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Abstract
We examine the eigenvalue spectrum, ρ(µ), of the adjacency matrix of a
random scale-free network with an average of p edges per vertex using the
replica method. We show how in the dense limit, when p → ∞, one can
obtain two relatively simple coupled equations whose solution yields ρ(µ) for
an arbitrary complex network. For scale-free graphs, with degree distribution
exponent λ, we obtain an exact expression for the eigenvalue spectrum when
λ = 3 and show that ρ(µ) ∼ 1/µ2λ−1 for large µ. In the limit λ → ∞ we
recover known results for the Erdös–Rényi random graph.

PACS numbers: 05.10.−a, 05.40.−a, 05.50.+q, 87.18.Sn

1. Introduction

The properties of networks, and in particular random networks, underpin theories in a broad
range of information systems, engineering, physical science and social science research areas.
In the simplest random network, introduced by Erdös and Rényi [1], edges are introduced at
random between a fixed number of vertices N. More recently, Watts and Strogatz [2] have
introduced a small world network which contains both the local structure present in real space
networks and the short average path length characteristic of random graphs. In addition,
Barabási and Albert [3] have introduced a grown random graph, in which vertices and edges
are added over time. This results in a graph that has a power-law degree distribution, typical
of the degree distribution measured in a range of real world networks [4].

In order to understand the properties of these scale-free graphs, a number of authors have
developed random graphs, that on the one hand can be treated by the methods of equilibrium
statistical mechanics, but on the other have a power-law degree distribution typical of a grown
graph.

In particular, Goh et al [5] have introduced a static model which defines a grand canonical
ensemble for these graphs. Each vertex i is assigned a weight Pi and an edge is introduced
between vertices i and j with probability PiPj . A parameter p, which plays the role of the
chemical potential in the grand canonical ensemble, can be regarded as time when considering
the correspondence between the static graph and a grown graph. As p increases, so does the
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average number of edges per vertex. This model, which was studied in more detail in [6], is
more amenable to study by analytical methods than conventional growing random networks.

There have been a number of studies of the eigenvalue spectrum of the adjacency matrix
of scale-free graphs. In [7], a numerical study of a Barabási–Albert [3] scale-free graph found
that the eigenvalue density of the adjacency matrix ρ(µ) decayed like 1/µ5 for large µ. This
study also found that in the centre of the spectrum the density was triangular, rather than
semi-circular as in the Erdös–Rényi random graph.

In [8] a similar numerical study was undertaken, which obtained different results. In
particular it was found that the eigenvalue spectrum decayed as 1/µ4 and that the behaviour
in the centre of the spectrum was exponential.

In [9] a family of random graphs was considered, which includes the static model
introduced by Goh et al [8], and the conditions under which a giant component exists were
derived.

Finally, analytical work was undertaken in [10, 11]. Here an exact expression was obtained
for the eigenvalue density of a tree-like scale-free graph with degree distribution exponent λ.
When this was solved under a continuum approximation it was found that in the tail of the
eigenvalue spectrum ρ(µ) ∼ 1/µ2λ−1.

In this paper, we use the replica method to examine the eigenvalue spectrum of the
adjacency matrix for an arbitrary complex network. We show how, in principle, the eigenvalue
spectrum can be obtained for all complex networks, and recover known results for the Erdös–
Rényi graph. In the high density, high average degree limit, we obtain a simpler set of equations
which allow us to obtain the spectrum exactly for a complex network with a power-law degree
distribution with exponent 3. We also show how the tail of the eigenvalue spectrum is power
law with exponent 2λ − 1 for a complex network with a power-law degree distribution with
exponent λ.

In the next section we develop the analysis, and in section 3 present our results for an
arbitrary dense complex network and check that we recover known results for the Erdös–
Rényi graph. In section 4, the results for a scale-free graph are presented and in section 5 we
summarize our findings.

2. Solution by replicas

We follow the prescription of the static graph introduced in Goh et al [5]. Suppose that we
have a fixed number of vertices N and that each vertex i = 1, . . . , N is given a probability
Pi with

∑
i Pi = 1. The Erdös–Rényi graph corresponds to Pi = 1/N . To construct the

graph we take Pi ∼ i−α so that the resulting graph has a power-law degree distribution with
exponent λ = 1 + 1/α.

