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Avalanche Dynamics Driven by Adaptive Rewirings in Complex Networks
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We introduce a toy model displaying the avalanche dynamics of failure in scale-free networks.
In the model, the network growth is based on the Barabási and Albert model and each node is
assigned a capacity or tolerance, which is constant irrespective of the node index. The degree of
each node increases over time. When the degree of a node exceeds its capacity, it fails and each link
connected to it is rewired to other unconnected nodes by following the preferential attachment rule.
Such a rewiring edge may trigger another failure. This dynamic process can occur successively, and
it exhibits a self-organized critical behavior in which the avalanche size distribution follows a power
law. The associated exponent is τ ≈ 2.6(1). The entire system breaks down when any rewired edges
cannot locate target nodes: the time at which this occurs is referred to as the breaking time. We
obtain the breaking time as a function of the capacity. Moreover, using extreme value statistics, we
determine the distribution function of the breaking time.
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Complex systems are composed of many constituents
that interact with each other or adapt to external per-
turbations [1, 2]. Recently, there have been increasing
attempts to describe such systems in terms of networks
[3–7], where nodes and links represent constituents and
their interactions, respectively. Many complex networks
in real systems follow a power-law Pd(k) ∼ k−γ in the
degree distribution, where degree is the number of links
connected to a given node [8]. Such a network is called
scale-free (SF) networks. SF networks are ubiquitous in
real world, whose examples include the Internet and the
world-wide web, metabolic networks, protein interaction
networks, co-authorship networks, etc.

It was studied that complex networks are robust
against the random removal of nodes, however, they are
vulnerable to the intentional removal of nodes with high
degree [9]. More severe damage can be caused by trig-
gering a few nodes, but the failure propagates to other
nodes in a cascading manner [10,11] Avalanche dynamics
occurs frequently in complex networks due to the small-
world feature of the system. The blackout of the power-
supply network in the United States in 1996 and 2003
is a typical example of such a cascading failure in com-
plex networks [12]. Internet traffic is another example.
In October 1986, during the first documented Internet
congestion collapse, the speed of the connection between
the Lawrence Berkeley Laboratory and the University of
California at Berkeley, which are separated by only 200
meters, decreased by a factor of 100 [13]. These are only
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a few instances; many others can be found in various
systems such as cultural fads, earthquakes, etc. Since
the subject of avalanche dynamics in complex systems is
interesting and intricate, it has been studied extensively
[14–19].

Here, we introduce a toy model exhibiting the
avalanche dynamics in complex networks. In this model,
when a node fails, the links connected to it are rewired
to other nodes, thereby preserving the total number of
links during the avalanche dynamics. Due to the dy-
namic rule, the overload imposed on a specific node is
shared among the other nodes globally as in the case of
global load sharing in the fiber bundle model.

Let us begin with the introduction of the model we
consider here. The model is based on the Barabási and
Albert (BA) model [8], in which at each time step, a
new node is added and its links are connected to m dis-
tinct existing nodes by following the so-called preferential
attachment (PA) rule. The newly added node is con-
nected to node i whose degree is ki with a probability
Πi = mki/

∑
j kj . In this case, the number of nodes at

t = 0 is taken as m and they are fully connected to each
other. Our model is modified from the BA model as fol-
lows: We assign a capacity or tolerance denoted by σ to
each node i. It is constant and independent of the node
index i. The capacity represents the maximum number
of connections that can be sustained by a node. As time
goes on, the degree of each node increases. When the
degree of a node exceeds its capacity σ, it is considered
to be overloaded and is deleted from the system. Then,
all the links connected to the failed node are rewired to
the other remaining nodes by applying the PA rule. By
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Fig. 1. Illustration of the dynamic rule of the model for the
case of σ = 5. When node 9 is newly added and connected
to node 1, the degree of node 1 exceeds its capacity σ = 5.
Then the node 1 is overloaded and deleted from the system,
and the links `1 ∼ `6 (bold lines) connected to it are rewired.
For example, the link `2 is rewired from 1 to one of the nodes
5, 6, 7, or 9. For example, it is rewired to node 6, pivoted on
node 2. The target is selected according to the PA rule.

other remaining nodes, we mean the nodes in the system
except the overloaded nodes. Multiple connections are
not allowed. The rewiring process, shown in Fig. 1, may
trigger the avalanche dynamics: when the degree of a
node that receives a rewired link of an overloaded node
exceeds σ, i.e. it becomes σ + 1, it fails and its links
must be rewired again. This process repeats until all
the overloaded nodes are eliminated. Thus, the degree
of each node that remains after the completion of the
avalanche process does not exceed the capacity σ. In the
absence of a target node to which a rewiring link should
be connected, the dynamics process is terminated and
the entire system is considered to be collapsed, and the
time at which occurs is referred to as the breaking time
and is denoted by tb. It is noteworthy that the avalanche
process does not spread locally from the triggering node,
but it occurs across the entire system. Moreover the
number of links is preserved during this process since
the load of the failed node is distributed to other nodes
globally. Otherwise, the system breaks down.

Using the model, we perform numerical simulations for
various values of σ. First we consider the breaking time
as a function of the capacity σ. As shown in Fig. 2,
we observe that that the mean breaking time 〈tb〉 aver-
aged over different ensembles increases at a higher rate
than the double exponential function. This result implies
that a small increment in the capacity of each node sig-
nificantly enhances the tolerance of the system. That is
because the overload is shared globally. Since the break-
ing time increases very rapidly, it is difficult to perform
numerical simulations for large values of σ.

