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Critical behavior of k-core percolation: Numerical studies
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k-core percolation has served as a paradigmatic model of discontinuous percolation for a long time. Recently
it was revealed that the order parameter of k-core percolation of random networks additionally exhibits critical
behavior. Thus k-core percolation exhibits a hybrid phase transition. Unlike the critical behaviors of ordinary
percolation that are well understood, those of hybrid percolation transitions have not been thoroughly understood
yet. Here, we investigate the critical behavior of k-core percolation of Erdős-Rényi networks. We find numerically
that the fluctuations of the order parameter and the mean avalanche size diverge in different ways. Thus, we classify
the critical exponents into two types: those associated with the order parameter and those with finite avalanches.
The conventional scaling relations hold within each set, however, these two critical exponents are coupled. Finally
we discuss some universal features of the critical behaviors of k-core percolation and the cascade failure model
on multiplex networks.
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I. INTRODUCTION

Recently hybrid phase transitions (HPTs) containing na-
tures of both first-order and second-order phase transitions
have drawn much attention [1–13]. The order parameter
changes discontinuously at a transition point and exhibits a
critical behavior in the vicinity of the transition point, but some
physical quantities, such as the susceptibility and correlation
length diverge at a transition point. However, a thorough study
is yet to be conducted to determine if the conventional scaling
relations among the critical exponents hold for the critical
behavior of HPTs as they do for second-order phase transitions.
In a recent paper [13], we studied the scaling relations in
the HPT of the cascading failure (CF) model on multiplex
networks [14]. Unlike ordinary percolation, the HPT of the CF
model exhibits two different critical behaviors: divergences of
the fluctuations of the order parameter and mean size of finite
avalanches at a transition point in different ways. Here the
avalanche is a cascade of failures of nodes induced by the
deletion of a randomly chosen node from the giant mutually
connected cluster. In the CF model, the size distribution of
mutually connected clusters does not follow a power law.
Instead, the size distribution of finite avalanches follows a
power law. Thus it plays a theoretical role partially replacing
the cluster size distribution in conventional percolation.

To describe the two critical behaviors completely, two
sets of critical exponents are required, those associated with
the order parameter and those with finite avalanches. We
found that conventional scaling relations hold only among
the critical exponents associated with the order parameter and
do partially for finite avalanches. Our studies were helpful
in understanding the critical behavior and thus establishing a
theoretical framework for the hybrid percolation transition in
pruning processes.

In this paper, we extend our previous study for the CF
model to k-core percolation on single-layered Erdős-Rényi
(ER) networks. The critical behavior of k-core percolation
is analytically accessible more easily than that of the CF
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model. Thus, some of the critical exponents have been obtained
analytically using the local tree approximation [5,6,15]. Yet,
a complete set of critical exponents for k-core percolation,
particularly those associated with hyperscaling relations is
determined here. Thus, the aim of this paper is to determine
all critical exponent values of k-core percolation. We find
that, even though the detailed dynamics of the CF model on
multiplex networks and k-core percolation are different, the
critical behaviors of each system share some universal features.
For instance, the hyperscaling relations hold within the critical
exponents associated with the order parameter, and there exists
a relation between the exponents of the order parameter and
the mean size of finite avalanches. Most critical exponents are
the same.

The paper is organized as follows: In Sec. II, we introduce
k-core percolation on ER random networks and show the
critical behavior of hybrid phase transition that the k-core
percolation exhibits. Moreover, we introduce two sets of
exponents representing the critical behaviors. In Sec. III, we
present numerical results for the critical exponents associated
with the order parameter and finite avalanches, respectively.
The comparison between the critical exponents for k-core
percolation and the CF model is presented in Sec. IV.

