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We study structural feature and evolution of the Internet at the autonomous systems level.
Extracting relevant parameters for the growth dynamics of the Internet topology, we construct
a toy model for the Internet evolution, which includes the ingredients of multiplicative stochastic
evolution of nodes and edges and adaptive rewiring of edges. The model reproduces successfully
structural features of the Internet at a fundamental level. We also introduce a quantity called
the load as the capacity of node needed for handling the communication traffic and study its
time-dependent behavior at the hubs across years. The load at hub increases with network size
N as ∼ N1.8. Finally, we study data packet traffic in the microscopic scale. The average delay
time of data packets in a queueing system is calculated, in particular, when the number of arrival
channels is scale-free. We show that when the number of arriving data packets follows a power
law distribution, ∼ n−λ, the queue length distribution decays as n1−λ and the average delay
time at the hub diverges as ∼ N (3−λ)/(γ−1) in the N → ∞ limit when 2 < λ < 3γ being the
network degree exponent.
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In recent years, the Internet has become one
of the most influential media in our daily life,
going beyond its role as the basic infrastructure in
this technological world. Explosive growth in the

number of users and hence the amount of traffic
poses a number of problems which are not only
important in practice for, e.g. maintaining it free
from any undesired congestion and malfunctioning,
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but also of theoretical interests as an interdisci-
plinary topic [Pastor-Satorras & Vespignani, 2004].
Such interests, also stimulated by other disciplines
like biology, sociology and statistical physics, have
blossomed into a broader framework of network
science [Albert & Barabási, 2002; Dorogovtsev &
Mendes, 2003; Newman, 2003; Boccaletti et al.,
2006]. In this Letter, we first review briefly previ-
ous studies of Internet topology and the data packet
transport on global scale, and next study the deliv-
ery process in queueing system of each node embed-
ded in the Internet.

The Internet is a primary example of complex
networks. It consists of a large number of very het-
erogeneous units interconnected with various con-
nection bandwidths, however, it is neither regular
nor completely random. In their landmark paper,
Faloutsos et al. [1999] showed that the Internet at
the autonomous systems (ASes) level is a scale-free
(SF) network [Barabási et al., 1999], meaning that
degree k, the number of connections a node has,
follows a power-law distribution,

Pd(k) ∼ k−γ . (1)

The degree exponent γ is subsequently measured
and confirmed in a number of studies as γ ≈ 2.1(1).
The power-law degree distribution implies the pres-
ence of a few nodes having a large number of con-
nections, called hubs, while most other nodes have
a few number of connections.

It is known that the degrees of the two
nodes located at each end of a link are corre-
lated to each other. As the first step, the degree-
degree correlation can be quantified in terms of
the mean degree of the neighbors of a given
node with degree k as a function of k, denoted
by 〈knn〉(k) [Pastor-Satorras et al., 2001], which
behaves in another power law as

〈knn〉(k) ∼ k−ν . (2)

For the Internet, it decays with ν ≈ 0.5 measured
from the real-world Internet data [Meyer, 1997;
NLANR project, 1998].

The Internet has modules within it. Such
modular structures arise due to regional control
systems, and often form in a hierarchical way
[Eriksen et al., 2003]. Recently, it was argued that
such modular and hierarchical structures can be
described in terms of the clustering coefficient. Let
Ci be the local clustering coefficient of a node
i, defined as Ci = 2ei/ki(ki − 1), where ei is
the number of links present among the neighbors

of node i, out of its maximum possible number
ki(ki−1)/2. The clustering coefficient of a network,
C, is the average of Ci over all nodes. C(k) means
the clustering function of a node with degree k,
i.e. Ci averaged over nodes with degree k. When
a network is modular and hierarchical, the clus-
tering function follows a power law, C(k) ∼ k−β

for large k, and C is independent of system size
N [Ravasz et al., 2002; Ravasz & Barabási, 2003].
For the Internet, it was measured that the clus-
tering coefficient is CAS ≈ 0.25 and the exponent
β ≈ 0.75 [Vázquez et al., 2002].