At each time step two vertices i and j are selected with probabilities Pi and Pj . If vertices
i and j are already connected, or i = j , then we do nothing. Otherwise, an edge is introduced
between vertices i and j. This process is repeated pN/2 times, where p/2 is the average number
of edges per vertex. Hence the probability that vertices i and j are joined by an edge, fij , is

fij = 1 − (1 − 2PiPj )
pN/2 ∼ 1 − exp(−pNPiPj ). (1)

When NPiPj � 1 for all i �= j which is the case when 0 < α < 1/2 or
λ > 3, fij ∼ 2pNPiPj . Then our fij reduces to that studied, e.g. in [6, 9].

The adjacency matrix A of this network has elements Aij = Aji with probability
distribution

P(Aij ) = fij δ(Aij − 1) + (1 − fij )δ(Aij ). (2)
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Placing Pi = 1/N gives the Erdös–Rényi random graph. In [12] the replica method was used
to study the eigenvalue spectrum of a matrix which was equivalent to the adjacency matrix
of the Erdös–Rényi graph, but where the non-zero elements took the values ±1 with equal
probability. We will follow the method used in [12, 13] by introducing a generating function

Z(µ) =
∫ +∞

−∞

(∏
i

dφi

)
exp


 i

2


µ

∑
i

φ2
i −

∑
ij

Aijφiφj




 (3)

where in order to ensure convergence, µ has a small positive imaginary part. Then the average
eigenvalue density ρ(µ) is given by

ρ(µ) = 2

Nπ
Im

∂〈log Z(µ)〉
∂µ

(4)

where 〈.〉 denotes an average over the disorder in the matrix Aij . To evaluate this average we
use the replica trick and write the nth power of the average of Z(µ) as

〈Zn(µ)〉 =
∫ +∞

−∞

(∏
i,α

dφiα

)
exp

{
iµ

2

∑
i,α

φ2
iα

+
∑
i<j

log

[
1 + fij

(
exp

(
−i
∑

α

φiαφjα

)
− 1

)]}
, (5)

where the replica index α = 1, . . . , n. Following [14], this logarithm can be written in the
form∑
i<j

log

[
1 + fij

(
exp

(
−i
∑

α

φiαφjα

)
− 1

)]

= pN
∑
i<j

PiPj

[
exp

(
−i
∑

α

φiαφjα

)
− 1

]
+ R. (6)

In [14], a general expression like the left-hand side of equation (6) was considered and it was
shown that the remainder R can be neglected as, when 2 < λ < 3 then R < O(N3−λ log N),
when λ = 3 then R < O((log N)2)) and when λ > 3 then R < O(1).

As a result, the average of the nth power of Z(µ) can be written as

〈Zn(µ)〉 =
∫ +∞

−∞

(∏
i,α

dφiα

)
exp


 iµ

2

∑
i,α

φ2
iα +

pN

2

∑
ij

PiPjf

(∑
α

φiαφjα

)
 (7)

with f (x) = exp(−ix) − 1. Following the method used in [12], we can expand f
(∑

α xα

)
as

f

(∑
α

xα

)
= f (0) +

∑
α

∑
r

brx
r
α +

∑
α<β

∑
r,s

brsx
r
αxs

β +
∑

α<β<γ

∑
r,s,t

brst x
r
αxs

βxt
γ + · · · . (8)

We introduce auxiliary fields q(r)
α , q

(r,s)
αβ , q

(r,s,t)
αβγ , . . . , which are conjugate to N

∑
i Pi

(
φα

i

)r
,

N
∑

i Pi

(
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i

)r(
φ

β

i

)s
, N

∑
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)r(
φ
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i

)s(
φ
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i

)t
, . . . respectively, and then we can rewrite

equation (7) as

〈Zn(µ)〉=
∫

DφDq exp


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In the limit N → ∞, the integrals over Dq can be evaluated to give

q(r)
α =

∑
i

Pi[(φα)r ]φ,i , (10)

q
(r,s)
αβ =

∑
i

Pi[(φα)r(φβ)s]φ,i , (11)

etc where [·]φ,i , which is dependent on the vertex index i, is defined by

[A{φα}]φ,i =
∫

dnφ A{φα} exp
( iµ

2

∑
α φ2

α + pNPig{φα})∫
dnφ exp

( iµ
2

∑
α φ2

α + pNPig{φα}) (12)

and

g{φα} =
∑

i

Pi

[
f

(∑
α

φαψα

)]
ψ,i

. (13)