II. k-CORE SUBGRAPH AND AVALANCHES

k core of a network is a subgraph in which the degree of
each node is at least k. To obtain a k-core subgraph, once an
ER network of size N with mean degree z is generated, all
nodes with degree less than k are deleted. This deletion may
decrease the degrees of the remaining nodes. If the degrees of
some nodes become less than k, then those nodes are deleted
as well. This pruning process is repeated until no more nodes
with degrees less than k remain in the system. The fraction
of nodes remaining in the largest k-core subgraph is defined
as the order parameter m, and the mean degree z is defined
as the control parameter. The order parameter m is large,
specifically of O(1) for z > zc, where zc is a transition point
and decreases continuously with decreasing z. As z approaches
zc, the deletion of a node from an ER network can lead to
the collapse of the giant k-core subgraph. Thus, the order
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parameter is written as follows:

m(z) =
{

0 for z < zc,

m0 + r(z − zc)βm for z � zc,
(1)

where m0 and r are constants and βm is the critical exponent
of the order parameter. Moreover, the exponent γm is used to
define the fluctuations of the order parameter, that is, χm ≡
N (〈m2〉 − 〈m〉2) ∼ (z − zc)−γm . The exponent ν̄m is used to
define the finite-size scaling behavior of the order parameter
as m − m0 ∼ N−βm/ν̄m at z = zc. Here the subscript m of the
exponents indicates that the exponents are associated with the
order parameter m.

Next, we remove a randomly selected node from a k-
core subgraph. This removal may lead to another successive
deletion of nodes. The avalanche size is defined as the number
of removed nodes in such successive pruning processes, and
the duration time of the avalanche is the number of pruning
steps. These definitions are consistent with those defined in
Refs. [7,13] for the CF model. In the vicinity of zc, an avalanche
can lead to the entire collapse of a k-core subgraph. We call
such an avalanche an infinite avalanche. On the other hand, if
the k core still remains after an avalanche, we call it a finite
avalanche.

The size distribution of finite avalanches follows the power-
law ps(z) ∼ s−τa

a f (sa/s
∗
a ), where sa denotes avalanche size

and f is a scaling function. Here s∗
a is the characteristic size of

avalanches, which behaves according to s∗
a ∼ (z − zc)−1/σa as

N → ∞ and s∗
a ∼ N1/σa ν̄a at zc in finite systems. The exponent

γa is associated with the mean avalanche size as 〈sa〉 ∼ (z −
zc)−γa . Here the subscript a indicates that the exponents are
associated with avalanches.

In short, we defined two sets of exponents {βm,γm,ν̄m}
and {τa,σa,γa,ν̄a} associated with the order parameter and
finite avalanches, respectively. These are the same sets already
defined in Ref. [13] for the CF model. We also showed that the
two sets of exponents are not totally independent but are related
through a new scaling relation γa = 1 − βm. This relation is
also valid for the k-core problem. Moreover, we showed that
the hyperscaling scaling relation 2βm + γm = ν̄m holds but
σaν̄a = τa does not hold. In this paper we show that the results
also hold even for the k-core problem. This suggests that the
results may be universal for the hybrid percolation transition
induced by the cascading process.

We remark that, according to the percolation theory, the
relation σ ν̄ = τ is an alternative form of the hyperscaling
relation 2β + γ = dν, where ν̄ = dν because of β = (τ −
2)/σ and γ = (3 − τ )/σ . In this case, the exponents τ and σ

describe the behavior of the cluster size distribution instead
of the avalanche size distribution as in our case. Thus, it
is not clear that the scaling relation 2βa + γa = ν̄a holds in
k-core percolation, where βa and γa are obtained from τa

and σa similarly. Thus, by drawing an analogy, we tested the
hyperscaling relation in the form of σaν̄a = τa .

