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Abstract.  Percolation has long served as a model for diverse phenomena and 
systems. The percolation transition, that is, the formation of a giant cluster on 
a macroscopic scale, is known as one of the most robust continuous transitions. 
Recently, however, many abrupt percolation transitions have been observed in 
complex systems. To illustrate such phenomena, considerable eort has been 
made to introduce models and construct theoretical frameworks for explosive, 
discontinuous, and hybrid percolation transitions. Experimental results have 
also been reported. In this review article, we describe such percolation models, 
their critical behaviors and universal features, and real-world phenomena.
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1.  Introduction

Percolation was first introduced in the 1950s to describe the flow of a fluid in a dis
ordered medium [1]. However, the basic idea of percolation was eectively considered 
in the early 1940s in the study of gelation in polymers [2–4]. After those pioneering 
works, the concept of percolation was applied to a variety of natural and social phe-
nomena and systems such as the spread of disease in a population [5], conductor–
insulator composite materials [6], stochastic star formation in spiral galaxies [7], dilute 
magnets [8], the resilience of systems [9–11], the formation of public opinion [12, 13], 
and nonvolatile memory chips [14, 15]. In particular, in physics, percolation has served 
as a simple model for understanding the above phenomena and systems [16, 17]. For 
instance, polymerization was modeled as percolation on the Bethe lattice [18, 19].

Until recently, percolation has been studied mainly on regular lattices such as a 
square lattice in two dimensions. Each site (bond) on the square lattice is occupied 
by a conductor with probability p, which is a control parameter. Occupied sites at 
the nearest neighbors are regarded as connected, so current can flow between them if 
one site is charged. Connected sites form a cluster. We suppose a composite system of 
conductors and insulators with the fractions p and 1  −  p, respectively. The system is 
located between two electrodes that are connected externally to a voltage source. As 
p is increased, the connected conductors form a cluster. When p is increased beyond a 
certain threshold pc, the largest cluster can span the system, so pathways exist through 
which current can flow from the top to the bottom. Thus, pc is called a percolation 
threshold or a transition point. Unlike the case in spin models, the percolation trans
ition is a geometric phase transition from an unconnected to a connected state. The 
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fraction of occupied sites belonging to the spanning cluster becomes the order param
eter of the percolation transition, which is denoted as m( p ). Thus, m( p ) behaves as 

m p p pc( ) ( )∼ − β for p  >  pc [16].
Percolation in complex networks has recently become a focus of research on the 

resilience of complex systems, the emergence of giant social communities, and so on 
[10]. In this case, the regular lattice structure is replaced by random networks. In the 
late 1950s, Erdős and Rényi (ER) introduced a random graph model [20]. In graph 
theory, sites and bonds are called vertices and edges, respectively. Initially, N vertices 
are present in a system, and they are isolated. The ER network model is defined as fol-
lows: at each time step, an edge is added between two randomly selected vertices unless 
they are already connected. We define t  =  L/N, where L is the number of edges added 
to the system; then z  =  2t is the mean degree of the system. The degree of a certain 
vertex is the number of neighbors connected to that vertex. A transition point tc  =  1/2 
exists beyond which a giant cluster emerges. Its size is O(N 2/3) and O(N ) in and above 
the critical region, respectively. The order parameter is defined as the number of ver-

tices belonging to the giant cluster per node and behaves as m t t tc( ) ( )∼ − β. Thus, the 
percolation transition is continuous.

The percolation transition is generically continuous, as shown in figure 1(a). However, 
recent extensive research shows that other types of percolation transitions such as 
explosive (figure 1(b)), discontinuous (figure 1(c)), and hybrid percolation (figure 1(d)) 
transitions can occur. In this paper, we describe such recent studies, mainly those con-
ducted by our research group.

