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Many biocomplex networks such as the protein interaction networks and the metabolic networks exhibit an 

emerging pattern that the distribution of the number of connections of a protein or substrate follows a power 

law. As the network theory is developed recently, several quantities describing network structure such as 

modularity and degree-degree correlation have been introduced. Here we investigate and compare the 

structural properties of the yeast protein networks for different datasets with those quantities. Moreover, we 

introduce a new quantity, called the load, characterizing the amount of signal passing through a vertex. It is 

shown that the load distribution also follows a power law and its characteristics is related to the structure of 

the core part of the biocomplex networks.  

 

1. Introduction 

 

Recently biocomplex systems have drawn considerable attentions since their emergent behaviors, arising 

from diverse interactions and adaptations are more than the sum of individual components [1,2].  Such 

complex systems may be described in terms of graphs, consisting of vertices and edges, where vertices and 

edges represent substrate or proteins, and their mutual reactions or interactions in metabolic networks or 

protein interaction networks, respectively [3-6]. In the last century, biologists mainly focused their interests 

on the identification of individual molecules and their functions in relation to macroscopic biological 

phenomena. However, it is recently believed that thousands of genes and their products such as proteins, 

RNA and small molecules, function in a complete and concerted way [7]. Thus it is natural to invoke the 

graph theory which helps us to visualize how molecules in a given organism function together in concerted 

ways.  

 

The cellular components such as genes, proteins, and other molecules, connected by all physiologically 

relevant interactions, form a full weblike molecular architecture in a cell [8]. In such an architecture, genes 

are known to play a structural role, determining the scope and passing the information in a hereditary 

manner to subsequent generations. The functional role of gene is expressed through protein. At the biological 

level, proteins rarely act alone; rather they interact with other proteins to perform particular cellular 

functions. Thus protein-protein interactions play pivotal roles in various aspects of the structural and 

functional organization of the cell and their complete description is indispensible to thorough understanding 
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of the cell. Proteins can be viewed as vertices of a protein-protein interaction network in which two proteins 

are connected if they can physically attach to each other, forming a complex network called the protein 

interaction network (PIN). Recently, high-throughput data-collection methods such as protein chips or semi-

automated yeast two-hybrid screens have been introduced, that help to determine which proteins interact 

with each other in large scale. In particular, organisms with sequenced genomes such as the yeast  

Saccharomyces cerevisiae provide important test beds for analyzing such a PIN [9].  

 

In this manuscript, we investigate the structural property of the PIN in graph theoretic aspect and also the 

transport phenomena on such complex networks.  We first introduce several quantities describing network 

structure in Section 2. The structural properties of the S. cerevisiae PIN are analyzed specifically in Section 3. 

In Section 4, we consider a transport problem on complex networks. The final Section is devoted to the 

conclusions and discussions. 

 

2. The degree distribution, the degree correlation function, and the clustering 

coefficient 

 

Retrospectively, the graphical approach was initiated by Erdős and Rényi (ER) [10] in 1960, who were the 

first to study the statistical aspect of random graphs using the probabilistic method. Thus, modeling random 

networks has a long history, and has been particularly active as a branch of combinatorial graph theory.  In 

graph theory, one of interesting quantities is the degree, defined as the number of edges connecting to a given 

vertex.  The degree distribution of the ER network follows a Poisson distribution. Recently, however, there 

were findings that the degree distribution of the PIN follows a power law,  

PD(k) ~ k-γ,           (1) 

where k means degree and γ is the degree exponent.  The network displaying a power-law degree distribution 

is called scale-free (SF) network. Besides the PIN, SF networks [11] are ubiquitous in real-world networks 

such as the world-wide web (WWW) [12-14], the Internet [15-17], the citation network [18] and the author 

collaboration network of scientific papers [19-20], and the metabolic networks in biological organisms [21]. 

The SF behavior of the degree distribution can be generalized into the Pareto form,  

PD(k) ~ (k+k0)-γ,          (2) 

with a constant k0.    

In fact, the degree distribution of the yeast PIN fits better to this Pareto form, which will be discussed later. 