III. RESULTS

In this section, we show simulation results for (k = 3)-core
percolation. We expect that the obtained results are also valid
for general k. To confirm our expectation, we tested the critical
exponents for the case of k = 5 and found that the critical

FIG. 1. (a) Scaling plot of the rescaled order parameter (m −
m0)Nβm/ν̄m versus �zN 1/ν̄m . The data are well collapsed onto a
single curve with βm = 0.5 and ν̄m = 2.06. (b) Scaling plot of
(〈m2〉 − 〈m〉2)N 1−γm/ν̄m for different sizes N versus �z N1/ν̄m , where
γm = 0.97.

exponent values are the same within the error as for the case
of k = 3.

A. Critical behavior of the order parameter

The numerical value of the transition point zc was estimated
in Ref. [15] to be zc = 3.350 918 87(8), which we confirmed is
very precise; thus we adopted this value for our numerical sim-
ulations. We numerically calculated the size of discontinuity
of the order parameter m0 = 0.267 581(6) following Ref. [5].
We analyze our simulation data on the basis of these values.

We confirm that Eq. (1) is consistent with the theoretical
value of βm = 1/2 [1,6]. In Fig. 1(a), we plot (m − m0)Nβm/ν̄m

versus �z N1/ν̄m for different system sizes of N , where �z ≡
z − zc(∞). This confirms the value of βm. We also obtain
the correlation size exponent ν̄m as 2.06 ± 0.05 using finite-
size scaling analysis in Fig. 1(a). The susceptibility χm(z),
the fluctuations of the order parameter, exhibits the divergent
behavior χm ∼ (z − zc)−γm for z > zc. In Fig. 1(b), we plot
the rescaled quantity (〈m2〉 − 〈m〉2)N1−γm/ν̄m versus �z N1/ν̄m .
In the critical �z region, it decays in a power-law manner
with exponent γm ≈ 0.97 ± 0.01. Moreover, with the choice of
ν̄m = 2.06, the data are collapsed well onto a single curve. The
obtained exponents βm ≈ 0.5 ± 0.01, γm ≈ 0.97 ± 0.01, and
ν̄m ≈ 2.06 ± 0.05 marginally satisfy the hyperscaling relation
ν̄m = 2βm + γm.

The probability that a k-core subgraph is formed at a
certain point z, denoted by 	N (z), is also a quantity of
interest. 	N (z) approaches a step function in the form of
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FIG. 2. The probability 	N (p) that a finite k-core subgraph is
formed as a function of p, where p = z/2zc. This form of p easily
corresponds to the occupation probability of ordinary ER percolation
with mean degree 2zc. The critical point pc = 0.5 corresponds to
z = zc in this convention. The inset is a scaling plot in the form of
	N (z) versus [z − zc(N )]N 1/2. Note that the data collapse is achieved
by using zc(N ) instead of zc(∞), which is unconventional.

	N ([z − zc(N )]N1/2) as N increases (see Fig. 2). Here zc(N )
is defined as the z intercept of the tangent of 	N (z) at
the point where d	N (z)/dz is the maximum. It behaves as
zc(∞) − zc(N ) ∼ N−1/ν̄∗

with 1/ν̄∗ ≈ 0.49 [Fig. 3(a)]. This
suggests that ν̄∗ ≈ 2.06 [16], which is in accordance with the
value of ν̄m ≈ 2.06 we obtained earlier in Fig. 1.

We use the probability 	N (z) for large cell renormalization
group transformation [17,18]. To define a coarse-graining
procedure, we rescale the control parameter as p = z/2zc.
Then p can be interpreted as the occupation probability of
nodes in an ER network with mean degree 2zc, and 	N (p)
can be interpreted as the probability that a node is occupied
in a coarse-grained system scaled by N . We find the fixed
point p∗(N ) satisfying p∗ = 	N (p∗) and consider the slope
λ = d	N (p)/dp at p∗(N ). We then obtain ν̄m = ln N/ ln λ.
Numerically, we find λ ∼ N0.49±0.01; thus ν̄m is estimated
to be ν̄m ≈ 2.06 ± 0.04 [Fig. 3(b)]. This value is reasonably
consistent with the previous values obtained in this section.

