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Abstract

Identification of essential or lethal genes would be one of the ultimate goals in drug designs.
Here we introduce an in silico method to select a cluster with high population of lethal
genes, called lethal cluster, through the microarray assay. We construct a gene transcription
network based on the microarray expression level. Links are added one by one following
the descending order of the Pearson correlation coefficients between two genes. As link
density p increases, there are two meaningful link densities pm and ps. At pm, which is
smaller than the percolation threshold, the number of disconnected clusters is maximum
and lethal genes are highly concentrated at a certain cluster we want to find. Thus the
deletion of all genes in that cluster could lead to lethal inviable mutant efficiently. Such a
lethal cluster can be identified in silico way. As p increases further beyond the percolation
threshold, the power law behavior in the degree distribution of a giant cluster appears at
ps. We measure the degree of each gene at ps. With the information of the degrees of each
gene measured at ps, we return to the point pm and calculate the mean degree per node of
each cluster. We find that the lethal cluster has the largest mean degree per node.

Key words: transcription network, lethal genes, percolation
PACS: 87.10.+e, 89.75.-k, 64.60.Ak

1 Introduction

Thousands of genes and their products in a given living organism are believed to
function in a concerted way that creates the mystery of life [1]. Such a cooper-
ative functionality among genes can be visualized through the notion of graph
where nodes denote genes and links do activating or repressing effects on tran-
scription [2,3]. Traditional methods in molecular biology are very limited to ana-
lyze such large-scale interactions among thousands of genes, so that a global picture
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of gene functions is hard to obtain. The recent advent of the microarray assay has
enough attraction to researcher, allowing them to decipher gene interactions in a
more efficient way [4]. While the data through the microarray assay are not suf-
ficiently accumulated to fully understand the entire genetic network yet and they
are also susceptible to errors in detecting the expression level, the microarray as-
say is a potential candidate for a fundamental approach to understand large-scale
gene complexes and can be used in many applications such as drug design and
toxicological research.

Since the microarray technology is having a significant impact on genomics study,
many methods for pattern interpretation have been developed, including the K-
means clustering [5], the self-organizing map [6], the hierarchical method [7], the
relevance network method [8], etc. All such methods, however, contain tunable
thresholds, so that the results obtained through those methods could be misled by
the thresholds artificially chosen. While those methods are useful for clustering or
classifying genes, they cannot give any information needed to identify essential
or lethal genes. Here the essential or lethal genes mean the target genes for drug
designs, because the deletion of them leads to inviable mutant of a given organism.

In this paper, we propose a novel in silico method to identify essential genes from
microarray dataset. Our method is inspired by the combination of the gene cluster-
ing and the close relationship between the lethality or essentiality of genes and the
connectivity in a network. Once genes are clustered by using a graph theory and the
cluster or module containing a high population of essential genes is identified by
using the relationship between the lethality and the connectivity of the graph [9].
The identification of lethal genes by cluster or module turns out to be much more
efficient in selecting essential genes rather than the approaches based on individual
genes. Our model does not contain any artificial parameter, so that the identifica-
tion of essential genes can be made in a self-organized way. Moreover we find that
the genes belonging to the same module share a common functionality. Thus, our
method can be used to identify functionality of unknown genes as well.

2 Formation of a giant cluster in transcription network

A network is constructed from a microarray dataset, which contains 287 single gene
deletion of S � cerevisiae mutant strains composed of 6316 genes [10]. The deletion
dataset, elucidating genetic relationships among perturbed transcriptome [11], is
composed of two large, internally consistent, global mRNA expression subsets.
The one provides mRNA expression levels in wile-type S � cerevisiae sampled 63
separate times (the ‘control’ set), and the other does individual measurements on
the genomic expression program of 287 single gene deletion mutant S � cerevisiae
strains, which were grown under the same cell culture conditions as wide-type yeast
cells (the ‘perturbation’ set). Individual of the microarray data is the ratio of the ex-
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Fig. 1. The distribution of the Pearson correlation coefficients.

pression levels in the wild-type and perturbed sets for each gene. Thus the data can
be written in terms of a N � M matrix with N � 6316 and M � 287, denoted as C,
representing the expression ratio of N genes for M different-deletion experiments.
That is, each element ci � j of the matrix C is the logarithmic value with base 10 of
the ratio of the expression levels for the i-th gene under the j-th perturbation [12].