 

It is known that the degrees of the two vertices located at the ends of an edge are correlated to each other. As 

the first step, such degree-degree correlation can be quantified in terms of the average of the degrees over 

neighbors of proteins with degree k as a function of k, denoted by 〈knn〉(k). In most biological networks, the 

function 〈knn〉(k) exhibits a decreasing behavior with increasing k. The decaying behavior is expressed roughly 



by another power law as   

〈knn〉(k) ~ k-ν.          (3) 

On the other hand, the degree-degree correlation can also be described in terms of the assortativity coefficient 

introduced by Newman, which is defined as   
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where k1 and k2 are the degree of two end vertices, respectively, if an edge, and 〈…〉 denotes the average over 

all edges. It is nothing but the Pearson correlation coefficient for the degrees of two end vertices over all edges, 

normalized so that –1 ≤ r ≤ 1. r is negative when the function 〈knn〉(k) exhibits decreasing behavior like the 

case of the PIN. In fact, the assortativity coefficient was introduced to characterize social networks, which 

have positive values of r in general. Thus vertices with higher degree tend to connect to those with lesser 

(more) degrees in PIN (social networks). 

 

Many real world biocomplex networks have modular structures within them. Such modular structures are 

characterized in terms of the clustering coefficient. Let Ci be the local clustering coefficient of a vertex i, 

defined as Ci=2ei/ki(ki-1), where ei is the number of edges present among the neighbors of vertex i, out of its 

maximum possible number ki(ki-1)/2. The clustering coefficient of a network, C, is the average of Ci over all 

vertices. C(k) means the mean clustering coefficient over the vertices with degree k. When a network is 

modular and hierarchical, the clustering function follows a power law,  

C(k) ~ k-β,          (5) 

for large k, and C is independent of system size N [22,23].  

 

3. Graph theoretic analysis of the yeast protein interaction network 

 

There are a number of existing databases [24-26] or large-scale data sets [7,9,27-30] that store the 

information on the protein interactions in the yeast. As all biological data are subject to some errors and 

incompleteness, which database to use is not a trivial problem. Without having a unified one only, we have 

tried to access as many data as we can, including those from the four major large-scale datasets, (i) the large-

scale yeast two-hybrid data by Uetz et al. [9,28] and (ii) by Ito et al. [27], as well as the curated databases, (iii) 

the Munich Information Center for Protein Sequences (MIPS) [24] and (iv) the database of the interacting 

proteins (DIP) [25] as of March 2003. We also collected data from following additional sources: (a) Two-

hybrid data by Tong et al. [29], (b) Mass spectrometry protein complexes analysis data (filtered one) by Ho et 

al. [30]. After trimming the synonyms and other redundant entries manually, the resulting network consists 

of 16174 interactions (excluding self-interactions) between 5002 vertices in terms of distinct open reading 

frames. We denote this data as “integrated” one. Topological features of the resulting integrated network are 

summarized in Table I and Fig. 1, which contain the comparison with topological features from individual 



databases. We measure various quantities describing the structural properties of the PIN based on our 

dataset as follows: 

(i) Giant cluster---Among 5002 proteins, as many as 4927 (98%) forms a giant cluster. 

(ii) Mean degree---The mean degree 〈k〉, i.e., the average number of interaction partners per protein, is 

〈k〉 ≈ 6.44 excluding self-interactions, which is larger than previous estimates, 〈k〉 ≈ 2~3 based on 

[9,27,31]. 

(iii) Degree distribution---It has been reported that PD(k) follows a power law, Eq. (1), with γ ≈ 2.4~2.7 

[32] or a power law with exponential cutoff in the form of PD(k) ~ (k+k0)-γexp(-k/kc) with γ ≈ 2.45, 

k0=1, and kc ≈ 20 [31]. Based on our dataset, we found, however, that the connectivity distribution fits 

better to the generalized Pareto function, Eq. (2) with γ ≈ 3.5 and k0 ≈ 8.4. That is, the PIN is scale-free. 

Note that the exponent γ ≈ 3.5 is rather larger than previous measured values, γ ≈ 2.4~2.7. 

(iv) Assortativity---The assortativity coefficient r [33] is negative as r=-0.137, i.e., the PIN is 

dissortatively mixed, meaning that proteins with a small number of interaction partner are likely to 

connect to those with a large number of interaction partner, and vice versa, compared with its random 

counterpart whose r value is typically null.  

(v) Average of neighbor's degree---The function 〈knn〉(k) exhibits a decreasing behavior with increasing k, 

a common behavior to dissortatively mixed networks. The decaying behavior is expressed roughly by 

another power law, Eq. (3), with ν ≈ 0.2~0.3, where the value ν is smaller than a previous estimated 

value 0.5~0.6 [34] based on the dataset by Ito et al. 

(vi) Clustering---The clustering coefficient, C, is obtained to be C=0.131, larger than the values based on 

the data by Uetz et al. and by Ito et al. 

