1.05 ± 0.05 2.1 ± 0.02

Interdependent ER
a 1.5 ± 0.01 1.0 ± 0.01 0.5 ± 0.01 1.85 ± 0.02

Ordinary 2D 0.139 1.055 0.286 2.389 2.667
m 0.53 ± 0.02 1.35 ± 0.10 2.2 ± 0.20

Interdependent 2D
a 1.59 ± 0.02 0.70 ± 0.05 0.5 ± 0.05 2.1 ± 0.2
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FIG. 1. (a) Scaling plot of the rescaled order parameter (m −
m0)Nβm/ν̄m vs �zN 1/ν̄m . With βm = 0.5 and ν̄m = 2.10 data are
well collapsed onto a single curve. (b) Scaling plot of (〈m2〉 −
〈m〉2)N 1−γm/ν̄m for different N vs �zN1/ν̄m , where γm = 1.05 is used.

configurations for N/105 = 1024. We obtain 10−4N different
avalanche samples for each configuration.

A. Critical behavior of GMCC

For the double-layer ER network model, the numerical
values of m0 and zc were obtained in Ref. [26] with high
precision as m0 = 0.511 700 . . . and zc = 2.455 407 49 . . . .
We use these values to evaluate our simulation data. We
first check whether Eq. (1) is consistent with the theoretical
value βm = 1/2 [11]. In Fig. 1(a), we plot (m − m0)Nβm/ν̄m

versus �zN1/ν̄m in scaling form for different system sizes
N , where �z ≡ z − zc(∞). We confirm the exponent to be
βm = 0.5 ± 0.01 from the �z region in which the finite-size
effect is negligible. Performing finite-size scaling analysis in
Fig. 1(a), we obtain the correlation size exponent defined as
z∗
m(N ) − zc(∞) ∼ N−1/ν̄m to be ν̄m ≈ 2.10 ± 0.02.

Next, we consider the susceptibility χ (z) as the fluctuations
of the order parameter over the ensemble. This quantity
is expected to exhibit critical behavior χ ∼ (z − zc)−γm for
z > zc. In Fig. 1(b), we plot a rescaled quantity (〈m2〉 −
〈m〉2)N1−γm/ν̄m versus �zN1/ν̄m . We find that for the critical
�z region, the data decay in a power-law manner with the
exponent γm ≈ 1.05 ± 0.05. Moreover, with the choice of
ν̄m = 2.1, the data are well collapsed onto a single curve.
The obtained exponents βm ≈ 0.5 ± 0.01, γm ≈ 1.05 ± 0.05,
and ν̄m ≈ 2.1 ± 0.02 satisfy the hyperscaling relation ν̄m =
2βm + γm reasonably well.

We also study the probability to contain nonzero GMCC
at a certain point z, denoted as RN (z) [21]. We find that
RN approaches a step function in a form that scales as
RN ([z − zc(N )]N1/2) (see Fig. 2). Thus the slope dRN (z)/dz

exhibits a peak at zc(N ), where its value increases as N1/2.
This means the probability that the collapse of GMCC occurs
at zc(N ) increases with the rate N1/2. Finite size scaling
theory suggests the interpretation that ν̄m = 2, which is

FIG. 2. Probability RN (p) that the giant cluster exists. Here p =
z/2zc is the node occupation probability of the site percolation in
ER networks with mean degree 2zc, which corresponds to the mean
degree z of the bond percolation in ER networks. The critical point
p = 0.5 corresponds to z = zc in this convention. The inset is the plot
of RN vs (z − zc(N ))N 1/2. This data collapse requires zc(N ) instead
of zc(∞).

compatible with the result we obtained earlier from Fig. 1.
One can introduce the order parameter S(z) averaged over all
configurations as S(z) = m(z)RN (z) behaves similar to the one
obtained previously in Fig. 1 of Ref. [26].

The probability RN (z) is the basic quantity for large
cell renormalization group transformation in percolation
theory [27,28]. To proceed, we rescale the control parameter
as p = z/z0, where z0 is the mean degree at the beginning
of the cascading processes and taken as z0 = 2zc(∞) for
convenience; then 1 − p is the fraction of nodes removed.
Let us define p̃ = RN (p), where p̃ can be interpreted as the
probability that a node is occupied in a coarse-grained system
scaled by N . Using the renormalization group idea, once we
find the fixed point p∗(N ) satisfying p∗ = RN (p∗) and take
the slope λ = dRN (p)/dp at p∗(N ). Then, we can obtain
ν̄m = ln N/ ln λ. Numerically we obtain that λ ∼ N0.51±0.02

and thus ν̄m is obtained to be ν̄m ≈ 1.96 ± 0.07 (Fig. 3). This
value is close to the one previously obtained by data collapse
method.