2. Critical behaviors of ordinary percolation: continuous transition

The order parameter m(z), that is, the fraction of nodes belonging to the giant cluster, 
emerges at the percolation threshold zc and increases continuously from zero as the 
control parameter z is increased beyond zc. Near the percolation threshold, the order 
parameter exhibits critical behavior in the limit N →∞ as follows:

m z
z z

a z z z z

0 for ,

for ,

c

c c

( )
   

( )     ⩾
⎧
⎨
⎩

=
<

− β� (1)

where a is a constant, and β is the critical exponent of the order parameter. The sus-

ceptibility is defined as s n z sn zm s s s s
2 ( )/ ( )′ ′χ ≡∑ ∑ , where ns(z) is the number of clusters of 

size s per N at a certain point z. zm( )χ  diverges as z zm c( )χ ∼ − γ−  in the thermodynamic 

limit N →∞ and behaves as Nm
/ ¯χ ∼ γ ν at the transition point zc in finite systems, where 

dν̄ ν= .
The percolation transition can be represented in terms of a spin model using the 

formalism of the q-state Potts model of Kasteleyn and Fortuin [21]. At zc, the clus-
ter sizes are very inhomogeneous. The size distribution of finite clusters behaves 

as n z s es
s s( ) /∼ τ− − ∗

 for z zc≠ , where s* is a characteristic cluster size and scales as 
z zc

1/∼| − | σ− . At z  =  zc, n z ss( )∼ τ− . Thus, the first and second moments of ns(z) become 

sn s z zs s c
2 2( ) ( )/′∑ ∼ ∼ | − |τ τ σ∗ − −  and s n s z zs s c

2 3 3( ) ( )/′∑ ∼ ∼ | − |τ τ σ∗ − − − , respectively, where 
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the primed summations go over finite clusters. Using the identity m z sn z1 s s( ) ( )′= −∑ , 

one can show that the singular behavior of the first and second moments of ns(z) becomes 
equivalent to m(z) and z( )χ , respectively. Thus, the critical exponents become 

2( )/β τ σ= −  and 3( )/γ τ σ= − , respectively.
In percolation, the linear size of a typical cluster is the correlation length, denoted as 

ξ. For z  <  zc, there are many finite clusters in the system. The total number of clusters 

per N is given as n zs s( )∑ , which leads to s z1 1( )( ) ( )/∼ ∆τ τ σ∗ − − . On the other hand, there 

exist N N zd/ ( ) ¯ξ ∼ ∆ ν clusters in the system. Thus, one can obtain a hyperscaling rela-
tion 1¯ ( )νσ τ= − . Similarly, one can obtain another hyperscaling relation, 2 ¯α β ν+ = .

3. Explosive percolation

Aiming to generate a discontinuous percolation transition, the authors of [22] intro-
duced a percolation model called explosive percolation (EP). This EP model, which was 

Figure 1.  Schematic figures of the order parameter m(z) versus the control parameter 
z for (a) continuous, (b) explosive, (c) discontinuous, and (d) hybrid percolation 
transitions. For (b), the exponent β is not zero but is extremely small. For (c), m(z) 
does not exhibit critical behavior for m  >  m0, where m0 is the discontinuity of the 
order parameter. For (d), m(z) exhibits critical behavior for m(z)  >  m0 with 0β> .

http://dx.doi.org/10.1088/1742-5468/2016/12/124002
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motivated by a mathematical invention, is an extension of the ER model by adopting 
the so-called Achlioptas process. Initially, a system has N isolated vertices. At each time 
step, two pairs of nodes that are not yet connected are chosen randomly. One of those 
pairs is taken and connected, and the other is discarded. The chosen pair is the optimal 
one that produces a smaller connected cluster than the other option produces. Later, 
this selection rule can be generalized to the case having m potential pairs of nodes [23]. 
Among those m pairs of nodes, one pair of nodes, which produces the smallest cluster 
compared with the sizes of the other clusters created by other options, is actually added 
to the system. For later discussion, we refer to this rule as the m-optional Achlioptas 
process. The original EP model used the two-optional Achlioptas process rule. The 
Achlioptas process suppresses the growth of large clusters, and thus medium-size clus-
ters become abundant in the system. As a result, the percolation threshold is delayed. 
However, once a percolation threshold is passed, the size of the largest cluster is drasti-
cally increased. Because the order parameter increases so drastically, the percolation 
transition of the EP model was regarded as a discontinuous transition in the thermo-
dynamic limit when it was first introduced. The authors of [22] provided a simple argu-
ment to support their claim that the EP model exhibits a discontinuous percolation 
transition in the thermodynamic limit. The EP model was based on the ER network 
when it was first introduced and was extended to the square lattice in two dimensions 
[24] and to scale-free networks [25]. Results obtained from dierent embedded spaces 
were similar to that from the ER network. As many variants of the EP model were 
introduced [26], the discontinuity of the order parameter became suspicious.