(vii) Hierarchical modularity--- The average clustering function C(k) is likely to be constant for small k, 

while it decreases with increasing k for large k. Such a behavior is comparable to the ones measured 

from other databases as shown in Fig. 1. 

Putting all these together, the yeast protein interaction network is scale-free, dissortatively mixed, highly 

clustered, and organized in a highly modular manner. The topological characteristics from our dataset and its 

comparison to other ones are summarized in Table I and in Fig. 1. Such structural properties are universal for 

different species, so that they could be used as a test bed to find incomplete protein interactions. 

 

4. Classification of scale-free networks 

 

While the emergence of the scale-free behavior in complex networks is intriguing and has a number of 

important consequences in its own right, there may exist other hidden orders in the scale-free networks. In 

this section, we introduce a candidate for this, the load distribution, and show that we can classify a range of 

real-world and model-generated scale-free networks into two distinct classes. We argue that such 

classification is rooted from the distinct topological features of the shortest pathways in the network.  



 

4.1. Load distribution 

 

Let us suppose that a signal is sent from a vertex i to j (i → j), along the shortest pathway between them [35]. 

In the information network such as the Internet, data packet is normally transmitted along the shortest 

pathways, however, for biological networks, it is not, even though the shortest pathways are the major flux 

canal. Nevertheless, here we consider the signal transport along the shortest pathways for simplicity. If there 

exist more than one shortest pathways, the signal would encounter one or more branching points. In this case, 

the signal is presumed to take one of them with equal probability, and the signal is effectively divided evenly 

over the branches at each branching point as it travels. Then the load at a vertex k is defined as the 

amount of signals passing through that vertex k. Note that  for vertices which do not fall on the 

shortest pathway (i→j). Also note that the contribution from the pathway (i→j), , may be different from 

that of (j→i), , even for undirected networks. Then we define the load of a vertex k as the 

accumulated sum of  over all pairs of senders and receivers: . Here, we do not take into 

account the time delay of signal transfer at each vertex or edge, so that all signals are delivered in a unit time, 

regardless of the distance between any two vertices. So the load is a static variable for a given number of 

vertices N. The definition of the load is illustrated in Fig. 2. Since the packets are conserved, the total load 

contributed by one pair is simply related to the shortest pathway length dij between them, by 

. Thus we have the sum rule for :  
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where D is called the diameter. The quantity we defined as load is closely related to the one used in sociology 

called “betweenness centrality” (BC) which quantifies how much power is centralized to a person in social 

networks [36,37].  

 

We focus our interest on the manner how  are distributed. Once a SF network is generated artificially or 

adopted from the real world, we select an ordered pair of vertices (i, j) on the network, and identify the 

shortest pathway(s) between them and measure the load on each vertex along the shortest pathway using the 

modified version of the breath-first search algorithm introduced by Newman [37] and independently by 

kl



Brandes [38].  

 

We have measured load  of each vertex k for SF networks with various γ. It is found numerically that the 

load distribution  follows the power law [35],   
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When the indices of the vertices are ordered according to the rank of the load, we have . Then, 

the power-law behavior of the load distribution implies that  
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Based on numerical measurements of load exponents for a variety of SF networks, we find that the load 

exponent is likely to be robust, independent of the details of network structure such as the degree exponent γ 

as long as γ is in the range 2<γ<3 and other details such as the mean degree, the directionality of edge, and so 

on [35]. Thus we may categorize the SF networks according to the load distributions of them. We found two 

classes, say, class I and II [40]. For the class I, the load exponent is δ ≈ 2.2(1) and for the class II, it is δ ≈ 

2.0(1). We conjecture the load exponent for the class II to be exactly δ = 2 since it can be derived analytically 

for simple models. We will show that such different universal behaviors in the load distribution originate 

from different generic topological features of networks.  

 

4.2. Real-world and artificial networks investigated 

 

A few network examples that we find to belong to the class I with δ ≈ 2.2(1) include:  

(i) The protein interaction network of the yeast S. cerevisiae compiled by Jeong et al. [31] (PIN1), where 

vertices represent proteins and the two proteins are connected if they interact.  

(ii) The core of protein interaction network of the yeast S. cerevisiae obtained by Ito et al. (PIN2) [27]. 

(iii)  The metabolic networks for 5 species of eukaryotes and 32 species of bacteria in Ref. [21], where 

vertices represent substrates and they are connected if a reaction occurs between two substrates via 

enzymes. The reaction normally occurs in one direction, so that the network is directed.  



(iv)  The Barabási-Albert (BA) model [41] when the number of incident edges of an incoming vertex m≥2.   

(v)  The stochastic model for the protein interaction networks introduced by Solé et al. [42].  