FIG. 3. Slope of RN (p) at the fixed point p∗, for which p∗ =
RN (p∗), as a function of the system size N . We measure the slope
of the right three data points using the least-square-fit method to be
0.51 ± 0.02. Thus ν̄m ≈ 1.96 ± 0.07. Solid line is a guideline with a
slope 0.51.
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LEE, CHOI, STIPPINGER, KERTÉSZ, AND KAHNG PHYSICAL REVIEW E 93, 042109 (2016)

FIG. 4. zc(N ) is the mean position of the order parameter
discontinuity when the system size is N . It approaches zc(∞) =
2.455 407 49 . . . as N increases, and the difference scales as N−1/1.5.
The inset is the standard deviation of zc(N ), which decreases as N−0.5.

Interestingly, we measure pc − p∗(N ) ∼ N−1/1.5 yielding
zc(∞) − z∗(N ) ∼ N−1/1.5. Similarly, from direct simulations
we obtain zc(∞) − zc(N ) ∼ N−1/1.5, where zc(N ) is the
average finite size transition point (Fig. 4). In a conventional
second-order transition, we would expect that these quantities
scale with N as N−1/ν̄m . The difference to ν̄m ≈ 2 indicates
either an additional diverging scale or extraordinarily large
corrections. But as we have seen previously, the standard
definition of the exponent yields ν̄m ≈ 2. This is confirmed
by the inset of Fig. 4 which shows

√
Var(zc(N )) ∼ N−0.5,

where Var stands for the variance. We conclude ν̄m ≈ 2
which is also consistent with the value we obtained using
the renormalization group transformation eigenvalue.

B. Critical behavior of avalanche dynamics

To characterize the avalanche processes, we count the
avalanche size defined as the number of nodes removed in each
layer during the cascading processes, denoted as sa(z). The
distribution of those avalanche sizes collected from different
triggering nodes and configurations is denoted as ps(z).
In Ref. [11] analytically ps(zc) ∼ s−τa

a with τa = 3/2 was
obtained for locally treelike graphs. We confirm this exponent
value in Fig. 5(a). Avalanches in the region z < z∗

a(N ) need
to be classified as finite or infinite avalanches; the latter
locate separately in Fig. 5(a). Infinite avalanche means the
avalanche size is as large as m(z), i.e., the GMCC completely
collapses, and the system falls into an absorbing state. The
infinite avalanche begins to appear at z = z∗

a(N ). Figure 5(a)
shows the scaling behavior of the avalanche size distribution
in the form of psN

τa/σa ν̄a versus saN
−1/σa ν̄a at zc. The data

from different system sizes are well collapsed onto a single
curve by the choices of τa = 3/2 and σaν̄a ≈ 1.85. This result
suggests that there exists a characteristic size s∗

a ∼ N1/σa ν̄a

with σaν̄a ≈ 1.85 ± 0.02 for finite avalanches. These values
indicate that the hyperscaling relation σaν̄a = τa does not
hold for the avalanche dynamics. For infinite avalanches,
s∗
a,∞ ∼ O(N ).

For z > zc, we examine the avalanche size distribution
versus sa for different �z, and find that it behaves as ps ∼
s−τa
a f (sa/s

∗
a ) where f is a scaling function. Following conven-

tional percolation theory [22], we assume s∗
a ∼ �z−1/σa . The

FIG. 5. (a) Scaling plot of ps(zc)Nτa/σa ν̄a vs sa/N
1/σa ν̄a for

different system sizes, with τa = 1.5 and σaν̄a ≈ 1.85. Note that
infinite avalanche sizes for different N do not collapse onto a single
dot, because they depend on N as s∗

a,∞ ∼ N . (b) Scaling plot of
ps(z)�z−τa/σa vs sa�z1/σa for different �z but a fixed system size
N = 2.56 × 107, with τa = 1.5 and σa ≈ 1.01. (c) Scaling plot of
〈sa〉N−γa/ν̄a vs �zN 1/ν̄a for different system sizes and γa = 0.5.

exponent σa is obtained from the scaling plot of ps(z)�z−τa/σa

vs sa�z1/σa in Fig. 5(b). The data are well collapsed with
σa ≈ 1.0, leading to ν̄a ≈ 1.85. This is different from ν̄m and
indicates that there exists another divergent scale.

