PHYSICAL REVIEW E 66, 046107 (2002
Robustness of the in-degree exponent for the World-Wide Web
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We consider a stochastic model for directed scale-free networks following power laws in the degree distri-
butions in both incoming and outgoing directions. In our model, the number of vertices grow geometrically
with time with a growth rate. At each time step(i) each newly introduced vertex is connected to a constant
number of already existing vertices with the probability linearly proportional to in-degree distribution of a
selected vertex, angi) each existing vertex updates its outgoing edges through a stochastic multiplicative
process with mean growth rate of outgoing edgeand its variancer?. Using both analytic treatment and
numerical simulations, we show that while the out-degree expomgptdepends on the parameters, the
in-degree exponeny;, has two distinct valuesy;,=2 for p>g and 1 forp<g, independent of different
parameters values. The latter case has logarithmic correction to the power law. Since the vertex grgwth rate
is larger than the degree growth ragdor the World-Wide Web(WWW) nowadays, the in-degree exponent
appears robust ag,=2 for the WWW.
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[. INTRODUCTION ing on the details of the local event or follows an exponential
decay.

Complex system consists of many constituents such as Huberman and Adami¢HA) [8] proposed another sce-
individuals, substrates, and companies in social, biologicalpario for SF networks. In the HA model, the number of ver-
and economic systems, respectively, showing cooperativeces grows geometrically with time, and edges of each ver-
phenomena between constituents through diverse interatex evolve following a stochastic multiplicative process.
tions and adaptations to the pattern they crdat@]. Re- Combining these two ingredients leads to a power-law be-
cently, there have been considerable efforts to understanhvior in the degree distribution, where the exponent is de-
such complex systems in terms of random graph, consistingermined by the growth rates of vertices, and the mean de-
of vertices and edges, where vertideslge$ represent con- gree and the variance of the fluctuations arising in the
stituents(their interactions This approach was initiated by stochastic process of updating edges. While the HA and BA
Erdés and Rayl (ER) [3]. In the ER model, the number of models look fundamentally different at a first glance, they
vertices is fixed, while edges connecting one vertex to anare similar in essence. One can show easily that the multi-
other occur randomly with certain probability. The ER modelplicative process is reduced to the PA rule when the time
is, however, too random to describe complex systems in realependence of the total number of edges is the same as that
world. of the number of newly introduced vertices. Moreover, the

An interesting feature emerging in such complex systemstochastic process in the HA model might be related to the
is the scale-freg'SF) behavior in the degree distribution rewiring process in the extended model of the BA mdéél
P(k)~k™?, where the degrekis the number of edges inci- SF networks may be classified into undirected or directed
dent upon a given vertex. Barathaand Albert(BA) [4,5]  network whether directionality is assigned to edges or not.
introduced an evolving model illustrating SF network. In the Typical examples of undirected networks include the actor
BA model, the number of vertices increases linearly withnetwork[9], the author collaboration netwofl 0], and the
time, and a newly introduced vertex is connectedrt@l-  internet with equal uploading and downloading rafg|.
ready existing vertices, following the so-called preferentialDirected networks are also ubiquitous in real world such as
attachmentPA) rule that the vertices with more edges arethe World-Wide WedWWW) [8,12,13, the citation network
preferentially selected for the connection to the new vertes@f scientific paper§14], biological networks such as meta-
with the probability linearly proportional to the degree of Polic networks[15] and neural networkstc. Recently, Al-
that vertex. Then it is known that the degree distributionPertetal. [12] and Hubermaret al. [8] investigated the to-
follows P(k)~k 2 for the BA model. While the BA model Pology of the WWW extensively, and found that the in-
is meaningful as the first step to generate SF network, it i§€gree and the out-degree distributions of the WWW exhibit
too simple to be in accordance with real-world networks.POwer-law behaviors with different exponents, iB(kin)
Extended versions of the BA model have been introduced-k;,”™ and Po(Koy) ~k, 1o, respectively. Here the in-
[6,7], taking into account additional local events such as adddegreek;, (out-degreek,, ) means the number of edges inci-
ing new edges, or rewiring edges from one vertex to anothedent upon(emanating froma given vertex. Further studies
Depending on the frequency of these processes, the degrgE3,16,17 showed thaty;, is robust asy;,~2.1 for different
distribution either remains as SF with the exponent dependsystems, whiley,, varies depending on systems, ranging
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TABLE I. Numerical values of in-degree and out-degree expo-geometrically with growth rate, i.e.,
nents for various systems.