There are many known models to mimic the
Internet topology. Here, we introduce our stochas-
tic model evolving through the following four
rules. This model is based on the model pro-
posed by Huberman and Adamic [1999], which is
a generic model to reproduce an uncorrelated SF
network and we modify it by adding the adapta-
tion rule [Goh et al., 2002], which results in gener-
ating the degree-degree correlations. The rules are
as follows: (i) Geometrical growth: At time step
t, geometrically increased number of new nodes,
αN(t − 1), are introduced in the system with
the empirical value of α = 0.029. Then follow-
ing the empirical fact 〈knew〉t ≈ 1.34, each of
newly added nodes connects to one or two exist-
ing nodes according to the preferential attachment
(PA) rule [Barabási & Albert, 1999]. (ii) Acceler-
ated growth: Each existing node increases its degree
by the empirical value factor of ≈ 0.035. These new
internal links are also connected following the PA
rule. (iii) Fluctuations: Each node disconnects exist-
ing links randomly or connects new links following
the PA rule with equal probability. The variance
of this noise is given as σ2 ≈ (0.14)2 measured
from empirical data. (iv) Adaptation: When con-
necting in step (iii), the PA rule is applied only
within the subset of the existing nodes consisting of
those having larger degree than the one previously
disconnected. This last constraint accounts for the
adaptation process. The adaptive rewiring rule is
depicted in Fig. 1.

Through this adaptation model, we can repro-
duce generic features of the Internet topologies suc-
cessfully which are as follows: First, the degree
exponent is measured to be γmodel ≈ 2.2, close
to the empirical result γAS ≈ 2.1(1). Second, the
clustering coefficient is measured to be Cmodel ≈
0.15(7), comparable to the empirical value CAS ≈
0.25. Note that without the adaptation rule, we only
get C ≈ 0.01(1). The clustering function C(k) also
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(a) (b)

Fig. 1. Shown is the adaptive rewiring rule. A node (white)
detaches one of its links from a node (green or gray) in (a),
and attaches it to one of the nodes (green or gray) with degree
3, larger than 2 of the detached node, in (b).

behaves similarly to that of the real-world Internet,
specifically, decaying in a power law with β ≈ 1.1(3)
roughly for large k [Goh et al., 2004], but the over-
all curve shifts upward and the constant behav-
ior for small k appears. Third, the mean degree
function 〈knn〉(k) also behaves similarly to that of
the real-world Internet network, but it also shifts
upward overall. In short, the behaviors of C(k) and
〈knn〉(k) of the adaptation model are close to those
of the real Internet AS map, but with some discrep-
ancies described above. On the other hand, recently
another toy model [Serrano et al., 2005] has been
introduced to represent the evolution of the Inter-
net topology. The model is similar to our model
in the perspective of including the multiplicative
stochastic evolution of nodes and edges as well as
adaptive rewiring of edges. However, the rewiring
dynamics is carried out with the incorporation of
user population instead of degree of node that we
used here.

Next, we study the transport of data packet
on the Internet. Data packets are sent and received
over the net constantly, causing momentary local
congestion from time to time. To avoid such unde-
sired congestion, the capacity, or the bandwidth,
of the routers should be as large as it can han-
dle the traffic. First we introduce a rough measure
of such capacity, called the load and denoted as
� [Goh et al., 2001]. One assumes that every node
sends a unit packet to everyone else in unit time and
the packets are transferred from the source to the
target only along the shortest paths between them,
and divided evenly upon encountering any branch-
ing point. To be precise, let �s→t

i be the amount of
packet sent from s (source) to t (target) that passes
through the node i (see Fig. 2). Then the load of
a node i, �i, is the accumulated sum of �s→t

i for all
s and t, �i =

∑
s �=t �s→t

i . In other words, the load

Fig. 2. The load at each node due to a unit packet transfer
from the node s to the node t, �s→t

i . In this diagram, only
the nodes along the shortest paths between (s, t) are shown.
The quantity in parentheses is the corresponding value of the
load due to the packet from t to s, �t→s

i .

of a node i gives us the information of how much
the capacity of the node should be in order to main-
tain the whole network in a free-flow state. However,
due to local fluctuation effect of the concentration
of data packets, the traffic could be congested even
for the capacity of each node being taken as its load.
The distribution of the load reflects the high level
of heterogeneity of the Internet: It also follows a
power law,

Pl(�) ∼ �−δ, (3)

with the load exponent δ ≈ 2.0 for the Internet. For
comparison, the quantity “load” is different from
the “betweenness centrality” [Freeman, 1977] in its
definition. In load, when a unit packet encounters a
branching point along the shortest pathways, it is
divided evenly with the local information of branch-
ing number, while in betweenness centrality, it can
be divided unevenly with the global information of
the total number of shortest pathways between a
given source and target [Goh et al., 2005]. Despite
such a difference, we find no appreciable difference
in practice for the numerical values of the load and
the betweenness centrality for a given network.