We examine the mean avalanche size 〈sa〉 ≡∑′
sa=1 saps(z) ∼ (�z)−γa , where the prime indicates

summation over finite avalanches. It follows that
γa = (2 − τa)/σa [22]. Thus γa = 0.5 is expected. Our
simulation confirms this value in the large �z region
[Fig. 5(c)]. Data from different system sizes are well
collapsed in the plot of 〈sa〉N−γa/ν̄a versus �zN1/ν̄a with
γa = 0.5 and ν̄a = 1.85. This means that there exists crossover
points z∗

a(N ) such that z∗
a(N ) − zc ∼ N−1/ν̄a in finite systems.

In the thermodynamic limit, 〈sa〉/N is equal to 0 for z < zc, s0

for z = zc, and w(z − zc)−γa for z > zc, where s0 is constant
and w ∼ O(N−1). This result shows that the avalanche
statistics also exhibits HPT.

C. Statistics of the number of hops

When investigating the avalanche dynamics we first focus
on finite avalanches. Let ti(z) be the number of hopping steps
between the two layers in avalanche processes, when the
ith node is removed from the GMCC at z. 〈sa(t)〉i is the
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FIG. 6. (a) Plot of 〈sa(t)〉 as a function of t at zc for finite
avalanches, showing 〈sa(t)〉 ∼ t2.0±0.01. (b) The plot of 〈tfinite〉 of finite
avalanches vs N at zc on semilogarithmic scale (left axis). Plot of
〈t∞〉 of infinite avalanches as a function of N on double-logarithmic
scale (right axis). The guide line has a slope of 1/3.

avalanche size averaged over i, that is, the mean number
of nodes removed, accumulated up to steps t . It is found
in Fig. 6(a) that 〈sa(t)〉 ∼ t2 for finite avalanches, similar
to [14]. Using the avalanche size distribution ps(z), we set
up the duration time distribution pt (z) through the relations
psds = ptdt and sa ∼ t2 as pt (z) ∼ t−2τa+1f (t2/(�z)−1/σa ).
The mean number of hopping steps for finite avalanches is
〈tfinite〉 ≡ ∑′

t=1 tpt (z). Because of τa = 3/2, 〈t〉 ∼ − ln(�z)
for z > zc and 〈tfinite〉 ∼ ln N at z = zc [Figs. 6(b) and 7].
The number of hopping steps of infinite avalanches which can
appear in the region z < z∗

a(N ) lead to 〈t∞〉 ∼ N1/3, as shown
in Fig. 6(b), in agreement with [14].

The scaling plot pt (z)(z − tc)(−2τa+1)/2σa versus t(z −
zc)1/2σa displayed in Fig. 8 proves our hypothesis of pt (z) ∼
t (−2τa+1)f (−t2/(�z)−1σa ). The exactly known special value
τa = 3/2 yields 〈tfinite〉 ∼ ln N at z = zc as observed in
Fig. 6(b).

FIG. 7. Mean number of hops of finite avalanches 〈tfinite〉 as a
function of the mean degree z.

FIG. 8. Scaling collapse of the distribution pt of the number of
hops t for finite avalanches.

V. SIMULATION RESULTS ON THE 2D
INTERDEPENDENT NETWORKS

Let us describe the CF model on two layers of randomly
interdependent 2D networks [26,29]. At the beginning the
layers consist of topologically identical square lattices of
size N = L × L sites with nearest-neighbor connectivity links
within each layer. As it was the case for ER networks, the set
of nodes in one layer has a random one-to-one correspondence
via dependency links with the set of nodes in the other layer.

The control parameter is defined as the fraction q of original
nodes kept in a layer [10], analogous to the site percolation
problem. Each node shares its fate with its interdependent node
on the other layer. The order parameter m(q) is defined as the
relative size of the GMCC.