N(t)=N(t—=21)(1+p). 1)
Refs. System In-degree exponent Out-degree exponent
So the total number of vertices newly introduced at tine
Ref.[12]  nd. edu 21 2.45 pN(t—1). (i) m edges emanate from each new vertex,
Ref.[13] 2.1 2.38 pointing tom distinct old vertices following the PA rule. The
Ref.[17]  off-site 2.1 2.67 probability to connect to a vertgxis given by
Ref.[17] total 2.1 2.72
Kin,j(t—1)
Oisj=nen 2
from 2.4 to~2.7 as tabulated in the Table I. > King(t—1)
r=1

Theoretical studies for directed networks have less been
carried out compared with those for undirected networksWhere ki, i(t—1) means the in-degree number of edges of
When the directionality is assigned to edge in the BA model in.J g g

pointing from a new vertex to old ones, the in-degree and th%he?/vvsgriéjxaigm?\?; :m \i/x?:oariisrlnjm: dmetheoir::toe %elfrtgr?]t ﬁ:ecl?
out-degree distributions follovl?"m(kin)~ki;3 and P, (Kouw) g g edge p '

. M otherwise the in-degree number never grows with tiffie).
= &(kou— m), respectively, which is not relevant to the em- 9 9 (ie

pirical results for the WWW. Dorogovisev and Mend@s] each vertex updates its outgoing edges by either adding new

edges or deleting existing edges through a multiplicative sto-

performed a similar study using the rate equation, in which . _ )
the in-degree distribution follows a power law whereas theChaSth process. Led,;;(t) denotes the out-degree number

out-degree distribution is of thé function. More recently, of edges of the vertekat timet. Thenk,(t) evolves as

Krapivskygt al.[19] studied direpted SF netvyor_ks using the Kougi(t+ 1) =Koui (D[ 1+ & (t+1)], 3)

rate equation method for the simple case similar to the one

introduced by Tadi¢20] that at each time step, a vertex is where;(t) means the growth rate of the out-degree number

newly introduced and connected to an old vertex followingk,;(t) at timet, which fluctuates from time to time about

the PA rule with a certain probability and an internal directedmeang; ,

edge is connected between two vertices chosen following the

PA rule with the remaining probability. They obtained the Gt =gi+&(1), (4)

in-degree and the out-degree distributions analytically, both . . . .

of which exhibit power-law behaviors with different expo- where &(t) is assumec,j 0 Ee a white n0|se2 §at|sfy|ng

nents depending on the detail of the parameters they usetfi(D)=0 and(&(t)&;(t")) =07 616 ;, whereai is the

While their analytic treatment was successful in generating/@ance. The growth ratg; and the standard deviation

the empirical values of the out-degree and the in-degree ex0Uld vary in general for different vertices. HA, however,

ponents for the WWW by tuning the parameters, their modefSsumed thafsi} are uniform for different vertices, i.eg;

is unable to illustrate the robustness of the in-degree expo=9 andoij=o for all i. When{i(t+1)>0, the out-degree

nent for various systems because different parameters tufgimber at vertex is increased. Then we add,(t)&(t

different values ofy,, and y,,; at the same time. +1) new edges to the vertex pointing to'other distinct
In this paper, we introduce a stochastic model for directey®'tices which are not connected, following the PA rule