To obtain the correlations among the transcriptional genes, we consider the Pearson
correlation coefficient ρi � j between the expression ratio of genes i and j averaged
over k different perturbations, defined as

ρi � j �
�
ci � kc j � k ��� �

ci � k � � c j � k �� 	 �
c2

i � k �
� �
ci � k � 2 � 	 � c2

j � k �
� �
c j � k � 2 ��

(1)

where
������� � means the average over k different deletion experiments. As shown in

Fig. 1, the distribution of the correlations � ρi � j � is of a bell shape in the range [-1,1].
We construct a network based on the set of the Pearson coefficients.

Links are added one by one following the descending order of the Pearson coef-
ficients. For example, if the Pearson coefficients are in order as ρ1 � 2 � ρ3 � 4 � �����

,
then links are added one by one according to that order as node pairs (1,2),(3,4),�����

. Let p is the concentration of added links among N
	
N � 1 ��� 2 possible pairs.

When p is small, i.e., the number of links added is small, most nodes remain iso-
lated. As p increases, the size of each cluster grows or the number of clusters N

	
p �

increases, where cluster means the group of nodes containing at least two nodes.
At a certain value of p, denoted as pm, the number of clusters becomes maximum
shown in Fig. 2, which is estimated to be pm � 0 � 0002. Beyond pm, the number
of clusters decreases by merging two clusters, however, the mean size of cluster
increases.
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Fig. 2. Plot of the number of clusters N � p � as a function of the link density p.

As p increases further, the mean cluster size increases by either joining an iso-
lated node or merging finite size clusters. At the percolation threshold pc, a giant
cluster emerges. The SF network appears when link density increases further at
ps � 0 � 0063 in Fig. 3. The degree distribution follows a power law Pd

	
k ��� k � 0 � 9

with an exponential cutoff, which is a generic feature of the SF network when the
degree exponent γ � 2. The degree exponent value γ � 0 � 9 is close to the ones
obtained by others in different systems [13,14], but smaller than typical values oc-
curring in many real world networks in the range of 2 � γ � 3. As link density
increases further away from ps, the degree distribution no longer follows the power
law.

To understand biological implication of the scale-free network at ps, we investigate
if the degree in the scale-free network is useful for detecting lethal genes. In Fig. 4,
we plot the fraction of essential genes (nodes) among the genes (nodes) with degree
larger than a certain degree k0. The fraction shows an increasing behavior up to
k0 � 250, implying that the genes with larger degree are more likely to be lethal for
k0 � 250. However, the fraction drops rapidly beyond the degree k0 � 250. Even
for the case of k0 � 250, the fraction of the essential genes is about 40%, which is
less efficient than the case obtained from the protein interaction network where the
ratio of finding essential genes is as high as 62% for highly connected proteins [9].
Thus, the identification of essential genes through the degree distribution in the
scale-free transcription network is not as much efficient as the case through the
protein interaction network.
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Fig. 3. Plot of the degree distribution of the gene transcription network at various link
density, p � 0 � 0003 (

�
), p � 0 � 0016 ( � ), p � 0 � 0063 � ps ( � ), and p � 0 � 0322 ( � ). At

ps, the degree distribution follows a power law with an exponential cutoff. Dotted line with
slope -0.9 is drawn for guidance.
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Fig. 4. Plot of the fraction of the essential genes with degree larger than k0 to the total
number of genes as a function of k0.

3 Identification of essential gene cluster

Here we introduce a new method to identify essential genes from the microarray
data, which is based on the idea that the unit of selection is a group of genes with
similar functionality instead of individual genes. The selection method is as fol-
lows: At initial, N � 6316 genes are present and they are not connected each other
as shown in Fig.5A. At each time step, links are added one by one by following
the descending order of the Pearson coefficient ρi � j. At the same time, the number
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Fig. 5. The schematic diagram how to identify the lethal cluster of genes. (A) From the
initial state with N isolated vertices at p � 0, links are added one by one in the descending
order of the Pearson coefficients. (B) At p � pm where the number of cluster becomes max-
imum, each node recognizes to which cluster it belongs. (C) At p � ps where the network
is scale-free in the degree distribution, the degree of each node is measured. Keeping the
degree of each node vertex measured in (C), we return to the network configuation in (B).
We calculate the mean degree per node in each cluster of (B) based on the degrees mea-
sured in (C). For example, the mean degree per grey-color node belonging to the cluster
denoted by the dashed line is 37 � 8, which is the largest among those of other clusters. That
cluster is lethal, we propose.