The authors of [27] modified the rules of the EP model without changing the 
essence of the Achlioptas process. They constructed the rate equation for the evolution 
of cluster sizes in their model. Even though this approach does not produce an exact 
solution in a closed form to determine the type of EP transition, it could provide the 
numerical value of the critical exponent of the order parameter more accurately than 
numerical simulations. They obtained the nonzero value 0.05β≈  for the modified EP 
model. Thus, they claimed that the EP transition is actually continuous. However, 
because the numerical value 0.05β≈  is too close to zero, more careful analysis based on 
another type of EP model was needed. At this stage, two mathematicians argued [28] 
that the number of clusters that participate in the cluster merging processes and cause 
a macroscopic-scale giant cluster to emerge is not subextensive to the system size N for 
the EP model. Thus, they supported the claim that the EP model is actually continu-
ous. Moreover, they presented a strong argument that any local rule of percolation does 
not guarantee a discontinuous transition.

The percolation transition in the ER model follows the mean-field solution of ordi-
nary percolation. From this perspective, it would be interesting to consider how the 
EP transition in Euclidean space is related to that on a random graph. Along this line, 
we introduced the so-called spanning-cluster-avoiding (SCA) model [29]. In this model, 
the target pattern in the Achlioptas process is taken as a spanning cluster, follow-
ing the convention of percolation in Euclidean space. Specifically, we consider a bond 
percolation problem on a two-dimensional square lattice. At each time step, m unoc-
cupied bond candidates are chosen randomly; among them, we take the one bond that 
does not create a spanning cluster. If there is more than one such bond, we take one of 
them randomly. A bond that creates a spanning cluster is called a bridge bond. In the 

http://dx.doi.org/10.1088/1742-5468/2016/12/124002
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early time steps, occupied bonds are rare, so the density of bridge bonds is small. With 
increasing time step, the density of bridge bonds is increased, and the probability of a 
spanning cluster is increased. The order parameter is the fraction of sites that belong to 
the spanning cluster. Using the scaling formula for the bridge bonds [30], the percola-
tion threshold of the SCA model could be analytically calculated for any m potential 
bonds in the Achlioptas process. This analytic result leads to the following conclusion: 
the EP transition can be either continuous or discontinuous, depending on the number 
of multiple options m, if the spatial dimension is less than the upper critical dimension, 
and the EP transition is always continuous otherwise. Subsequently, it was concluded 
that the transition of the ordinary EP model is continuous as a mean-field solution of 
the SCA model.

4. Discontinuous percolation transition

The development of the original EP model, even though its aim of generating a discon-
tinuous percolation transition was not successful, triggered recent extensive research 
on discontinuous percolation transitions. This research trend was accelerated by recent 
discoveries of rapid spreading of epidemic diseases in complex systems. In fact, the issue 
of the discontinuous percolation transition had already received considerable interest 
much earlier. Inspired by the emergence of the essential singular behavior in the Ising 
model with a 1/r2 type of long-range interaction in one dimension, researchers con-
sidered the percolation problem with long-range connections. In 1983, a percolation 
model [31] was introduced in one dimension in which sites i and j are connected with 