The breaking time fluctuates considerably in Fig. 2,
wherein the error bar increases with increasing σ. Ex-
plicit values are listed in Table 1. Thus, it would be
meaningful to study the distribution of the breaking time
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Fig. 2. Plot of the logarithm of the mean breaking

time 〈tb〉 as a function of capacity σ on semi-logarithmic
scale. The linearly increasing behavior in this plot means
〈tb〉 ∼ exp exp(σ). The data show that the mean breaking
time seems to increase at a higher rate than the double ex-
ponential function.

Table 1. Summary table : capacity (σ), the mean breaking
time (〈tb〉), the root-mean-square of the breaking time (e)
and the estimated values of the constants a, b, and r in the
probability distribution function F (t) = 1 − exp[− exp(a −
bt−r)].

σ 〈tb〉 e a b r

7 19 3 2.0 34000 3.2

8 26 5 2.8 1900 1.96

9 38 7 2.68 3074 1.920

10 56 12 2.68 3470 1.766

11 87 21 2.57 4679 1.668

12 147 38 3.41 1222 1.165

13 283 81 3.69 1106 0.998

14 703 229 4.05 829 0.803

15 3073 1188 4.755 512 0.576

16 93075 45649 6.412 302 0.334

since it is a relatively sensitive probe of the underlying
breaking mechanism, which is often used as a tool for
reliability analysis. It is conventional to consider the
probability F (t) that a network fails at a time t, or less.
Then it is expressed as F (t) =

∫ t

0
Pb(tb)dtb. In Fig. 3(a),

we plot this distribution numerically, and observe that it
fits well the double exponential form,

F (t) = 1− exp[− exp(a− bt−r)], (1)

which is one of the known functions in extreme value
statistics. The constants a, b, and r depend on σ. Their
values are listed in Table 1. The double-exponential
functional form appears in mechanical failure problems
in the ductile regime [20]. This functional form is dif-
ferent from the Weibull distribution that occurs in the
brittle regime and fiber bundle model [21]

Next, we study the avalanche size distribution in which
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Fig. 3. (color online) (a) Breaking time distribution Pb(tb)
for σ = 13 on linear scales. (b) Probability of failure at time
t or less, and F (t) as a function of t. Inset: Determining
whether F (t) fits to the double exponential function.
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Fig. 4. Avalanche size distribution PA(s) for various σ
= 12 (¤), 13 (◦), 14 (4), 15 (O), and 16 (¦) on double
logarithmic scales. The slope of the linear fit (solid line) is
−2.6. The data are averaged over 105 configurations for σ =
12, 13, 14 and 15, but over 55000 configurations for σ = 16.

the avalanche size represents the number of nodes that
fail successively. This distribution follows the power-law,

PA(s) ∼ s−τ , (2)

with the exponent τ ≈ 2.6(1) (Fig. 4). The exponent
value is close to that obtained from the fiber bundle
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Fig. 5. Average avalanche size 〈s〉 as a function of time for
σ = 16.

model. We determine the mean avalanche size as a func-
tion of triggering time. As shown in Fig. 5, the mean
avalanche size is independent of the triggering time ex-
cept in the small t regime.

The exponent of the avalanche size distribution of
the toy model is close to the one obtained in the fiber
bundle model in SF networks [22]. In the original
one-dimensional fiber-bundle model, an external force is
evenly distributed to all the nodes in the network. For
σi of node i, a threshold value is assigned against fail-
ure. When the load is larger than the threshold, the
node fails irreversibly and its load is equally distributed
to its remaining nearest neighbors. This process contin-
ues until no more failure occurs. Thereafter the process
is repeated by applying a bigger force to the remaining
nodes. The study of the fiber bundle model has been ex-
tended to the case of complex networks. When a critical
force is applied, the avalanche size distribution follows
a power law. Recently Kim et al. [21] investigated the
fiber bundle problem for various complex networks such
as the Erdős and Rényi random network [23], the small-
world network [24] and the SF network. Their result
indicates that the patterns of the avalanche dynamics
occurring in such complex networks are almost the same
due to the small-world property: The effect of the lo-
cal load-sharing rule is negligible in complex networks.
Therefore the exponent of the avalanche size distribution
reduces to the mean field value, i.e., τ = 5/2.

As shown in Fig. 5, the avalanche size is independent
of time. This suggests ineffective correlation between
the degrees and the entire system is considered to be ho-
mogeneous. Moreover, the avalanche dynamics proceeds
globally by the rewiring dynamics. Thus, the exponent of
the avalanche size distribution of the toy model reduces
to the mean field value. Although the toy model has not
been applied to real world systems, the dynamic rule of
rewiring edges in the model is rather unique; it may re-
flect the adaptive behavior of each individual (node) in
the event of a failure. In such a case, the adaptive behav-
ior does not relieve itself, rather it may lead to other suc-
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cessive failures. This phenomenon can often be observed
in complex systems. For example, when a city encoun-
ters a shortage of electric power, the current power grid
system is designed to compensate instantly by drawing
power from neighboring cities. This may cause another
blackout or a cascading blackout throughout the country.
In order to prevent such avalanche dynamics induced by
the adaptive activity, one has to localize the failure.

This work is supported by the KRF grant MOEHRD
(R14-2002-059-010000-0) funded by the Korean govern-
ment.
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