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Branching Process Approach to Avalanche Dynamics on Complex Networks
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We investigate the avalanche dynamics of the Bak-Tang-Wiesenfeld (BTW) sandpile model on
complex networks with general degree distributions. With the threshold height of each node given
as its degree in the model, self-organized criticality emerges such that the avalanche size and the
duration distribution follow power laws with exponents τ and δ, respectively. Applying the theory of
the multiplicative branching process, we find that the exponents τ and δ are given as τ = γ/(γ− 1)
and δ = (γ − 1)/(γ − 2) for the degree distribution pd(k) ∼ k−γ with 2 < γ < 3, with a logarithmic
correction at γ = 3, while they are 3/2 and 2, respectively, for γ > 3 and when pd(k) follows an
exponential-type distribution. The analytic solutions are supported by our numerical simulation
results.
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This year the world witnessed a massive power out-
age plunging a large part of eastern US and neighbor-
ing Canadian provinces into darkness, which is known
to have affected more than 50 million people [1]. This
is one example of global cascades that can always oc-
cur in complex systems such as the stock market, the
consuming public, the Internet, biological systems, and
so on [2]. Such a massive catastrophe sweeping a large
part of a system is, however, triggered from only a small
fraction of constituents for a not so correspondingly sig-
nificant reason. Indeed, the authorities examined the
cause of the blackout and mentioned that it began with
failures of the power transportation system in Ohio [1].
Similarly, some books, movies, and albums become pop-
ular hits with small marketing budgets, and occasionally
large fluctuations of the stock market cannot be traced
to arrival of any significant piece of information. Thus,
how such cascades propagate in complex systems is an
important problem to understand. It is closely related
to the topology of the corresponding networks. Here a
complex system is viewed as a network made of nodes
and links. A node represents a constituents of the sys-
tem while a link an interaction between them. What
interests us recently is that the degree distributions of
complex networks such as the Internet and biological net-
works [3–5] are power laws, i.e., pd(k) ∼ k−γ , where the
degree k of a vertex is the number of links incident on the
vertex. The networks following such a power-law degree
distribution are called scale-free (SF) networks. Such a
slowly-decaying degree distribution implies the presence
of a non-negligible fraction of hubs, i.e., nodes of very
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large degrees, which would exist with exponentially small
probabilities in networks with a Poisson degree distribu-
tion, pd(k) ∼ exp(−〈k〉)〈k〉k/k! or an exponential one,
pd(k) ∼ exp(−k). Here, 〈k〉 denotes the average degree
defined as 〈k〉 =

∑∞
k=1 kpd(k). However, the role of these

hubs in the cascading propagation is not yet clearly un-
derstood.

In this work, we investigate the effect of network
topology represented by the degree distribution on the
avalanche dynamics in the Bak-Tang-Wiesenfeld (BTW)
sandpile [6] model, which was studied extensively on
regular lattices as a prototypical system showing self-
organized criticality (SOC). In Euclidean space, the main
SOC feature of the model is the emergence of a power
law in the avalanche size distribution,

pa(s) ∼ s−τ . (1)

Bonabeau [7] has studied the BTW sandpile model on
the Erdös-Rényi (ER) random networks and found that
the avalanche size distribution follows a power law with
the exponent τ ' 1.5, consistent with the mean-field
solution in Euclidean space [8]. Recently, Lise and
Paczuski [9] have studied the Olami-Feder-Christensen
model [10] on regular ER networks, where the degree of
each node is uniform but connections are random. They
found the exponent to be τ ≈ 1.65. However, when
the degree of each node is not uniform, they found no
criticality in the avalanche size distribution. Note that
they assumed that the threshold of each node is uni-
form, whereas the degree is not. While a few studies have
been performed on ER random networks, no study of the
BTW sandpile model on complex networks with general
degree distributions including power-law ones has been
performed yet, even though there are several related ap-
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Fig. 1. (a) An avalanche triggered at the node 0 (circle)
propagates to the nodes 1, 2, 3, and 4 (squares), and then to
5, 6, and 7 (hexagons). No toppling event occurs at the nodes
1, 3, 5, 6, or 7. No more than the first toppling occurs at the
node 0. (b) The corresponding tree of the avalanche in (a) can
be drawn with three generations (t = 0, 1, 2) depending on
the distance from the node 0, the originator. The avalanche
size is 3, contributed by the nodes, 0, 2, 4, denoted by filled
symbols.