probability p p i jij
s/= | − | , where p is a parameter defined in the range p0 1⩽ ⩽ , and s is 

also a parameter. It was found that for s1 2⩽< , there exists a finite threshold pc such 
that for p p 1c ⩽< , there exists an infinite cluster. For s  >  2, the problem is reduced to 
short-range percolation, so the threshold pc  =  1. Aizenman and Newman [32] proved 
that the transition is discontinuous for s1 2⩽<  and made further noticeable progress 
associated with long-range percolation. When the connection probability is given as 

p r i j1 expij
2( / )= − − | − |  for i j L| − | > , where L is a certain length, r is a constant, 

and pij  =  p for i j L⩽| − | , a discontinuous (continuous) transition occurs for r  >  rc(L, p)  
(for r  <  rc). In 2000 [33], an interesting paper was published that modeled the mean 
distance of the trails of the six degrees of separation in social networks. The connection 

probability is given as p p i jij
s/= | − |  for i j 1| − | >  and pij  =  1 for i j 1| − | =  in d dimen-

sions. The diameter D of a percolating cluster was obtained as follows: D N Nlog loglog/∼  

for s  =  d, D Nlog∼ δ  ( 1δ> ) for d  <  s  <  2d, and D N∼ ω (0 1ω< < ) for s  =  2d. Recently, 

a similar problem was studied in terms of the SIR epidemic model, in which the power 
s was controlled [34]. The author found that when s  =  2 in one dimension, the percola-
tion transition follows the Berezinskii–Kosterlitz–Thouless universality class behavior. 
The correlation length diverges as p pexp 1 c( / )ξ∼ − .

Percolation transitions arising in network evolution can be viewed as a cluster 
aggregation phenomenon. In this scheme, the rate-equation approach [35] can be used 
to determine the type of percolation transition. For instance, in the evolution of ER 
networks, the rate equation is written in the thermodynamic limit as

http://dx.doi.org/10.1088/1742-5468/2016/12/124002
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n t

t

k n

c t

k n

c t

k n

c t

d

d
2 ,s

i j s

i i j j s s( )
( ) ( ) ( )∑= −

+ =
� (2)

where c t k n ts s s( ) ( )= ∑ . The connection kernel K k k cij i j
2/≡ . The first term on the right-

hand side represents the aggregation of two clusters of sizes i and j with i  +  j  =  s, and 
the second term represents a cluster of size s merging with another cluster of any size. 
In equation (2), we set k ii = ω in general. The case 1ω =  reduces to the ER case, and c 
becomes one. Depending on the value of ω, the rate equation can generate various types 
of percolation transitions [36, 37]. Moreover, owing to the presence of c(t), a percolation 
transition occurs at a finite transition point. Using the generating function technique, 
one can find that the cluster size distribution ns(t) exhibits power-law behavior at the 
transition point as n t ss c( )∼ τ− , where τ is determined as

1 2 if 0 1 2,

3 2 if 1 2 1.

  /
/   / ⩽

⎧
⎨
⎩

τ
ω ω
ω ω

=
+ < <
+ <� (3)

It was found that when 1 2 1/ ⩽ω< , the transition becomes continuous, whereas when 
0 0.5⩽ ω< , the transition becomes discontinuous. Thus, we can determine the type of 
percolation transition by measuring the exponent ω in terms of the cluster aggregation 
process.