We applied two boundary conditions (BCs) to the system:
periodic and semiperiodic. In the periodic BC the system is on
a torus, while in the semiperiodic BC it is on a cylinder, i.e.,
open in one direction and periodic in the other one. The order of
the characteristic parameter values [qc(∞), qc(N ), and q∗

m(N )]
depends on the BC. For the periodic (semiperiodic) BC we
have qc(N ) < qc(∞) < q∗

m(N ) [qc(∞) < qc(N ) < q∗
m(N )].

The average order parameter mc(N ) before collapse is
defined as the smallest nonzero values of the relative size
of the giant component averaged over all runs with size N .
For periodic (semiperiodic) BC we have mc(∞) > mc(N )
[mc(∞) < mc(N )]. The figures are for semiperiodic BC if
not indicated otherwise.

A. Critical behavior of GMCC

The method of Sec. VI A can be used to numerically
calculate the critical threshold qc and the jump size m0.
However, throughout this subsection, we will adopt the values
qc = 0.682 892(5) and m0 = 0.603(2) which were recently
obtained by Grassberger [21].

Theoretical consideration for the value of βm suggest βm =
0.5. Figure 9 shows a plot of m(q) − m0 versus �q ≡ q − qc

for various system sizes. In the not too small �q region, the
data collapses into a single line, which enables us to measure
βm ≈ 0.53. Since the region of agreement is quite short, we
suspect that this deviation from the theoretical value is due to
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FIG. 9. m − m0 vs q − qc is plotted for different system sizes on
double logarithmic scales. The data seem to collapse into a single line
of slope βm ≈ 0.53 in the large-�q region. Inset: plot of the rescaled
order parameter (m − m0)Nβm/ν̄m vs �qN 1/ν̄m . In order to achieve
data collapse, we had to use ν̄m ≈ 2.1 and βm ≈ 0.53.

the finite size corrections. The scaling plot (m − m0)Nβm/ν̄m

versus �qN1/ν̄m suggests ν̄m = 2.1 ± 0.2.
Figure 10 shows the raw plot of the susceptibility χ =

N (〈m2〉 − 〈m〉2) against q − qc for different system sizes. Due
to strong corrections to scaling the exponent γ is less accurate
than for the ER case. The inset of Fig. 10 shows (〈m2〉 −
〈m〉2)N1−γm/ν̄m versus �qN1/ν̄m using γm = 1.35 ± 0.15 and
ν̄m = 2.4 ± 0.2, and one can observe that the deviation from
power law leads to failure of collapse for large-�q region.

Our simulation data shows the following values of the
exponents βm = 0.53 ± 0.02, γm = 1.35 ± 0.10, and ν̄m =
2.2 ± 0.2. These exponents satisfy the scaling relation ν̄m =
2βm + γm within their error ranges.

FIG. 10. Plot of the susceptibility χ ≡ N (〈m2〉 − 〈m〉2) vs q −
qc(∞) for different system sizes on double logarithmic scales using
systems with periodic boundary conditions. Inset: data collapsed plot
of (〈m2〉 − 〈m〉2)N 1−γm/ν̄m vs w ≡ �qN 1/ν̄m for the different system
sizes. The best collapse is achieved using γm ≈ 1.35 with ν̄m ≈ 2.4.
The boundary conditions have a strong effect on the corrections to
scaling and on the measured effective values of the exponents.

FIG. 11. Plot of the avalanche size distribution ps(qc) vs sa for
different system sizes. The power-law regime is longer for larger
system sizes. Inset: plot of the avalanche size distribution in a scaling
form ps(qc)Nτa/σa ν̄a vs saN

−1/σa ν̄a for different system sizes. The data
are well collapsed onto a single curve with σaν̄a .

B. Critical behavior of avalanche dynamics

We now examine the avalanche dynamics 2D lattices
described above. Analogous to the case of double-layer ER
networks, we denote the avalanche size at q by sa(q), and the
distribution of avalanche size by ps(q).

The avalanche size distribution follows a power law at qc

as ps(qc) ∼ s−τa
a . The exponent is measured to be τa = 1.59 ±

0.02; see Fig. 11. The avalanche size distribution follows this
power law up to a characteristic size s∗

a that scales with the
size of the system as s∗

a ∼ N1/σa ν̄a , from which point it decays
exponentially. The inset of Fig. 11 plots psN

τa/σa ν̄a against
saN

−1/σa ν̄a using σaν̄a ≈ 1.47, with which the data collapses
into a single line.

