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The two-step contagion model is a simple toy model for understanding pandemic outbreaks that
occur in the real world. The model takes into account that a susceptible person either gets im-
mediately infected or weakened when getting into contact with an infectious one. As the number
of weakened people increases, they eventually can become infected in a rapid cascading process
and a pandemic outbreak occurs. The time required to reach such a pandemic outbreak allows for
intervention and is often called golden time. Here we find that there exist two types of golden times
in the two-step contagion model, which scale as O(N1/3) and O(N1/4) with the system size N on
Erdős-Rényi networks. They are distinguished by the initial number of infected nodes, o(N) and
O(N), respectively. These golden times are universal even in other models showing discontinuous
transitions induced by cascading dynamics. We hope that understanding this size dependency of
the golden time is useful for controlling pandemic outbreak.

PACS numbers: 89.75.Hc, 64.60.ah, 05.10.-a

I. INTRODUCTION

Epidemic spread of diseases and rumors and their con-
trol and containment have become a central issue in
recent years as the real world becomes ”smaller”. It
is a general observation that there is a slow phase in
the spreading process before the sudden pandemic out-
break [1]. This slow period is called golden time as it
allows for intervention, which is much more difficult af-
ter the disease becomes global. Modeling of epidemic
spread with essential factors is necessary to control catas-
trophic outbreaks within this golden time. To this end,
several epidemic models have been investigated on com-
plex networks, for instance, the susceptible–infected–
removed (SIR) model [2, 3] and the susceptible–infected–
susceptible (SIS) model [4]. Analytical and numeri-
cal studies of those models revealed that a continuous
phase transition occurs on Erdős-Rényi (ER) random
networks [5]. Thus, abrupt pandemic outbreaks on a
macroscopic scale, which often occur in the real world,
cannot be reproduced using those models.

Considerable effort has been devoted recently to con-
struct mathematical models that exhibit a discontinuous
epidemic transition at a finite transition point on com-
plex networks. A natural way is to appropriately ex-
tend the conventional SIR and SIS models. For instance,
an extended SIR model includes more than one infected
state of different pathogens that are cooperatively acti-
vated in contagion: A person who is suffering from the flu
can be more easily infected by pneumonia. This model
is referred to as a cooperative contagion model [6]. Sim-
ilar instances include a two-step contagion process. A
patient becomes weakened first and then becomes sick.
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This model is referred to as the susceptible–weakened–
infected–removed (SWIR) model [7–14]. In another in-
stance of modified SIR models, a network evolves by
rewiring links at a certain rate during the spread of con-
tagion [15]. The rewiring takes into account the mobility
of humans. Then, epidemic spread can be accelerated as
the rewiring rate is increased, which can lead to a discon-
tinuous transition representing the pandemic outbreak.

When diseases spread, we need to keep susceptible peo-
ple separate from infected patients or vaccinate the sus-
ceptible people before the diseases spread on a macro-
scopic level. A recent study [16] showed that for the
SWIR model on ER networks, a system exhibits a long
latent period (called a golden time) within which mea-
sures can be taken, beyond which the disease spreads
explosively over the system at a macroscopic level. Es-
timating the golden time is important for the preven-
tion of pandemic outbreaks. Moreover, it is necessary
to get early-warning signals if a critical threshold is ap-
proached [17].

It was revealed [16] that when a disease starts spread-
ing from a single node, the golden time nc scales as
nc(N) ∼ N1/3. Here we reconsider this problem and
represent the pattern of disease transmission using a non-
linear mapping. We show that the linear and nonlinear
terms of the nonlinear mapping separately behave dy-
namically well. The linear term is responsible for one-
step contagion without weakened states and the nonlin-
ear term describes the two step contagion, which includes
weakened state. Thus, the previous result of N1/3 for
the golden time is consistent with the characteristic size
of the giant cluster generated in the SIR model, thus it
has got verified within this new framework. Next, we
consider another case, which is the main concern of this
paper, in which an epidemic starts to spread from en-
demic multiple seeds of O(N) on ER networks. In this
case, fluctuations induced by stochastic process of disease
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transmission in the early time regime change the scaling
of the golden time to nc(N) ∼ N1/4. We estimate this
scaling behavior using the saddle-node bifurcation the-
ory [18] and discuss the underlying mechanism.

We also notice that while disease spreads across the
system within those golden times, the population of
weakened nodes is accumulated, which is a generic fea-
ture of the SWIR model. Without such a population, a
pandemic outbreak cannot occur. Accordingly, we pro-
pose that the population of weakened nodes can serve
as an indicator of the early-warning signal. If such pop-
ulation decreases with time in real world, a pandemic
outbreak would not occur.