plications as mentioned above.
We consider the avalanche dynamics on networks with

degree distribution pd(k) as follows: (i) At each time
step, a grain is added at a randomly chosen node i. (ii)
If the height at the node i reaches or exceeds a pre-
scribed threshold zi, where we set zi = ki, the degree of
the node i, then it becomes unstable and all the grains at
the node topple to its adjacent nodes; hi → hi − ki, and
hj = hj + 1, where j is a neighbor node of the node i.
(iii) If this toppling causes any of the adjacent nodes to
be unstable, subsequent topplings follow on those nodes
in parallel until there is no unstable node left. This pro-
cess defines an avalanche. (iv) Repeat (i)–(iii). We con-
centrate on the distribution of (a) the avalanche area A,
i .e., the number of distinct nodes participating in a given
avalanche, (b) the avalanche size S, i .e., the number of
toppling events in a given avalanche, and (c) the dura-
tion T of a given avalanche. The study of the avalanche
dynamics on SF networks has been carried out in [11].
Here, we keep pd(k) more general than the SF behavior
and give more detailed derivation of the results reported
in [11].

Analytic solutions for the avalanche size and dura-
tion distributions can be obtained by applying the the-
ory of multiplicative branching processes [12]. To each
avalanche, one can draw a corresponding tree structure
[See Fig. 1]: The node where the avalanche is triggered
is the originator of the tree and the branches out of that
node correspond to topplings to the neighbors of that
node. As the avalanche proceeds, the tree grows. The
number of branches of each node is not uniform, but is
equal to its own degree. The branching process ends
when no further avalanche proceeds. In the tree struc-
ture, a daughter node born at time t is located away
from the originator by a distance t along the shortest
pathway. In the branching process, it is assumed that
branchings from different parent nodes occur indepen-
dently. Then one can derive the statistics of tree size

and lifetime analytically [8,13], which can be considered
as that of avalanche size and duration since the avalanche
duration T is equal to the lifetime of the tree minus one,
and the avalanche size S differs from the tree size only by
the number of boundary nodes of the tree, which is rela-
tively small when the overall tree size is very large. The
multiplicative branching process approach has been used
to obtain the mean-field solution for the BTW model in
Euclidean space [8], which is valid above the critical di-
mension dc = 4. The avalanches in complex networks
usually do not form a loop but have tree-structures: Ac-
cording to the numerical simulations the details of which
will be explained later, the probability distributions of
the two quantities A and S behave in a similar fash-
ion and, as another example, the maximum area and
size (Amax, Smax) among avalanches are (5127, 5128),
(12058, 12059) and (19692, 19692) for networks having
the power-law degree distributions with the degree ex-
ponents γ = 2.01, 3.0, and ∞, respectively. A and S
being almost the same implies that the avalanche struc-
ture can be treated as a tree. From now on, we shall not
distinguish A and S, and use s to represent either A or
S.

The branching probability q(k) that a certain node
generates k branches in the corresponding tree consists
of two factors: One is the probability q1(k) that the node
receiving a grain from one of its neighbors has k degrees
and the other is the probability q2(k) that toppling in-
deed occurs at the node. The probability q1(k) is equal
to the degree distribution of the node at one end of a
randomly chosen edge, i.e., q1(k) = kpd(k)/〈k〉. q2(k)
corresponds to the probability that the node has height
k− 1 at the moment of gaining the grain from one of its
neighbors. If one assumes that there is no typical height
of a node in the inactive state, regardless of its degree
k, then q2(k) = 1/k. Such assumption can be tested
numerically: The plot of the probability q2(k) with nu-
merical simulation data supports q2(k) = 1/k as shown
in Fig. 2. Deviations from 1/k at large k are presumably
due to the finite size effect. Therefore, the branching
probability q(k) can be written as

q(k) = q1(k)q2(k) =
pd(k)
〈k〉

for k ≥ 1, (2)

and q(0) = 1−
∑∞
k=1 q(k).

Independence of branchings from different parent
nodes assumed in the branching process enables one to
express the tree size distribution p(s) in terms of the
branching probability q(k) as [12,13]

p(s) =
∞∑
k=0

q(k)
∞∑
s1=1

∞∑
s2=1

· · ·
∞∑
sk=1

k∏
i=1

p(si)δ∑k
i=1 si,s−1.

(3)

We define the generating functions, P(y) =
∑∞
s=1 p(s)y

s

and Q(ω) =
∑∞
k=0 q(k)ωk of the tree size distribution

p(s) and the branching probability q(k), respectively.
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Fig. 2. The probability q2(k) for the degree distribution
pd(k) ∼ k−3. The dashed line represents 1/k Data are for a
network of size N = 106.

Fig. 3. Plot of ω = P(y) for q(k) = k−3.5/ζ(2.5) obtained
by inverting y = ω/Q(ω).

Using Eq. (3), one can show that they are related as
follows:

P(y) = y Q(P(y)). (4)

Then ω = P(y) is obtained by inverting y = ω/Q(ω).
As an example, the function P(y) obtained in this way
with q(k) = k−3.5/ζ(2.5), ζ(x) being the Riemann zeta
function, is plotted in Fig. 3.