Figure 12 shows plots of the avalanche size distribution
at various q > qc for a fixed system size N = 40962. The
distribution ps follows ps ∼ s−τa

a f (−sa/s
∗
a ), where f is the

so-called “master curve” (a scaling function) and we assume
s∗
a ∼ (q − qc)−1/σa . We obtain the exponent σa by plotting

ps(q)/(�q)τa/σa versus sa(�q)1/σa . The best data collapse
is observed with σa = 0.70 ± 0.05, implying ν̄a = 2.1 ± 0.2;
see Fig. 12. These values are confirmed by a somewhat more

FIG. 12. Plot of ps(q) vs sa at different �q for N = 40962. Inset:
plot of ps(q)/(�q)−τa/σa vs sa(�q)1/σa at various �q for N = 40962.
With σa ≈ 0.70, the data collapse into a single line.
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FIG. 13. Average size 〈sa〉 of finite avalanches is plotted against
�q for various system sizes. A line exhibiting the expected power
law with exponent γm is drawn for comparison. The smaller systems
seem to be too small to observe power-law behavior. Inset: plot of
〈sa〉N−γa/ν̄a vs �qN 1/ν̄a for various system sizes. Using γa ≈ 0.5 and
ν̄a ≈ 2.1, the data roughly collapse in the mid-�q region. However,
collapse fails in the large-�q region.

reliable method using the cumulative distribution function
Ps(q) which scales as 1 − Ps(q) ∼ s1−τa

a F (−sa/s
∗
a ) where F

is another scaling function.
Notice in Fig. 12 that the cutoff sizes s∗

a are small, and to
increase them one has to carry out the measurement of the
cascade size distribution close to the critical point. For this, a
trade-off is to be made. Going too close to the critical point of
the infinite system the critical behavior of the finite system is
lost.

This observation supports the speculation that even systems
as large as N = 40962 are not enough to correctly assess
power-law behaviors in the near-qc regions. As we shall see
now, it is also related to the behavior of the first moment of the
avalanche size distribution. The first moment of ps follows
〈sa〉 ≡ ∑′

sa=1 saps(q) ∼ (q − qc)−γa . Figure 13 depicts our
simulation results for the average size of finite avalanches
for various �q and N , with a guideline of slope γa = 0.5
giving the best estimate for γa . The inset of Fig. 13 is
a plot of 〈sa〉N−γa/ν̄a versus �qN1/ν̄a for different system
sizes. Collapse is achieved with γa ≈ 0.50 ± 0.05 and ν̄a ≈
2.1 ± 0.2. This value of γa reasonably satisfies the scaling
relation γa = (2 − τa)/σa within error ranges. The quality of
the collapse is still unsatisfactory, which makes the values of
these exponents questionable.

C. Statistics of the number of hops

We now turn our attention to the number of hops t ,
starting with the hops in finite avalanche processes. One can
see in Fig. 14(a) that the average size of avalanches 〈sa〉t
roughly scales with t as 〈sa〉t ∼ t2.75, meaning that the fractal
dimension of avalanche trees is db = 2.75, which is different
from that of the case of ER networks. This allows us to assume
that the characteristic number of hops t∗ roughly scales as
t∗ ∼ (s∗

a )1/db ∼ (q − qc)(−1/dbσa ). Then, the distribution of the
number of hops for finite avalanches would satisfy pt (q) ∼
t−dbτa+db−1f (tdb/(�q)−1/dbσa ). This behavior is confirmed by
Fig. 14(b), which shows a scaling plot of this distribution.

FIG. 14. (a) Plot of the mean avalanche sizes 〈sa〉 vs the number
of hops t between the two layers. The overall slope is estimated to
be about 2.75. (b) The distribution pt (q) of the number of hops t

vs �q in scaling form. pt (q)(�q)(−dbτa+db−1)/dbσa is plotted against
t(�q)1/dbσa , with db ≈ 2.75.

Recall that the value of τa was measured to be τa ≈ 1.59.
This implies that, in contrast to the case of ER networks, the
average number of hops of finite avalanches 〈t〉 ≡ ∑′

t=1 tpt (q)
does not decrease logarithmically but rather follows a power
law with exponent 1 − dbτa + db. Also, the average number
of finite hops 〈t〉 at q = qc approaches some value with a
power law, rather than increasing logarithmically; Fig. 15 and
Fig. 16(a) illustrate these points.