SF networks exhibiting power-law behaviors with distinct 9iven by Eq. (2). When ¢i(t+1)<0, we delete

exponents in both incoming and outgoing directions andouti (1) &i(t+1)| outgoing edges from the vertex ran-

present an analytic solution for the model. Through thisdomly.

study, we can illustrate why the in-degree exponent is robust

for different systems, while the out-degree exponent depends ll. THE OUT-DEGREE DISTRIBUTION

on the details of systems. This behavior occurs when the T .
growth rate of the number of vertices is large enough com; The out-degree distributioRe,(Ka) can be obtained by

pared with the effective growth rate of degree of each vertexfOIIOWIng the argument given by HA. The conditional prob-

This paper is organized as follows. In Sec. I, we will 32:1';{(%‘3(;03{;' t_m)v\tlnﬁtto‘“{‘:r';"‘fsati:'/g?i):ti+Tfor a
introduce a stochastic model. In Secs. lll and 1V, analytic b outi 9 y

solutions for the out-degree and the in-degree distributions [IN(Koy/ M) — go 7]
will be presented, respectively. In Sec. V, we will present theP ( kg, 7/m) = xp{ - > :
result of numerical simulations for the model in the vertex kout\/ZTr(r%T 2007

growth dominant and the degree growth dominant regimes, (5)
respectively. The final section will be devoted to the conclu-

The above distribution was obtained by applying the central

limit theorem for the variable Ik, (t)/ko{t—1)), so that

go and aﬁ in Eq. (5) are related tog and o2 as goy~¢

— a2, andod~o? respectively[21]. Since the density of
Let us introduce a directed SF network model as follows:vertices with ager is proportional top(7)~exp(—p7), the

(i) At each time step, the total number of vertices increasesut-degree distribution collected over all ages becomes

sions.

Il. THE MODEL
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_ IKin i (1) Kini(t—1)
Poul Kou) = f d7p(7) Poul Kouts T| m) ~ kouilom- (6) Igtl = N(t,i? I Lael(). (13
> kine(t=1)
where r=1
(2. om 2 Altogether the dynamic equation for the in-degree number of
You=1— %ﬁ“%zp% (7)  edges of the vertekis written as
g, (o
° ° IKini(t)  Kipi(t—1) D LoD Lot
We note that the out-degree exponent, depends on the gt NED [Lnent) + Lagd V)~ Lae(V)].
three parameterg, gy, andoy. Zl Kin  (t—1)
14
IV. THE IN-DEGREE DISTRIBUTION a4
The in-degree number of edges at a veiitéx increased The above equation can be rewritten as
as new edges are additionally pointed from other vertices to K i (1) mpN0)eP! x(1)
i, or decreased as already connected edges are deleted from —— =K, (t—1)| —————+dot 7|, (19

0 [}
other vertices. For the increased case, there are two types of 4 L(®) L(®)

occasions. The first is the case in which some of edges frofynere L (t) denotes the total number of incoming edges at
newly born vertices are connected to the veiteSince the  time
total number of edges generated from new vertices at time

is given by N

L(t)=2 Kini(1), (16)
Lyeut) =mpN(t—1), 8 !

the in-degree number of edges of the veitexolves as which behaves asymptotically as

pt
Kin,i(t) Kin,i(t—1) Ae t ff pP>do,
a T NCD Lnenl V- © L(t)~3 AsteP' if p=go, (17)

21 Kin(t—1) Aze%! if p<gy,

whereA;, A,, andAg are given as

Second is the case in which the veriereceives edges from

existing vertices as they update their outgoing edges. The mpN0)
total number of newly added outgoing edges is given by A= TErAL (18)
S A,=mpN(O 19
LaadD= 2 Kou(t=1) (1), (10 2=mPNO), 19
o and
wheregr(t) denotes the one whef)(t)>0. Then, the in- mpN0)
degree number of edges of the verteavolves as Az= . (20)
(90— Pp)
IkKin i (1 Kini(t—1 . . '
';'t'( ):N(tfl';‘*'( ) Load?). (11 x(t) in Eq.(15) is defined as
> kin(t—1) N
= XO= 2 kauni(t=1(& — €7D, (21