B. Critical behavior of the avalanche size

The size distribution of finite avalanches behaves similarly
to the size distribution of corona clusters. Here a corona cluster
is a subgraph of the k core in which the degree of each node
is exactly k [19]. If we remove a node from a corona cluster,
all the nodes in that corona cluster are removed from the k

core. Even if a deleted node has a degree larger than k, if it is
connected to one or more nodes belonging to more than one
corona cluster, then one of the corona clusters is removed in
avalanche processes. However, numerically, in most cases only
nodes belonging to one corona cluster are removed, and the
number of removed nodes with degrees larger than k are few
when the avalanche size is finite. Thus the statistical feature of
finite avalanche sizes and the number of nodes deleted from
corona clusters are effectively consistent with each other. Note
that, in Ref. [15], a structure feature of the corona clusters was

FIG. 3. (a) zc(N ) is the mean value of transition points ob-
tained from different configurations where the order parameter
drops suddenly and N is the system size. It approaches zc(∞) =
3.350 918 87 · · · as N increases in scale according to N−0.5. (b) The
slope of 	N (p) at the fixed point p∗ at which p∗ = 	N (p∗) as a
function of the system size N . The estimated slope is 0.49 ± 0.01;
thus, ν̄∗ ≈ 2.06 ± 0.04.

studied, and τa = 3/2 and σa = 1 were analytically obtained
using the local tree approximation. We confirm this exponent
value in Fig. 4(a) from the size distribution of finite avalanches.

Avalanches near the transition point need to be classified as
finite or infinite avalanches: The former are located separately
from the latter as shown in Fig. 4(a). An infinite avalanche is an
avalanche whose size per node is as large as m(z). Thus, when
this occurs, the order parameter, the size of the k core per node,
completely drops to zero. A universal mechanism underlying
such infinite avalanches in the HPTs of the percolation models,
such as k-core percolation, and the CF model on multiplex
networks was recently studied in Ref. [20].

Figure 4(a) shows the scaling behavior of the size distri-
bution of finite avalanches in the form of psN

τa/σa ν̄a versus
saN

−1/σa ν̄a at zc. The data from different system sizes are well
collapsed onto a single curve with the choices of τa = 3/2
and σaν̄a ≈ 2.0 ± 0.03. This result suggests that there exists
a characteristic size s∗

a ∼ N1/σa ν̄a with σaν̄a ≈ 2.0 ± 0.03 for
finite avalanches. On the other hand, for infinite avalanches,
s∗
a,∞ ∼ O(N ). For z > zc, we examine the size distribution of

finite avalanches for different �z’s and find that it behaves
as ps ∼ s−τa

a f (sa/s
∗
a ) where f (x) is a scaling function.

Following conventional percolation theory [16], we assume
s∗
a ∼ �z−1/σa . The exponent σa is obtained from the scaling

plot of ps(z)�z−τa/σa versus sa�z1/σa in Fig. 4(b). The data
are well collapsed with σa ≈ 1.0 ± 0.01, leading to ν̄a ≈ 2.0,

062307-3



DEOKJAE LEE, MINJAE JO, AND B. KAHNG PHYSICAL REVIEW E 94, 062307 (2016)

FIG. 4. (a) Scaling plot of ps(zc)Nτa/σa ν̄a versus sa/N
1/σa ν̄a for

different system sizes with τa = 1.5 and σaν̄a = 2.0. Note that infinite
avalanche sizes for different N ’s do not collapse onto a single
dot because they depend on N as s∗

a,∞ ∼ N . (b) Scaling plot of
ps(z)�z−τa/σa versus sa�z1/σa for different �z’s; here, we consider
a fixed system size N = 2.56 × 107 with τa = 1.5 and σa = 1.0. (c)
Scaling plot of 〈sa〉N−γa/ν̄a versus �z N 1/ν̄a for different system sizes
with γa = 0.5.

which is the same as ν̄m. The numerical value σa is consistent
with the analytic result obtained in Ref. [6].