The load of a node is highly correlated with its
degree. This suggests a scaling relation between the
load and the degree of a node as � ∼ kη and the
scaling exponent η is estimated as η = 1.06 ± 0.03
for January 2000 AS map [Vázquez et al., 2002;
Goh et al., 2004]. In fact, if one assumes that the
ranks of each node for the degree and the load are
the same, then one can show that the exponent η
depends on γ and δ as η = (γ − 1)/(δ − 1) with
γ ≈ 2.1 and δ ≈ 2.0, and we have η ≈ 1.1, which is
consistent with the direct measurement.

The time evolution of the load at each AS is
also of interest. Practically, how the load scales with
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the total number of ASes (the size of the AS map)
is important information for the network manage-
ment. In Fig. 3, we show �i(t) versus N(t) for 5 ASes
with the highest rank in degree, i.e. 5 ASes that have
largest degrees at t = 0. The data of {�i(t)} shows
large fluctuations in time. Interestingly, the fluctua-
tion is moderate for the hub, implying that the con-
nections of the hub are rather stable. The load at
the hub is found to scale with N(t) as �h(t) ∼ N(t)µ,
but the scaling shows a crossover from µ ≈ 2.4 to
µ ≈ 1.8 around t ≈ 14.

Internet traffic along the shortest pathways
yields inconvenient queue congestions at hubs in
SF networks. Many alternative routing strategies
have been introduced to reduce the load at hub and
improve the critical density of the number of packets
displaying the transition from free-flow to congested
state [Tadić & Turner, 2004; Tadić & Rodgers, 2002;
Arenas et al., 2001; Holme, 2003; Echenique et al.,
2004; Schäfer et al., 2006; Duch & Arenas, 2006;
Sreenivasan et al., 2006].

Transport of data packets also relies on queue-
ing process of an individual AS. Here we extend
existing queueing theory [Gross & Harris, 1998] to
the case where arrival channels are multiple, in par-
ticular, when their number distribution follows a
power law, aiming at understanding the transport
in SF networks. For simplicity, we assume that the
arrival and processing rates of an individual chan-
nel are the same, and they are independent of the
degree of a given AS. Time is discretized and unit
time is given as the inverse of the rate.
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Fig. 3. Time evolution of the load versus N(t) at the ASes
of degree-rank 1 (©), 2 (�), 3 (♦), 4 (�) and 5 (×). The
dashed line for larger N has slope 1.8, drawn for the eye.

Delay of packet delivery in our queueing pro-
cess originates from two sources. For the one, owing
to multiple arriving channels, multiple packets can
arrive at a given queueing system in a unit time
interval, and are accumulated in the buffer. For
example, gray circles in Fig. 4 represent such a case.
This type of delay is referred to as the delay type 1
(DT1) below. For the other, the delay is caused by
preceding packets in the buffer, which can happen
under the first-in-first-out rule. The hatched circles
in Fig. 4 demonstrate this case. This case is referred
to as the delay type 2 (DT2). Then any delay can
be decomposed into the two types. The black circle
in Fig. 4 is such a packet, delayed by both DT1 and
DT2. We calculate the average delay time for each
type, separately, and combine them next.

To proceed, we first define pn as the probability
that n packets arrive at a given queueing system at
the same time. For the DT1 case, if qm denotes the
probability that a packet is delayed m time steps,
we find

qm = p0δ0,m +
∞∑

n=m+1

pn

n
, (4)
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ch
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ls

arrival time
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td2 3 5 6 7 8 91 4 10 ...
processing time
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Fig. 4. (a) Snapshot inside buffer with arriving packets.
Each row represents a communication channel, and circles
therein are the sequence of incoming packets. The integers
on the horizontal axis indicate arriving time-steps of each
packet. Open circles stand for packets not delayed. Packets
delayed are represented by three kinds of filled circles accord-
ing to their own delaying mechanism. See text for details. The
consequent delivery sequence is shown in (b) with processing
time-step.
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where δi,j is the Kronecker delta function. Then,
the average of delay time steps through the DT1
process is obtained as

〈m〉q =
∞∑

n=2

pn

n

n−1∑

m=1

m =
〈n〉p − 1 + p0

2
, (5)

where 〈· · ·〉q (〈· · ·〉p) is the average with respect to
the probability qm (pn).