On the other hand, the decreased case occurs when other
vertices remove their connections to the verteXhis case Wwhere &' (t) [& (t)] denotes the noise fof;(t)>0 [&(t)
occurs wheny;(t)<0 for a vertexj #i, with £;(t) denoted ~<O]. Then using the stochastic prope(t)=0, we obtain
by £; (t). The total number of edges removed through thisthat
updating process is

(x(1))=0, (22)
N(t—1)
Lael= Z, Koui(t= 1)1 (0. (1 and
B,eP's; v if p>2(go+03l2),
Although the edges deleted are chosen randomly, the vertex ) BotePls. ., if D=2(g+ 02/2
with a higher in-degree number of edges has more incoming X(DX (1)~} E2t€7 et , P=2(go* 0o/2),
edges deleted because incoming edges were formed follow- Be?@ot ooty , if p<2(go+ a5l2),
ing the PA rule. Thus the deletion process leads to (23
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whereB,, B,, andB3 are given by
Pin( kina7'| I(in,O):

m2o2pN, kinV2mD2(e257—1)/25
Bi=————, (249
" 2(p-of-29p) [In(Kin/Kin0) = P71
Xexp — 5 7sr . (33
) ) 2D1(e”"=1)/2s
B,=m?ogpNo(1+p)?, (25
g So the in-degree distribution can be obtained through
an
t
maZpN Ptk = | p(9Pulkin Tlknodr. (34
0 0 (26) 0

By=—————.
> 2(08+290—p)
When Xt>1, it can be shown using the saddle point ap-
Thus x(t) plays a role of noise, and its variance depends orproximation that the in-degree distribution is of the form,
time.
The asymptotic behavior of the dynamic equation Eg. 1
(15) depends on relative magnitudes amgngy,, and 3. Pin(Kin) ~ K (Ink,)P/s7 D)
We consider every possible case below.
(i) When p=gy+ 03/2 (i.e., p=g), the stochastic term, which is valid as long as lk,<e®*'. Whenp=gj, Df is
the last term in Eq(15), is negligible in long time limit.  replaced byB3/A§.
Moreover, sinceN(t) andL(t) have the same time depen-  (jii) For p<g, (i.e., p<g—¢?/2), the dynamic equation

(39

dence, Eq(15) is simply reduced to of ki i(t) can be written as
IKin,i(1) IKin i (1) x(1)
T_pkin,i(t)- (27) T:kin,i(t) Qo+t m) (36)
Thus the in-degree number of edges of a vertearn attime  The variance can be written as
t=t; becomes
t)x(t’
Kin,i(t) =P, (28 szgeogt@,t' : (37)

L(t)?

Then the in-degree distribution becomes
with D3=B4/A3. Following the same step as used in the

d second case, we obtain that
Pin(kin) = ——[1= P(kin>Kin,) Il .=« (29)
akln,l in,i = Kin
9 m o Pln(kln) km(ln kin)(zgo /USJrl) . (38)
| P bk @O
! ! In short, when the growth rate of vertgxis larger than
with y,=2. the effective growth rate of edgegy+ 05/2, the in-degree
(i) When go<p<go+ 03/2 (i.e., g— o?/2<p<g), the distribution is independent of the detail of evolving net-
dynamic equation is reduced to asymptotically works, so that the in-degree exponent is robust for different
systems, while the out-degree exponent depends on the de-
Kini(1) x(t) tail. This is the case we observe in the real WWW because
pn =Kin,i(t)| p+ L) (31)  the number of webpages increases rapidly nowadays,

whereas average number of hyperlinks does rather at a
eglower rate due to limited space on webpage. When the num-
er of webpages is saturated in the future, the growthpate

will become moderated with the number of hyperlinds

Since(x(t))=0, one may regard the above equation as
stochastic log-normal dynamic equation with the variance,

(O x () much dominant. Then the in-degree distribution exhibits a
5 =D§e25‘5m, , (320  phase transition to the form E¢35) or (38), implying that
L(t) the hyperlink is much centralized to a few famous webpages.