We examine the mean finite avalanche size 〈sa〉 ≡∑′
sa=1 saps(z) ∼ �z−γa where the prime indicates summation

over finite avalanches. It follows that γa = (2 − τa)/σa; thus,
γa = 0.5 is expected. Our simulation confirms this value in
the large-�z region [Fig. 4(c)]. Data from different system
sizes are well collapsed onto the curve of 〈sa〉N−γa/ν̄a versus
�z N1/ν̄a with γa = 0.5 and ν̄a = 2.0.

Numerically, we determined that the scaling relation γa =
1 − βm holds as it does for the CF model [13]. Thus, the two
sets of exponents are not completely independent. The above
scaling relation was derived in Ref. [13] using the simple
argument that the mean avalanche size is on the same order as
the decrement of the order parameter.

FIG. 5. (a) Plot of 〈sa(t)〉 as a function of t at zc for finite
avalanches, showing 〈sa(t)〉 ∼ t1.82±0.01. The dashed line is a guideline
with slope 1.82. (b) Mean duration time 〈tfinite〉 of finite avalanches
and 〈t∞〉 of infinite avalanches as a function of N at zc. The slope is
0.10 for 〈tfinite〉 and 0.33 for 〈t∞〉.

FIG. 6. Plot of the mean size of critical branching trees 〈sa(t)〉
generated by stochastic processes versus the duration time t . The
data are accumulated from the branching trees of sizes (a) less than
N = 105 and unbounded. The dashed lines in (a) and (b) are
guidelines with slopes 1.82 and 2, respectively.
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FIG. 7. (a) Scaling plot of the distribution pt as a function of
the duration time t for finite avalanches with D = 1.82. (b) Plot of
the mean duration time of finite avalanches 〈tfinite〉 versus z − zc for
different system sizes.

C. Statistics of the avalanche duration time

Let 〈sa(t)〉 be the mean number of nodes removed accu-
mulated up to the pruning step t . In Fig. 5(a), notice that we
obtain 〈sa(t)〉 ∼ tD where D ≈ 1.82. However, we expect that
the fractal dimension converges to D = 2 asymptotically as
t → ∞ when the system size is N → ∞. This expectation
is based on the following: The nodes removed during the
avalanche dynamics are connected and can be regarded as
a critical branching tree with a mean branching ratio of one
[20]. In this case, the fractal dimension of the critical branching
tree is known theoretically to be D = 2 [21,22]. To check the
validity of our expectation, we construct a critical branching
tree following the idea in Ref. [15]: Each node (ancestor)
generates at most two offspring because the nodes are deleted
from a (k = 3)-core subgraph. These numbers are determined

stochastically as follows: The probabilities of generating zero,
one, and two offspring are given by q0 = 1/4, q1 = 1/2, and
q2 = 1/4, respectively. Then the conditions

∑2
i=0 qi = 1 and∑2

i=0 iqi = 1 to create a critical branching tree of (k = 3)-core
percolation are satisfied. We measure the fractal dimensions
of the constructed branching trees from two datasets: (i) one
data set composed of tree sizes less than 105, and (ii) the other
data set composed of unbounded tree sizes. In dataset (i), the
tree size limit was imposed to compare it with the data of
finite avalanches in k-core subgraphs, which have a maximum
size of O(104) for N = 2.56 × 107. Remarkably, we obtain
the fractal dimension of D ≈ 1.82 from data set (i), whereas
we obtain D ≈ 2.0 from data set (ii) (see Fig. 6). Therefore,
the deviation of the numerical value of D ≈ 1.82 from the
theoretical value of D = 2.0 is due to the finite-size effect of
the simulations.