For both (i) and (v), the degree distribution is likely to follow a generalized power-law with a cut-off. Despite 

this abnormal behavior in the degree distribution for finite system, the load distribution follows a pure power 

law with the exponent δ ≈ 2.2(1) . The representative load distributions for real world networks (ii), and (iii) 

are shown in Fig. 3(a). 

  

The networks that we find to belong to the class II with δ = 2.0 include: 

(vi)  The Internet at the autonomous systems (AS) level as of October, 2001 [43].  

(vii)  The metabolic networks for 6 species of archaea in Ref. [21].  

(viii)  The WWW within www.nd.edu domain [12].  

(ix)  The BA model with m=1 [41].  

(x)  The deterministic model by Jung et al. [44].  

In particular, the networks (ix) and (x) are of tree structure, where the edge load distribution can be solved 

analytically. The load distributions for real-world networks (vi) and (viii) are shown in Fig. 3(b).  

 

4.3. Topology of the shortest pathways 

 

To understand the generic topological features of the networks in each class, we particularly focus on the 

topology of the shortest pathways between two vertices separated by a distance d. We define the mass-

distance relation M(d) as the mean number of vertices on the shortest pathways between a given pair of 

vertices, averaged over all pairs separated by the same distance d. If the shortest pathway topology is simple 

and resembles a fractal with the fractal dimension DF, M(d) would behave like ~ dDF for large d, while if is 

tree-like, one would expect M(d) ~ d. We find that the mass-distance relation behaves differently for each 

class; For the class I, M(d) behaves nonlinearly (Figs. 4a-b), while for the class II, it is roughly linear (Figs. 4c-

d). 

 

For the networks belonging to the class I such as the PIN2 (iii) and the metabolic network for eukaryotes (iv), 

M(d) exhibits a non-monotonic behavior (Figs. 4a-b), viz., it exhibits a hump at dh ≈ 10 for (iii) or dh ≈ 14 for 

(iv). To understand why such a hump arises, we visualize the topology of the shortest pathways between a pair 

of vertices, taken from the metabolic network of a eukaryote organism, Emericella nidulans (EN), as a 

prototypical example for the class I. Fig. 5(a) shows such a graph with linear size 26 edges (d=26), where an 

edge between a substrate and an enzyme is taken as the unit of length. From Fig. 5(a), one can see that there 

exists a blob structure inside which vertices are multiply connected, while vertices outside are singly 

connected. The characteristic of the class I is that the blob is localized in a small region. To give a visual image 

of the existence of the localized blob, we show the global snapshot of the shortest pathways in the EN 



metabolic network in Fig. 6. 

 

For the class II, the mass depends on distance linearly, M(d)~Ad for large d (Fig. 4c-d). Despite the linear 

dependence, the shortest pathway topology for the case of A>1 is more complicated than that of the simple 

tree structure where A≅1. Therefore, the SF networks in the class II are subdivided into two types, called the 

class IIa and IIb, respectively. For the class IIa, A>1 and the topology of the shortest pathways includes 

multiply connected vertices (Figs. 5(b) and (c)), while for the class IIb, A≅1 and the shortest pathway is almost 

singly connected (Fig. 5(d)). Examples in real world networks in the class IIa are the Internet at the AS level 

(A~4.5) and the metabolic network for archaea (A~2.0), while that in the class IIb is the WWW (A~1.0). 

 

The WWW is an example belonging to the class IIb. For this network, the mass-distance relation exhibits 

M(d)~1.0d, suggesting that the topology of the shortest pathway is almost singly connected, which is 

confirmed in Fig. 5(d). When a SF network is of tree structure, one can solve the distribution of load running 

through each edge analytically, and obtain the load exponent to be δ=2.  

 

4.4. Application to the metabolic networks 

 

In biological perspectives, the power of the shortest pathway analysis and the resulting classification is 

exemplified by the success in the categorizing the domains of life. In Fig. 7, we show the mass-distance 

relations of the metabolic networks of all 43 species that we considered, grouped by the domains. Evidently,  

M(d) for archaea behave differently from that for bacteria and eukaryotes. The eukaryotes have the class I-

type metabolic networks and the archaea have the class II-type ones. The existence of the blob in eukaryotes 

and lack thereof in archaea implies the formation of such architecture might be driven by evolutionary 

pressure. One advantage of having the class I-type topology is that it is more resilient to the targeted attack on 

highly connected vertices [40]. It would be interesting to extend such idea to a more realistic situation for the 

metabolic stability.  