At this stage, it is worth recalling a previous result [28] that a global evolution 
rule is necessary to generate a discontinuous percolation transition. Here we introduce 
several percolation models that contain global evolution rules and undergo discontinu-
ous percolation transitions. First, a simple model inspired by the EP model was intro-
duced, which may appear too artificial but contains an intrinsic ingredient generating 
a discontinuous percolation transition. The dynamic rule is given as follows [38]: we 
consider bond percolation in two dimensions. At each time step, an unoccupied bond 
is selected at random, and whether that bond is occupied is determined by the follow-
ing criterion: if occupation of that bond would not lead to a new giant cluster or grow 
the size of an existing giant cluster, then that bond is always occupied; otherwise, it 
is occupied with some probability depending on the size of the resulting cluster. This 
rule suppresses the growth of a giant cluster. As a result, just before the percolation 
threshold, many medium-size clusters are generated, and most of the bonds inside of 
each cluster are almost occupied. During the transient time interval, those medium-
size clusters merge, leading to a discontinuous transition. The snapshot of the system 
just before the percolation threshold looks very similar to that obtained from the SCA 
model. Actually, the SCA model is another model that uses a global evolution rule and 
then undergoes a discontinuous transition. In the above models, we need global infor-
mation to identify the giant cluster at each time step.

Discontinuous percolation transitions generated by such suppressive rules can gen-
erate diverse features. When one modifies the rate equation (2) so that it has dierent 
types of kernels for the largest cluster and the others, ω α=  and ω β= , respectively, 
diverse patterns of discontinuous transitions can be obtained depending on the ratio 
between α and β [39]. Here m(t) cannot be self-averaging. Moreover, the increasing pat-
tern of the order parameter could resemble the pattern of Barkhausen noise in magnetic 
systems [40, 41].

http://dx.doi.org/10.1088/1742-5468/2016/12/124002
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5. Hybrid percolation transition

A hybrid phase transition is a type of phase transition exhibiting properties of both 
second-order and first-order phase transitions at the same transition point. In spin sys-
tems, such a type of phase transition occurs at the so-called critical endpoint in systems 
with competing interactions such as the Ashkin–Teller model on scale-free networks 
[42]. Recently, such hybrid phase transitions, called hybrid percolation transitions 
(HPTs), have been obtained in percolation problems on complex networks, for instance, 
k-core percolation [43–46] and the cascade failure (CF) model on multiplex networks 
[47–49]. For such models, the order parameter m(z) behaves as

m z
z z

m r z z z z

0 for ,

for ,

c

c c0
m

( )
   

( )     ⩾
⎧
⎨
⎩

=
<

+ − β� (4)

where m0 and r are constants, mβ  is the critical exponent of the order parameter, and z 
is a control parameter such as the mean degree of a given network. In such cases, the 
HPT occurs at zc as edges are deleted one by one following a given rule from a certain 
point far above the percolation threshold, i.e. z zc� . Such a transition is called the 
HPT in pruning processes.

Recently, an HPT that occurs on a single layer as edges are added was introduced. 
Evolution of this percolation model initially proceeds from N isolated nodes, and those 
nodes make single or multiple clusters as edges are added to the system one by one 
under a given rule. During evolution, clusters merge, generating a giant cluster and 
leading to an HPT. The order parameter also behaves as equation (4) in the thermo-
dynamic limit. The HPT that occurs in this way is called the HPT in cluster merging 
processes. We review various properties of HPTs in pruning and cluster merging pro-
cesses separately, as follows.

5.1. HPTs in pruning processes

As prototypical models of HPTs in pruning processes, we consider the CF model  
[50–58] on interdependent multilayer random ER networks and k-core percolation. For 
this pruning process, the mean degree z of the network is decreased with time3. We 
first consider the CF model. Evolution of networks proceeds in the form of catastrophic 
node failures between two layers. When a node on one layer is deleted, it leads to 
another failure of the counterpart node in the other layer of the network. Subsequently, 
links connected to the deleted nodes are also deleted from the network. This process 
continues back and forth, always eliminating the possibly separated finite clusters, 
until a giant mutually connected component remains or the giant component is entirely 
destroyed as a result of the cascades [52]. As nodes are deleted in this way, the order 
parameter behaves similarly to that of a second-order phase transition until the trans
ition point zc is reached from above: the fluctuations of the giant cluster size diverge. 
Beyond that, as z is further decreased infinitesimally, the percolation order parameter 

3 In the original model defined in [50], the control parameter is the fraction of nodes removed from one layer of 
the network. However, an equivalent model in terms of the mean degree was introduced by [51]. We use the latter 
model in this paper.

http://dx.doi.org/10.1088/1742-5468/2016/12/124002
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suddenly drops to zero, indicating a first-order phase transition. Thus, an HPT occurs 
at z  =  zc. The order parameter behaves according to formula (4).