The distribution of duration, i .e., the lifetime of a tree
growth, can be evaluated similarly [8,12]. Let r(t) be the
probability that a branching process stops at or prior to
time t. Then, following a similar step to Eq. (3), it is
obtained that

r(t) = Q(r(t− 1)). (5)

For large t, r(t) is close to 1, and one can obtain ω =
r(t−1) by the approximate relation dω/dt ' r(t)−r(t−
1) = Q(ω) − ω. The lifetime distribution `(t) is just
r(t)− r(t− 1) ' dω/dt.

The behavior of the generating function P(y) near y =
1 is related to the asymptotic behavior of the tree size

distribution p(s) for large s. Consider the case where the
function P(y) has such a non-analytic term as (1 − y)φ
with φ a non-integer, which is expanded as

(1− y)φ =
∞∑
s=0

asy
s,

as =
Γ[s− φ]

Γ[s+ 1]Γ[−φ]
∼ s−φ−1 (s→∞), (6)

with Γ(x) the Gamma function. Thus, the presence of
the non-analytic term (1−y)φ in P(y) gives p(s) ∼ s−φ−1

for large s. On the other hand, the distribution p(s) is
expected to decay at least as fast as exponentially if there
is no such a non-analytic term.

The value of P(1) represents the proportion of finite
trees among all generated trees, and is used to describe
the phase of the process: When P(1) is smaller than 1,
implying the presence of an infinite tree, the process is
in the super-critical phase, while it is in the sub-critical
phase when it is equal to 1. The criterion defines the
critical phase. The three phases are also characterized
by the average number of daughters defined by

C =
∞∑
k=1

kq(k). (7)

The cases of C < 1, C = 1, and C > 1 correspond to
the sub-critical, critical, and super-critical phase, respec-
tively. From Eq. (4), one can notice that in the critical
phase, the derivative, P ′(y) diverges at y = 1, implying
a non-analytic term (1− y)φ with φ < 1 present in P(y)
and, in turn, the power-law behavior of the tree size dis-
tribution. Note that Eq. (2) gives C = 1 regardless of
the degree distribution pd(k), and thus SOC is estab-
lished generally in the avalanche dynamics on complex
networks.

First, we consider the avalanche dynamics on networks
with an exponential degree distribution such as pd(k) ∼
exp(−a k) with a a positive constant. The corresponding
branching probability given by Eq. (2) is

q(k) =
{

exp(−a) (k = 0)
exp[−a(k + 1)](exp(a)− 1)2 (k ≥ 1), (8)

and its generating function Q(ω) is expanded near ω = 1
as

Q(ω) ' ω +
(1− ω)2

exp(a)− 1
, (9)

to the leading order in (1−ω). By inverting the relation
y = ω/Q(ω) around ω = 1, we obtain that

P(y) ' 1− [(exp(a)− 1)(1− y)]1/2. (10)

The tree-size distribution is obtained using Eq. (6) as

p(s) ∼ s−3/2 (11)
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for large s. Using the generating function Q(ω), the du-
ration distribution can also be obtained. The probability
distribution ω = r(t− 1) is obtained from

dω

dt
' Q(ω)− ω =

(1− ω)2

exp(a)− 1
, (12)

which gives 1− r(t) ∼ t−1 and the duration distribution
`(t) ' dω/dt is obtained as

`(t) ∼ t−2. (13)

The exponents τ = 3/2 and δ = 2 in the duration dis-
tribution `(t) ∼ t−δ are also found in the case of the
Poisson degree distribution [13].

Next we consider the power-law degree distribution,
pd(k) ∼ k−γ . The branching probability is written as

q(k) =
{

1− ζ(γ)/ζ(γ − 1) (k = 0)
k−γ/ζ(γ − 1) (k ≥ 1), (14)

and its generating function is given by Q(ω) =
q0 + Liγ(ω)/ζ(γ − 1), where Liγ(ω) is the polylog-
arithm function of order γ, defined as Liγ(ω) =
(ω/Γ[γ])

∫∞
0

(exp(y)−ω)−1yγ−1dy. Contrary to the case
of the exponential degree distribution, the generating
function Q(ω) has a non-analytic term depending on the
degree exponent γ as [14]

Q(ω)− ω 'A(γ)(1− ω)γ−1 (2 < γ < 3),
−(1/2ζ(2))(1− ω)2 ln(1− ω) (γ = 3),
(1/2)B(γ)(1− ω)2 (γ > 3),