FIG. 15. Average number of finite hops 〈tfinite〉 is plotted against
�q in double logarithmic scales.
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FIG. 16. (a) Plot of 〈tfinite(∞)〉 − 〈tfinite(N )〉 vs N at qc in
logarithmic scale, where 〈tfinite(∞)〉 = 1.96 was used. (b) Plot of
〈t∞〉 of infinite avalanches vs N in logarithmic scale. The guideline
has a slope 0.33.

Lastly, we consider the number of hops that constitute
the infinite avalanches. Our simulation results reveal that this
number scales as N0.33. Figure 16(b) shows these behaviors
by plotting 〈t∞〉 against system size N .

In short, analogous to the two-layered ER network, the two
sets of exponents {βm,γm,ν̄m} and {γa,ν̄a,σa,τa} are measured
to be distinct. In this model too, values of the critical exponents
measured through simulation satisfy the scaling relation 1 −
βm = γa that relates these sets. However, in all aspects the
scaling behavior of 2D interdependent networks is much worse
than that of the ER interdependent networks, indicating severe
corrections to scaling.

VI. ANALYTIC RESULTS

In the following we derive two rules that hold for general
interdependent networks.

A. Proof of βm = 1/2 and γa = 1/2

For the exponent βm values close to 1/2 were measured for
very different network settings [11]. We prove that βm = 1/2
holds for a wide range of mutual percolation processes. Let
P s

∞(q) denote the fraction of nodes belonging to the giant
component of the classical (single layer) percolation problem
where q is the fraction of occupied nodes. Let qs

c denote the
critical point of this single layer percolation. If an additional
layer is added to the percolation process with dependency links
the critical point for the mutual percolation is qc � qs

c [10,12].
Now let’s consider a two-layered interdependent network with

random infinite range interdependency links that represent a
random one-to-one mapping between the layers. The control
parameter q denotes the fraction of the nodes kept. It has
been shown that the size of the MCGC after the ith step is
P s

∞(qi), where qi is an equivalent random attack given by the
recursion [10]

qi = q

qi−1
P s

∞(qi−1). (2)

The recursion has a fixed point x(q) corresponding to the
steady state m(q) ≡ P s

∞(x(q)) of the system:

x2 = qP s
∞(x). (3)

As qc > ps
c the P s

∞ curve of single layer percolation can be
approximated by its series near qc:

P s
∞(q) = a + b · q + O(q2), (4)

with a ≡ P s
∞(qc).

For the critical behavior close to qc we need to solve x2(q) =
q · (a + bx(q)) resulting in

x = bq ±
√

b2q2 + 4aq

2
. (5)

At the critical point qc the determinant b2(qc)2 + 4aqc is
zero. Introducing q := qc + �q and substituting into the valid
(greater) result of Eq. 5 we have

x(q) − x(qc) = b�q +
√

b2(qc + �q)2 + 4a(qc + �q)

2
. (6)

By (4) and b2q2
c + 4aqc = 0, we get

m(q) − m(qc) ∼ (q − qc)1/2 + O(q − qc). (7)

Thus we conclude βm = 1/2. Due to the sum rule (see next
subsection) this also implies γa = 1/2.

B. Sum rule for interdependent networks and γa = 1 − βm

For the avalanche dynamics we summarize over the whole
history of the network:

1 = m(q) +
∫ 1

q

∑
s

′
sps(q̃) dq̃. (8)

This formula expresses the fact that a site can either belong
to the MCGC [first term on the right-hand side of Eq. 8] or
it is eliminated in one of the avalanches [the sum in Eq. 8].
Here ps(q) is the number of avalanches of size s occurring per
site per attack dq at q. The summation is carried out over all
finite avalanches and the integral takes into account any events
that were triggered for q̃ ∈ [q,1]. It is useful to write Eq. 8 in
differential form:

dm(q)

dq
=

∑
s

′
sps(q). (9)