Second, we consider k-core percolation. The k-core of a network is a subgraph in 
which the degree of each node is at least k. To obtain a k-core subgraph, once an ER 
network of size N with mean degree z is generated, all nodes with degree less than k are 
deleted. This deletion may decrease the degrees of the remaining nodes. If the degrees 
of some nodes become less than k, then those nodes are deleted as well. This pruning 
process is repeated until no more nodes with degree less than k remain in the system. 
The fraction of nodes remaining in the largest k-core subgraph is defined as the order 
parameter m, and the mean degree z is defined as the control parameter. The order 
parameter m is large, specifically, of O(1) for z  >  zc, and decreases continuously follow-

ing the curve z zc
1 2( ) /∼ −  with decreasing z. As z approaches zc, the deletion of a node 

from an ER network can lead to the collapse of the giant k-core subgraph. Thus, the 
order parameter is described by equation (4).

Unlike ordinary percolation, the HPT exhibits two critical behaviors: divergences 
of the fluctuations of the order parameter and the mean avalanche size of finite 
avalanches at a transition point [59]. These two divergences have dierent shapes. 
Thus, two sets of critical exponents are needed: the set , ,m m m{ ¯ }β γ ν  is associated with 
the order parameter and its related quantities, and the other set, , , ,a a a a{ ¯ }τ σ γ ν , is asso-
ciated with the avalanche size distribution and its related quantities. The subscripts 
m and a refer to the order parameter and avalanche dynamics, respectively. One 
may think naively that the exponents m̄ν  and āν  would be the same and that mγ  and 

aγ  are as well. However, it was revealed that those pairs of exponents could dier 
from each other. Thus, we need to deal with the two sets of exponents separately. 
However, those two sets are not completely independent, but are coupled through 

the relation m z s z zd 1
z

z
a

0( ) ⟨ ( )⟩∫+ = , where z0 is the mean degree at the beginning 

of cascading processes. This leads to m z z s zd d a( )/ ⟨ ( )⟩=  and yields 1 m aβ γ− = . This 

relation was numerically checked. Conventional scaling relations hold within each 
set. However, when one checks the hyperscaling relations, more accurate numerical 
data are needed.

One of the interesting universal features arising in the CF model and k-core perco-
lation, which may be applied to any HPT in a pruning process starting from a single 
seed, is the pattern created by the cascade dynamics. When a system is perturbed by 
the failure of a node, the cascade dynamics proceeds in the form of a critical branch-
ing tree in the early stage, followed by a supercritical process in the late stage. In a 
random network of N nodes at the transition point, the critical branching process per-
sists for O(N 1/3) times, during which the remaining nodes become vulnerable. Those 
vulnerable nodes are then activated in the short supercritical process. This result is 
closely related to the fact that the giant cluster at the percolation threshold is of size 
O(N 2/3) and is basically tree-shaped with linear size O(N1/3) [60]. As such a perco-
lating cluster grows further, long-range shortcut edges form, leading to supercritical 
processes of avalanches. Then the order parameter suddenly collapses to zero, leading 
to a first-order phase transition. This is the universal mechanism of HPTs in pruning 
processes [61].
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5.2. HPTs in cluster merging processes

As we described, a discontinuous percolation transition in the cluster aggregation pro-
cess can occur when clusters merge following a global rule. For example, for the SCA 
model, one has to check whether a selected bond can make a spanning cluster. Another 
example is the model in which a discontinuous percolation transition is generated by 
controlling only the largest cluster [38]. That is, one needs global information to gen-
erate a discontinuous percolation transition. However, while the order parameter is 
increased rapidly in such discontinuous percolation transitions, critical behavior hardly 
appears. Thus, the question of whether an HPT can occur in cluster merging processes 
was raised. Recently, the authors of [62] slightly modified an existing model [63] and 
successfully generated a discontinuous percolation transition.