Note that the saddle point values of
{
q(r)

α

}
,
{
q

(r,s)
αβ

}
, etc have the same functional dependence

on Pi as the order parameters for the spin glass on a generalized complex network [14]. The
generating function can now be written as

〈Zn(µ)〉 =
∫

Dq exp


−pN

2



∑

α

∑
r

br

(
q(r)

α

)2
+
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


+
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k

log
∫

dnφ exp

{
iµ

2

∑
α

φ2
α + pNPkg{φα}

})
. (14)

Consequently, we can obtain the eigenvalue density of this system from the equations

g{φα} =
∑

k

Pk

∫
dnψ

(
exp

(−i
∑

α ψαφα

)− 1
)

exp
( iµ

2

∑
α ψ2

α + pNPkg{ψα})∫
dnψ exp

( iµ
2

∑
α ψ2

α + pNPkg{ψα}) . (15)

Using equations (4) and (14) it is simple to show that the average density of states is

ρ(µ) = 1

nπ
Re

1

N

N∑
i=1

∑
α

[(φα)2]φ,i . (16)

Hence in principle we can obtain the average density of states for any static network by solving
equation (15) for g{φα} and using the result to obtain ρ(µ) from equation (16). Even using
the fact that we expect these solutions to be replica symmetric, this is impossible in general.
Instead we follow [12, 13] and look for solutions in the dense, p → ∞ limit, when g{φα} is
both quadratic and replica symmetric. In particular, when g{φα} takes the form

g{φα} = 1

2
a(µ)

∑
α

φ2
α (17)

then we have a self-consistent solution to equation (15) when

a = −1

n

∑
k

Pk

∑
α

[(φα)2]φ,k. (18)

In the limit n → 0 equation (16) and equation (18) can both be simplified to yield

ρ(µ) = − 1

π
Re

1

N

N∑
k=1

1

iµ + pNPka
(19)
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and

a =
N∑

k=1

Pk

iµ + pNPka
. (20)

3. Results

As in [12], in the limit p → ∞ the leading term in the eigenvalue spectrum can be calculated
by assuming that g{φα} is quadratic and replica symmetric. In order to do this, we find it
easier to re-parameterize equations (20) and (19) by introducing b = ipa/µ and µ2 = pE2.
This gives

b = 1

E2

N∑
k=1

Pk

1 − bNPk

(21)

and

ρ(µ) = − 1

µπ
Im

1

N

N∑
k=1

1

1 − bNPk

= − 1

µπ
Im b

N∑
k=1

Pk

1 − bNPk

. (22)

Using equation (21) this can be rewritten as

ρ(µ) = − E

π
√

p
Im b2. (23)

Thus equations (21) and (23) give a simple set of exact equations for the eigenvalue spectrum
of an arbitrary dense complex network. Placing Pk = 1/N yields

ρ(µ) = 1

2pπ

√
4p − µ2, (24)

the result obtained in [12] for the Erdös–Rényi graph in the limit p → ∞. By considering a
quartic term in equation (17) we can expand around this result to obtain the O(1/p) perturbative
corrections to ρ(µ) in equation (24), in agreement with [12].

4. Scale-free graphs

To calculate the eigenvalue spectrum of the static scale-free graph, we must, in general, take

Pk = (1 − α)Nα−1k−α (25)

which gives a static graph with a power-law degree distribution with exponent λ = 1 + 1/α

[5]. Inserting this form into equation (21) and replacing the summation by an integral in the
limit N → ∞ gives, after some rearrangement,

b = λ − 2

E2

∫ 1

0

uλ−2 du

u − (1 − α)b
. (26)

4.1. α = 1/2

When α = 1/2, λ = 3, it is simple to evaluate the integral in equation (26) and show that b
satisfies

b = 1

E2

[
1 +

b

2
log

(
1 − 2

b

)]
. (27)
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Figure 1. The eigenvalue spectrum, ρ(µ) against E, with µ = √
pE, for the scale- free, λ = 3,

complex network in the dense, p → ∞, limit. The inset is a double logarithmic plot of the
eigenvalue spectrum in the tail, where the line has a slope of −5.