Using the avalanche size distribution ps(z), we set
up the duration time distribution pt (z) through the rela-
tions psds = ptdt and sa ∼ tD with D = 1.82 as pt (z) ∼
t−Dτa+D−1f [tD/(�z)−1/σa ]. The scaling plot of pt (z)(z −
zc)(−Dτa+D−1)/Dσa versus t(z − zc)1/Dσa shown in Fig. 7(a)
numerically confirms this. The average duration time of finite
avalanches 〈tfinite〉 ≡ ∑′

t=1 tpt (z) follows 〈tfinite〉 ∼ (�z)−0.2

for z > zc and 〈tfinite〉 ∼ N0.10 at z = zc [Figs. 5(b) and 7(b)].
On the other hand, if we use the theoretical value of D = 2,
then the mean avalanche step is obtained as 〈tfinite〉 ∼ ln N .

The mean duration time 〈t∞〉 of infinite avalanches scales
as N1/3 as shown in Fig. 5(b). This result is in agreement with
the previous result in Ref. [23]. This scaling is universal for
infinite avalanches in the HPTs of percolation models [20].

IV. DISCUSSIONS AND SUMMARY

We have studied the critical behaviors of the HPT of k-core
percolation on ER networks. We found that two diverging be-
haviors occur at a transition point: the fluctuations of the order
parameter and the mean size of a finite avalanche. These two
divergences cannot be represented by single critical exponent
γ . Thus, we introduced two sets of exponents {βm,γm,ν̄m}
and {τa,σa,γa,ν̄a} associated with the order parameter and
finite avalanches, respectively. As noted explicitly in Ref. [13],
the two sets of exponents are not completely independent
but are related through a new scaling relation γa = 1 − βm.
Moreover, we showed that the hyperscaling scaling relation
ν̄m = 2βm + γm holds but σaν̄a = τa does not hold. This

TABLE I. Numerical values of the critical exponents. Here m and a in the second column represent that the exponents are associated with
the order parameter and the avalanche, respectively. Moreover, ν̄∗ is the exponent defined by the relation z∗(N ) − zc(∞) ∼ N−1/ν̄∗

, and D

is the fractal dimension of the mean size of finite avalanches, defined by 〈sa(t)〉 ∼ tD . Note that the hyperscaling relation 2βm + γm = ν̄m is
satisfied. ∗∗ is the theoretical fractal dimension of a critical branching tree.

β τ σ γ ν̄ ν̄∗ D

m 0.5 ± 0.01 0.97 ± 0.01 2.06 ± 0.05

k core 2.0
a 1.5 ± 0.01 1.0 ± 0.01 0.52 ± 0.01 2.0 ± 0.01 1.82 ± 0.02

(D = 2)∗∗

m 0.5 ± 0.01 1.05 ± 0.05 2.1 ± 0.02

CF model 1.5
a 1.5 ± 0.01 1.0 ± 0.01 0.5 ± 0.01 1.85 ± 0.02 2.0 ± 0.01
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feature also appears in the CF model on multiplex networks
and thus may be universal for hybrid percolation transitions
induced by cascade pruning processes.

For comparison, we list the numerical values of the
critical exponents of each set that we obtained for k-core
percolation and the CF model in Table I. Note that the
exponents βm, τa, σa, γm, γa, ν̄m, and the fractal dimension
D of finite avalanches are consistent with each other for k-core
percolation and the CF model. However, ν̄a and ν̄∗ are different
from each other. Furthermore, note that the two exponents ν̄m

and ν̄a are consistent within the error bar for k-core percolation,
however, they are different for the CF model. Thus, it seems
that the exponent ν̄a depends on detailed dynamics.

Finally, we confirmed τa = 3/2, σa = 1, and γa = 1/2 ob-
tained analytically from corona clusters [15]. Thus, γa = 1/2
is different from the exponent γm ≈ 0.97 for the fluctuations
of the order parameter. This result is not compatible with the
fact that diverging behaviors of the fluctuations of the order
parameter and the mean cluster size for ordinary percolation
are represented by single critical exponent γ .
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