Since m(q) − m(qc) ∝ (q − qc)βm, it yields dm(q)/dq ∝ (q −
qc)βm−1. The right-hand side describes the average size of finite
avalanches which scales as 〈sa(q)〉 ∼ (q − qc)−γa . Comparing
the two sides we find that the relation γa = 1 − βm between
the two sets of exponents holds universally.
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FIG. 17. For Erdős-Rényi (ER) interdependent networks, (a) schematic plot of the order parameter m(z), the size of the giant MCC per
node [solid curves with dark gray (blue)] as a function of mean degree z, where m(z) is averaged over surviving configurations with nonzero
m(z). Dotted lines represent the discontinuity of the order parameter. zc(Ni) (i = 1 or 2) is the transition point obtained by averaging transition
points over all runs, where N1 < N2. The susceptibility χ ≡ N (〈m2〉 − 〈m〉2) [solid and dashed curves with light gray (orange)] is shown as
a function of z. z∗

m(Ni) is a crossover point across which finite-size effect appears in the side z < z∗
m. Dashed curves in the interval [zc(Ni),

z∗
m(Ni)] represent the susceptibility in finite-size systems. (b) Schematic plot of the mean size of finite avalanches 〈sa〉Ni

for system size Ni

[solid and dashed curves with light gray (green)]. Dashed curves represent 〈sa〉Ni
in finite-size systems, which occur for z < z∗

a(Ni). 〈sa,∞〉Ni

with dark gray (red) denotes mean size of infinite avalanches as a function of z. Here, the term “infinite” refers to the avalanches that lead to
complete collapse of the GMCC. Note that z∗

m(Ni) − zc(∞) and z∗
a(Ni) − zc(∞) do not scale in the same manner with respect to N . All four

averages mNi
, χNi

, 〈sa〉Ni
, and 〈sa,∞〉Ni

are displayed only for z > zc(Ni). (c) and (d) are similar schematic plots for the 2D interdependent
networks with the semiperiodic boundary condition.

VII. SUMMARY

Our aim has been in this paper to clarify the unusual features
of the HPT as observed in the interdependent CF model. Due
to the efficient algorithm [24] we were able to carry out large
scale simulations for the ER and 2D interdependent networks
and determine numerically the exponents and the finite size
scaling functions.

The specific challenges related to the HPT for the inter-
dependent CF model come from the fact that, in contrast
to ordinary percolation, we have here two divergent length
scales as the system approaches the transition point and,
correspondingly, two sets of exponents: one set of exponents
{βm,γm,ν̄m} is associated with the order parameter and its
related quantities, and the other set {τa,σa,γa,ν̄a} is associated
with the avalanche size distribution and its related ones. The
subscripts m and a refer to the order parameter and avalanche
dynamics, respectively. The critical properties we obtained are
schematically shown in Fig. 17 for the Erdős-Rényi (ER) and
for the 2D interdependent networks.

The numerically estimated values of the critical exponents
for the ER and the 2D cases are listed in Table I. They reveal

the unconventional character of the transition: the exponents
ν̄m and ν̄a and γm and γa are different from each other,
respectively. For the ER and 2D cases, the hyperscaling
relation ν̄m = 2βm + γm holds even though data collapsing
for the 2D case is not as satisfactory as for the ER case. The
relation σaν̄a = τa does not hold (Secs. IV and V).

We showed analytically that the two sets of critical
exponents are not completely independent of each other; they
are coupled through the relation m(z) + ∫ z0

z
〈sa(z)〉dz = 1,

where z0 is the mean degree at the beginning of cascading
processes. This relation leads to dm(z)/dz = 〈sa(z)〉 and
yields 1 − βm = γa . We also showed that for random interde-
pendence links βm = 1/2. Our numerical values support these
relations.

We classified avalanches in the critical region as finite and
infinite avalanches. When an infinite avalanche occurs, the
GMCC completely collapses, and the system falls into an
absorbing state. We found that the mean number of hopping
steps denoted as 〈t〉 between the two layers in avalanche
processes depends on the system size N in different ways
for the different types of avalanches: 〈t〉 ∼ ln N for finite
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avalanches and ∼N1/3 for infinite avalanches on the ER
interdependent network. This difference in the scaling again
underlines the peculiarities of the HPT: the infinite avalanche
give rise to m0, while the finite ones contribute to the critical
avalanche statistics.

Our results present a unified picture of HPT, however,
there are still open questions for further research. The strong
corrections to scaling, especially for the 2D case, should be
understood. We have realized that the boundary conditions
have a strong impact on the corrections and one should
persue the investigation along this line. A real challenge is to

understand how the hybrid transition can be properly treated
with the method of the renormalization group. Furthermore, it
would be very interesting to see how other hybrid transitions
fit into the presented framework.
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