 

5. Conclusion and discussion 

 

We have studied the structural properties of the yeast protein interaction networks and the transport 

phenomena along the shortest pathways on biocomplex networks from the graph theoretic viewpoint. Thanks 

to recent development of data collection and graph analysis methods, the structural properties of the yeast 

protein interaction networks have been unveiled rapidly. Here we analyzed the degree distribution, the 

degree-degree correlation, and the clustering coefficient of the yeast interaction networks for several different 

datasets available [9,24,25,27,31] and also for an integrated data we constructed. The yeast PIN is found to be 

strongly dissortative and highly modular. We believe that such analysis could be helpful for understanding 



the evolution of the protein interaction networks and finding protein interactions yet undiscovered. Moreover, 

we investigate the transport problem along the shortest pathways on biocomplex networks such as metabolic 

networks. We found that the load distribution follows a power law, and its exponent is robust, insensitive to 

detailed structural properties. We could classify real-world networks into two classes based on this property 

and also on the topological features of the shortest pathways. In particular, we find the metabolic networks 

for archaea belongs to the different class from that for bacteria and eukaryotes. The shortest pathway 

structure is simple for archaea. While further theoretical understandings are needed in relation to the 

robustness of the load distribution, at the moment, it would be interesting to notice that the load distribution 

is closely related to the structure of the core part of biocomplex networks.  
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Table I. Topological characteristics of the Yeast PIN for various datasets: N is the number of 

proteins with at least one interacting partner, 〈k〉 the mean degree, r the assortativity coefficient, C the 

clustering coefficient, N1 the size of the giant cluster, and N2 the size of the second giant cluster. Self-

interactions are eliminated throughout the analysis. 

 Uetz ITO JEONG MIPS DIP Integrated 

N 1331 3279 1846 1991 4713 5002 

〈k〉 2.10 2.68 2.39 2.66 6.30 6.44 

r -0.145 -0.176 -0.162 0.055 -0.136 -0.137 

C 0.071 0.037 0.153 0.271 0.122 0.131 

N1 924 2839 1458 1439 4626 4927 

N2 8 6 7 11 3 3 
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Figure 1. Topological characteristics of the Yeast PIN for various datasets: That of Uetz et al. [9], 

Ito et al. [27], Jeong et al. [31], MIPS [24], DIP [25], and the integrated one. Shown are the degree 

distribution PD(k), the average of the neighbor degree 〈knn〉(k), and the local clustering function C(k). All data 

points are logarithmically binned. The ranges of abscissae and ordinates are fixed for easy comparison. 

 

 

 
Figure 2. Illustration of the definition of load: The load at each vertex due to a unit packet transfer from 

the vertex i to the vertex j. In this diagram, only the vertices along the shortest paths between (i, j) are shown. 

The quantity in parenthesis is the load due to the one from j to i. 

 



 

 

Figure 3. Load distributions for the two classes: (a) The PIN of the yeast (ii) and the metabolic network 

of a eukaryote Emericella nidulans (iii), belonging to the class I. (b) WWW within www.nd.edu domain (xi) 

and the Internet ASes (xiii), which belong to the class II. 

 



 
Figure 4. Mass-distance relation for prototypical SF networks: The yeast PIN (a), the metabolic 

networks of eukaryotes (b), the Internet at the AS level (c), and the WWW within nd.edu domain (d). 

 



 

 



 

 

 

 



 

 

Figure 5. Topology of the shortest pathways: (a) The metabolic network of a eukaryote E. nidulans of 

length 26. (b) The Internet at AS level of length 10. (c) The metabolic network of an archae Methanococcus 

jannaschii of length 20. (d) WWW of www.nd.edu with length 20. In (a) and (c), circles denote substrates and 

rectangles denote intermediate states. 

 



 

 

Figure 6. Global snapshot of the metabolic network of E. nidulans. The metabolites are shown in 

blue and the enzymes in light blue. Highlighted in orange (metabolites) and yellow (enzymes) are the shortest 

pathways of longest length, d=26, whose starting and end points are indicated in green. 

 



 

Figure 7. Mass-distance relations for the metabolic networks of the three domains of life: 6 

archaea, 32 bacteria, and 5 eukaryotes, respectively, are plotted. In the bottom-right panel, M(d) averaged 

over all species in each domain are compared. + stands for the data for archaea,  for bacteria, and  for 

eukayotes. The straight lines have slopes 1.25 (black) and 0.5 (orange), respectively, drawn for the eye. Note 

that since we count only the metabolites in M(d), M(d) = 0.5d for singly-connected shortest pathways. 

 

 

 

 