For the DT2 case, we introduce rb(t) as the
probability that a packet arrived at time t is delayed
b time steps by preceding delayed packets. In the
steady state, we obtain that

rb′ =
b′+1∑

b=0

pb′−b+1rb + p0r0δ0,b′ . (6)

By using the generating functions R(z) ≡∑∞
b=0 rbz

b and P(z) ≡ ∑∞
n=0 pnzn, we obtain that

R(z) [z − P(z)] = p0r0(z − 1), (7)

with p0r0 = 1 − 〈n〉p.
The next step is to combine the two types of

delays. To this end, we define wτ as the proba-
bility that a unit packet is delayed by τ . Then
wτ =

∑τ
m=0 qmrτ−m since DT1 and DT2 are sta-

tistically independent. From this, the average delay
time is obtained as

〈τ〉w ≡
∞∑

τ=0

τwτ =
〈n〉p − 1 + p0

2
+

〈n2〉p − 〈n〉p
2(1 − 〈n〉p) .

(8)

Thus, a critical congestion occurs when 〈n〉p =
1, at which the delay time diverges. The sin-
gular behavior in the form of (1 − 〈n〉p)−1 was
observed numerically in the study of directed traf-
fic flow in Euclidean space [Mukherjee & Manna,
2005].

We now consider the case where the num-
ber of arriving data packets follows a power law,
pn ∼ n−λ. In fact, nonuniformity of the number
of data packets arriving at a given node gives rise
to self-similar patterns as is well known in com-
puter science [Leland et al., 1994]. Precise value of
the exponent λ has not been reported yet. More-
over, it is not known if the exponent is universal,
independent of bandwidths or degrees in the SF net-
work. The relation of λ to the load exponent δ, if
there is any, is not known either.

If λ < 3, 〈n2〉p diverges. For such a power-law
distribution, its generating function P(z) develops
a singular part and takes the form, when 2 < λ < 3,

P(z) = 1 − 〈n〉p(1 − z) + a(1 − z)λ−1

+O((1 − z)2), (9)

where a is a constant. By using the relation between
P(z) and R(z) from Eq. (7), we obtain that

R(z) = 1 − a

1 − 〈n〉p
(1 − z)λ−2 + O (1 − z) . (10)

Therefore, the probability rb in the delay of the DT2
behaves as rb ∼ b1−λ for large b. In other words, the
DT2 delay distribution decays slower than that of
incoming packets, pn, and 〈τ〉w ∼ 〈b〉r becomes infi-
nite even when 〈n〉p < 1.

On the other hand, in real finite scale-free net-
works such as the Internet with the degree exponent
γ, pn at the hub has a natural cut-off at n ∼ kmax ∼
N1/(γ−1), in which case we have 〈n2〉p ∼ k3−λ

max . Thus
from Eq. (8) the average delay time at the hub
scales as

〈τ〉w ∼ k3−λ
max ∼ N (3−λ)/(γ−1) (11)

for 2 < λ < 3.
In the real-world Internet, the bandwidth of

each AS is not uniform. Nodes with high band-
width are located at the core of the network,
forming a rich club [Zhou & Mondragon, 2004;
Colizza et al., 2006], however, their degrees are
small. Whereas, nodes with large degree are located
at the periphery of the network with low band-
width [Li et al., 2005]. Therefore, our analysis of
the average delay time has to be generalized
incorporating the inhomogeneous bandwidths and
arrival rates [Lee et al., unpublished].

In summary, in the first part of this Letter, we
have reviewed the previous studies of topological
properties of the Internet and introduced a minimal
model, the adaptation model to reproduce the topo-
logical properties. Next we studied transport phe-
nomena of data packets traveling along the shortest
pathways from source to destination nodes in terms
of the load. In the second part, we studied the deliv-
ery process of data packets in the queueing system,
in particular, when arrival channels are diverse fol-
lowing the scale-freeness in the degree distribution.
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