(15)

to the leading order in (1 − ω), where A(γ) = Γ(1 −
γ)/ζ(γ − 1) and B(γ) = [ζ(γ − 2)/ζ(γ − 1)] − 1. From
the relation between Q(ω) and P(y) in Eq. (4), we obtain
that, for large s

p(s) ∼


a(γ) s−γ/(γ−1) (2 < γ < 3),

bs−3/2(ln s)−1/2 (γ = 3),

c(γ) s−3/2 (γ > 3),

(16)

where

a(γ) = −A(γ)1/(1−γ)/Γ[1/(1− γ)],

b =
√
π/6,

c(γ) =
√

1/(2πB(γ)). (17)

Thus, the exponent τ is determined to be τ = γ/(γ − 1)
for 2 < γ < 3 and τ = 3/2 for γ ≥ 3. The γ-dependent
generating function Q(ω) also causes the duration distri-
bution `(t) to have its exponent dependent on γ, as

`(t) ∼


t−(γ−1)/(γ−2) (2 < γ < 3),

t−2(ln t)−1 (γ = 3),

t−2 (γ > 3).

(18)

Fig. 4. The avalanche size distributions for the static
model of γ = ∞ (�), 3.0 (4), 2.2 (�), and 2.0 (◦). The
data are fitted with the form pa(A) ∼ A−τ exp(−A/Ac) with
Ac a cutoff due to the finite size effect. For the fitted values
of τ , see Table 1. Data are logarithmically binned.

Table 1. Values of the avalanche size exponent τ and du-
ration exponents δ for the static model with mean degree 4
and of size N = 106. The subscripts m and t mean the mea-
sured and theoretical values, respectively. Note that since the
duration exponent diverges theoretically as γ → 2, numerical
simulation data contain lots of fluctuations from sample to
sample. ∗The case of γ = 3 has logarithmic corrections in τt
and δt.

γ τm τt δm δt

∞ 1.52(1) 1.50 1.9 2

5.0 1.52(3) 1.50 2.0 2

3.0∗ 1.66(2) 1.50 2.5 2

2.8 1.69(3) 1.56 2.6 2.25

2.6 1.75(4) 1.63 2.9 2.67

2.4 1.89(3) 1.71 3.5 3.50

2.2 1.95(9) 1.83 4.3 6.00

2.01 2.09(8) 2.0 ∞

That is, the exponent δ is given by δ = (γ − 1)/(γ − 2)
for 2 < γ < 3 and δ = 2 for γ ≥ 3.

To check the analytic solutions, we performed numer-
ical simulations for SF networks in the static model [15],
since nontrivial values of exponents τ and δ are expected
to be observed in networks with power-law degree distri-
butions as seen in Eqs. (16) and (18). Additionally, we
allow a small fraction f = 10−4 of grains to be lost in
the simulations, to prevent the system from being over-
loaded in the end. The avalanche area distribution shown
in Fig. 4 gives the exponent τ dependent on γ when fit-
ted with the form pa(A) ∼ A−τ exp(−A/Ac) with Ac as
a cutoff. We have also considered the avalanche duration
distribution. However, the duration distribution is not
well shaped numerically in finite size systems, since the
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duration of an avalanche does not run long enough, due
to the small-world effect. So, we measure the dynamic
exponent z defined by s ∼ tz and then evaluate the du-
ration exponent δ from the relation p(s) ds ∼ `(t) dt or
δ = 1 + (τ − 1)z. The numerical values of τ and δ for
different γ are tabulated in Table 1 and show reasonable
agreement with those obtained analytically. The discrep-
ancy can be attributed to the finite-size effect, as well as
the characteristic avalanche size set by the probability of
losing a grain (f = 10−4).

In conclusion, we have studied the BTW sandpile
model on complex networks with general degree distri-
butions. To account for the heterogeneity of the system,
the threshold height of each vertex is set to be equal to
the degree of the vertex. By mapping to the multiplica-
tive branching process, we can obtain the asymptotic be-
haviors of the avalanche size and duration distributions
analytically. The avalanche size and duration exponents
τ and δ deviate from their conventional mean-field val-
ues τ = 3/2 and δ = 2 when the degree exponent γ
is smaller than 3. The result remains the same if the
threshold contains noise such as zi = ηiki, with ηi be-
ing distributed uniformly in [0,1] and when a new grain
is added to a node chosen with probability proportional
to the degree of that node. Following the same steps,
we can also obtain the exponents τ and δ for the more
general case where zi = kβi with 0 < β ≤ 1. Then
τ = (γ+ 2β− 2)/(γ+β− 2) and δ = (γ+β− 2)/(γ− 2)
for 2 < γ < γc where γc = β + 2 ≤ 3, and τ = 3/2
and δ = 2 for γ > γc. The fact that τ increases as γ
decreases implies that the hubs sustain large numbers
of grains, explaining the resilience of the network under
avalanche phenomena. This is reminiscent of the extreme
resilience of the network under random removal of ver-
tices for γ ≤ 3 [5,16,17].
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