The model is defined as follows: in a system of N isolated nodes, at each time step, we 
first rank the clusters by ascending order of cluster size. If multiple clusters of the same 
size exist, they are randomly sorted. The restricted set of clusters R(t) is defined as the 
subset consisting of a certain number of smallest clusters (say k clusters) and is denoted 
as R t c c c, , , k1 2( ) { }≡ � . Further, k is determined as the value satisfying the inequalities 

N t gN N tk k1( ) ⌊ ⌋ ⩽ ( )<−  for a given model parameter g 0, 1( ]∈ . N t s tk
k

1( ) ( )≡∑ =� � , where 

s t( )�  is the number of nodes in the cluster c�. We note that the number of clusters in R(t) 
varies with the time step t. Here the time step t is defined as the number of edges added 
to the system per node. This model is called a restricted ER model, because when g  =  1, 
the model is reduced to percolation in the ordinary ER model. We remark that this 
restricted ER model is a slightly modified version of the original model [63] in which 
the number of nodes in the set R is fixed as gN⌊ ⌋. Thus, some nodes in a cluster on the 
boundary between the two sets R and R(c) belong to the set R, and the others in the 
same cluster belong to the set R(c). However, for the modified model, all the nodes in 
the cluster are counted as elements of the set R. This modification enables one to solve 
the phase transition for t  >  tc analytically without changing any critical properties.

This restricted ER model exhibits an HPT at a transition point tc. The order 
parameter m(t), that is, the fraction of nodes belonging to the giant cluster, increases 
rapidly from zero at tc

− to a finite value m0 at tc. The interval t t t o N Nc c ( )/∆ = − ∼− . 
Thus, in the thermodynamic limit, this interval reduces to zero, and the order param
eter is regarded as jumping discontinuously at tc. For t  >  tc, m (t) increases gradually 
following formula (4). Moreover, the size distribution of finite clusters, ns(t), exhibits 
power-law decay at tc with the exponent g( )τ  in the range g2 2.5( ) ⩽τ< . Thus, the 
critical exponents of the HPT vary continuously depending on the control parameter g. 
Such critical behaviors of the HPT in the cluster merging process have been observed 
for the first time.

6. Experimental results

The EP models look too artificial, and one may wonder if the patterns produced by 
those models are physically relevant and can be observed experimentally in real-world 
systems. Along these lines, we introduce recent experimental results [64, 65]. The 
experiment was performed in a cytoskeletal system composed of actin filaments, fascin 
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cross-links, and myosin motors. Actin filaments (bonds) and cross-links (sites) compose 
networks, and molecular motors exert localized stresses inside polymer networks to 
contract the crosslinked actin polymer network. As a result, small holes inside a large 
cluster are collapsed, and the large cluster becomes compact. Because of this compact-
ness, the cluster size distribution exhibits power-law decay, but the exponent τ becomes 
less than two. Then, as we have already mentioned in section 4, when the exponent τ 
is less than two, the percolation transition becomes discontinuous. The fact that the 
cluster becomes compact implies that the fractal dimension becomes two. Because the 
enclaving dynamic occurs suddenly, the order parameter jumps in a macroscopic scale 
within a short time interval.

7. Conclusion

Since the paper on the EP model was published in 2009, a huge number of papers 
regarding this subject have been rapidly published. Thus, it is almost impossible to 
trace them all comprehensively. Here we have reviewed papers based on our publica-
tions ranging from the EP model to hybrid percolation models, and this review was 
written from our viewpoint. The subject of EP in which the exponent of the order 
parameter β is extremely small or zero is still interesting, and many fundamental prob-
lems are not understood yet. More detailed reviews and open challenges in percolation 
can be found in [41, 66].
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