Defining b = 2/(1 − r eiθ ) gives an equation for θ as a function of E,

W(θ) ≡ θ cos θ

sin θ
− log

(
θ

sin θ

)
+ 2E2 − 1 = 0 (28)

and r = θ/sin θ . As θ → 0,W(θ) → 2E2 and as θ → −π,W(θ) → −∞. Hence there
is a non-trivial solution θ(E) of equation (28) in the range −π < θ < 0 for all E. Thus the
eigenvalue density of this network in the dense, p → ∞, limit is given by

ρ(µ) = − E

π
√

p

8θ sin3 θ(sin θ − θ cos θ)

(sin2 θ − θ sin 2θ + θ2)2
(29)

where θ(E) is given by equation (28). Note that equation (29) is correctly normalized so that∫ ∞

−∞
ρ(µ) dµ = 1. (30)

As E → 0 then ρ(µ) → 4/(3π
√

p) and as E → ∞ then ρ(µ) ∼ 1/(
√

pE5). In figure 1
this eigenvalue density is plotted.

4.2. General α

Although we cannot solve equation (26) explicitly for general α, one can obtain the eigenvalue
spectrum in the large-µ limit. In this limit, the solutions for b come in conjugate pairs and we
should choose that with the negative imaginary part. Putting (1 − α)b = B ′ − iB ′′, where B ′

and B ′′ are both real, equation (26) becomes

B ′ − iB ′′ = (1 − α)(λ − 2)

E2

∫ 1

0

uλ−2{(u − B ′) − iB ′′}
(u − B ′)2 + (B ′′)2

du. (31)

When E → ∞, B ′ and B ′′ are small. The leading order of the real part of the integral on the
right-hand side of equation (31) is obtained by setting b = 0 while that of the imaginary part
is obtained by using the fact that as B ′′ → 0, B ′′/((u − B ′)2 + (B ′′)2) ∼ πδ(u − B ′). Thus
the integral on the right-hand side of equation (31) is 1/(λ − 2) − iπ(B ′)λ−2. Thus we have

B ′ = 1 − α

E2
and B ′′ = π(λ − 2)(B ′)λ−1, (32)

to leading order. Using these relations and equation (23) we finally obtain

ρ(µ) ∼ 2√
p

(λ − 2)λ−1

(λ − 1)λ−2

1

E2λ−1
∼ 1

µ2λ−1
(33)
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as µ → ∞. In the other limit, µ → 0, we can obtain a series by expanding equation (26) in
1/b. This yields

ρ(µ) ∼ (λ − 1)2

πλ(λ − 2)

{
1 − (λ − 1)2(λ4 + λ3 + 9λ2 − 5λ + 10)

8(λ − 2)2λ2(λ + 1)(λ + 2)
E2 + O(E4)

}
, (34)

illustrating that the eigenvalue spectrum ρ(µ) is analytic in the centre of the band.

5. Summary

We have shown how the eigenvalue spectrum of the adjacency matrix of an arbitrary static
graph can be obtained analytically using the replica method. This again reinforces the position
of the replica method as a systematic approach to a wide range of contemporary questions
within statistical physics. In particular we obtained a pair of simple exact equations which
yield the eigenvalue spectrum in the high density, p → ∞, limit for an arbitrary complex
network. Using these equations, we obtained known results for the Erdös–Rényi random
graph and found the eigenvalue spectrum exactly for the λ = 3 scale-free network. This
suggests that in the dense limit, the centre of the spectrum is convex, not triangular [7] or
exponential [8], as suggested by numerical studies of finite density networks. In the tail
of the distribution we found that ρ(µ) ∼ 1/µ2λ−1 in agreement with results obtained from
a continuum approximation to a set of equations derived for a tree-like scale-free graph
[10, 11]. This suggests that this form of the spectral tail may be universal for a range of
scale-free graphs, given that the same result was obtained analytically for both tree-like and
dense graphs, which could be regarded as being at opposite ends of the ‘ensemble’ of scale-free
graphs.

In [13] the spectral density of the Laplacian on an Erdös–Rényi graph was considered
using the replica method. In future, we intend to build on this work, and the techniques
developed in this paper, to study the spectral density of the Laplacian on arbitrary complex
networks. This will be an important development in the theory of transport and diffusion on
complex networks.
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