of clusters N
	
p � is measured, where isolated nodes are not counted as individual

clusters. The link density p is defined as the fraction of the number of links added
to all possible pairs of nodes, N

	
N � 1 ��� 2. As p increases, we identify pm where

the number of clusters becomes maximum as defined before in Fig.2. At this point,
we identify each cluster and their members as shown in Fig.5B. We also record
the network configuration for further discussion. After that, links are added more
until the link density reaches the density ps, where the network is scale-free in
the degree distribution. At ps, we measure the degree of each node as depicted in
Fig.5C. Keeping the degree of each node at ps, we return to the network configura-
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tion recorded before at pm. We then calculate the average degree per node of each
cluster at pm, that is,

�
kJ � � ∑i � J kJ

i

	
ps
�

NJ
	
pm

� � (2)

where kJ
i

	
ps
� is the degree of node i measured at ps and J is the cluster index

the node i belongs to, which was assigned at pm. NJ
	
pm

� is the number of nodes
belonging to the cluster J at pm. Then we propose that the cluster with the largest
value of

�
kJ � contains high density of essential genes, which is based on the fact that

genes with larger degree are more likely to be essential in the protein interaction
networks [9].

To check this proposal, we directly measure the essentiality E J , defined as the frac-
tion of known essential genes to the total number of genes belonging to a given
cluster J. Indeed, as shown in Fig. 6, the two quantities,

�
kJ � and E J , behave in the

same manner. Thus we can confirm that the cluster containing the largest fraction
of essential genes can be found in in silico way through

�
kJ � . For the yeast dataset,

we identify the third largest cluster with 64 genes turns out to be the most essen-
tial cluster containing 47 essential genes, 17 nonessential genes, and 1 unidentified
gene (Fig. 7). Thus the certainty of selecting essential genes is remarkably im-
proved as high as 73% or even higher when the unidentified gene is excluded. This
fraction is much larger than the one obtained only through the degree information
in the gene transcription network as we studied in the previous section.
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Fig. 7. The gene transcription network of the yeast S � cerevisiae at pm. The red ( � ), green
( � ) and white ( � ) nodes represent essential, nonessential, and unknown genes, respec-
tively.

4 Functional modules

It is well known that biochemical network is composed of modular structure based
on its functionality. For the yeast, 43 functional categories are known [10]. We iden-
tify 43 functional categories of genes belonging to the first five largest clusters at
pm, of which ratio is shown in Fig. 8. From this figure, one can find that each cluster
at pm has a major population of genes with a specific functionality. For example, the
majority of the genes in the largest cluster belong to the functional class of amino-
acid metabolism. Those of the second, third and fourth largest cluster are from the
class of small molecule transport, RNA processing/modification, and protein syn-
thesis, respectively. Such a functional clustering in the gene transcription network
is rooted from that genes of the same functional category are likely to respond to
an external perturbation in a similar way. As a result, the Pearson correlation co-
efficients between them are large, making clusters at small pm disconnected each
other. Our result is consistent with the recent discovery of modular structures in the
yeast protein interaction network [15] and in the metabolic networks [16]. Based
on such properties, we may assign functional candidates to functionally unknown
genes as the most popular functionality in the same cluster.
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Fig. 8. The genes ratio belonging to each functional category for the genes belonging to the
first five largest clusters at pm.

5 Conclusions and discussion

We have introduced a new method to identify the cluster containing high population
of essential genes in the transcription network by using the two known properties
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that the genes with the same functionality are highly correlated in the expression
level of the microarray assay and the essential genes are likely to have larger degree
than others in scale-free network. The certainty of selecting essential genes turns
out to be as high as 73%. Thus, such a selecting method could be useful in various
knockout problems such as drug designs. Note that our method does not include
any tuning parameter, and the selection can be performed in self-organized way
with less ambiguity compared with other existing methods.
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