The phase diagram is depicted in Fig. 1.
with D2=B3/A? ands=go+ 05/2—p. Sinces>0, the fluc-

tuation term cannot be ignored. Invoking the central limit
.\ L V. NUMERICAL SIMULATIONS
theorem, the conditional probability;,(ki,, ki), that
Kini=kin at timet=t;+ 7, givenk;,;=kj,o=1 att=t; be- It was reported 17] that the Web consisted dfi=203
comes X 10° documents from the viewpoint of Altavista, and the
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FIG. 1. Schematic phase diagram of various behaviors of the
in-degree distribution in the parameter spapegg).

average in-degree and out-degree number of edgegirare
=kou=7.22 as of May of 1999, ant~271x10° andk;,

FIG. 3. Plot of the in-degree and out-degree distributions drawn
in the cumulated way,P.,(k)=[¢P(k)dk, for the casesp
=0.010, g=0.017, ando®=0.051, belonging to the regiofil).

The numerical data for the out-degree distribution show the power-
law behavior with the exponeng,,~1.8, and those for the in-

=Kou=7.85 as of October of 1999. Based on this data, Wejegree distribution withy,,~1. a=0.0022 and=0.00016.
estimate very roughly the vertex and the mean degree growth
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rates to bep~0.059 andg~0.017 per month, respectively.
However, the fluctuation strengthis not known. Using the
estimated values gb andg, we perform numerical simula-
tions for the stochastic model following the HA idea, where
the variancesrg are chosen to be in the regiofi$ and(ll).

The simulation results are compared with the theoretical pre-
dictions. First, we choose the varianegs=0.052 and 0.021
belonging to the regioffl). As seen in Fig. 2, the in-degree
exponentsy;, are robust to bey,,~2 for both cases, while
the out-degree exponents,; are different from each other
asyou~2.7 for 03~0.052 andy,,~3.0 for03~0.146. The
simulation results are close to the theoretical predictions ac-
cording to Eq.(7), vour=2.7 and yq,~3.1, respectively.
Note that the deviation of the numerical simulation data from
the analytic solution for largk;,, are due to finite system size
effect. To see this, in the insets of Fig. 2, we show the in-
degree distributions for different system sizes for each case.
Indeed, the power-law region is more extended for larger
system sizes for both cases of Figsa)2and 2b). Second,

we choosg=0.010,g=0.017, andr3=0.041 belonging to
the region(ll). The power-law behavior for the in-degree
distribution appears for lardg,, with the exponenty;,~1 as
shown in Fig. 3, in agreement with the theoretical prediction
without the logarithmic correction. For the out-degree distri-
bution, the power-law behavior is also obtained with the ex-
ponenty,,~ 1.8, which is in agreement with the theoretical
value 1.8 according to Eq7).

FIG. 2. Plot of the in-degree and out-degree distributions drawn

in the cumulated way,P..(k)=J¢P(k)dk for the cases,p
=0.059,g=0.017, ands?=0.051 for(a), and o>=0.021 for (b).
Both cases belong to the regiéh. Insets: The in-degree distribu-
tions for different system size®=319 383 and 1 679 603 ifa),

andN=430671 and 1 375434 itb).

VI. CONCLUSIONS

We have introduced a stochastic model for directed SF
networks, which evolves with time. In our model, the evolu-
tion of outgoing edges follows the stochastic multiplicative
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process, while that of incoming edges does the preferentialith the parameter values estimated from the WWW in real
attachment. With this model, we could illustrate why the in-world.
degree exponent for the WWW is robust, independent of
different systems, while the out-degree exponent depends on ACKNOWLEDGMENTS
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