Finally, we show that the size dependence of the golden
time is universal in other models showing discontinuous
percolation transitions into an absorbing state induced
by cascade dynamics [19], for instance, k-core percola-
tion [20–23] and the threshold model [24, 25].

This paper is organized as follows: We first describe
the SWIR model and set up the rate equation of the
epidemic dynamics in Sec. II. Next, we derive a nonlinear
mapping of epidemic spread in the SWIR model with a
single seed in Sec. IIA. We show that the roles of the
linear and nonlinear terms are well separated. In Sec.
IIB, we derive a nonlinear mapping of epidemic spread
for the case of multiple seeds and obtain the golden time.
In Sec. III, we obtain the golden times for the multiple-
seed case for k-core percolation and the threshold model
and argue that the size dependence of the golden time is
universal. A summary is presented in Sec. IV.

II. THE SWIR MODEL

The SWIR model is a generalization of the SIR model
to include two states, a weakened state (denoted as W )
and an infected state (I), between the susceptible state
(S) and recovered state (R), instead of a single infected
state I alone, as in the SIR model. Nodes in state W are
involved in the reactions S+I →W+I and W+I → 2I,
which occur in addition to the reactions S + I → 2I and
I → R in the SIR model. At each discrete time step n,
the following processes are performed. (i) All the nodes
in state I are listed in random order. (ii) The states
of the neighbors of each node in the list are updated
sequentially as follows: If a neighbor is in state S, it
changes its state in one of two ways: either to I with
probability κ or to W with probability µ. If a neighbor
is in the state W , it changes to I with probability η,
where κ, µ, and η are the contagion probabilities for the
respective reactions. (iii) All nodes in the list change
their states to R. This completes a single time step, and
we repeat the above processes until the system reaches
an absorbing state in which no infectious node is left in

the system. The reactions are summarized as follows:

S + I
κ−→ I + I, (1)

S + I
µ−→W + I, (2)

W + I
η−→ I + I, (3)

I
1−→ R. (4)

In an absorbing state, each node is in one of three
states, the susceptible, weakened, or recovered state. We
define PS(`) as the conditional probability that a node
remains in state S in the absorbing state, provided that
it has ` neighbors in state R and was originally in state S.
This means that the node remains in state S even though
it has been in contact ` times with these ` neighbors in
state I before they change their states to R. Thus, we
obtain

PS(`) = (1− κ− µ)`. (5)

Next, PW (`) is similarly defined as the conditional prob-
ability that a randomly selected susceptible node is in
state W after it contacts ` neighbors in state I before
they change their states to R. The probability PW (`) is
given as

PW (`) =

`−1∑
n=0

(1− κ− µ)nµ(1− η)`−n−1. (6)

Finally, PR(`) is the conditional probability that a node
has been infected in any state, either I or R, provided
that it was originally in state S and its ` neighbors are
in state R in the absorbing state. Using the relation
PS(`) + PW (`) + PR(`) = 1, one can determine PR(`) in
terms of PS and PW .

A. The single-seed case

First, we consider the case in which the number of
infectious nodes is o(N); that is, the density of initial
seeds is ρ0 = 0 in the thermodynamic limit. The order
parameter m indicating whether a randomly chosen node
is in state R after the system falls into an absorbing state
is given using the local tree approximation as

m =

∞∑
q=1

Pd(q)

q∑
`=1

(
q

`

)
u`(1− u)q−`PR(`), (7)

where Pd(q) is the probability that a node has degree q,
and u is the probability that an arbitrarily chosen edge
leads to a node in state R or I but not infected through
the chosen edge in the absorbing state. In this case, the
SWIR model exhibits a mixed-order transition [13] at a
transition point κc when the mean degree is larger than
a critical value. The order parameter displays a discon-
tinuous transition from m(κc) = 0 to m0, whereas other
physical quantities such as the outbreak size distribution
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FIG. 1. Schematic plots of the order parameter m(κ) versus
κ for (a) ρ0 = 0 (the single-seed case) and (b) ρ0 > 0 (the
multiple-seed case). (a) Even though κ is increased, the order
parameter remains zero up to a transition point κc. However,
at κc, it remains at m = 0 or jumps to m0. For (b), as κ is
increased, m(κ) gradually increases from ρ0 to a finite value
md at κc. At κc, m(κ) remains at md or jumps to mu.

exhibit critical behavior. The behavior of the order pa-
rameter m(κ) as a function of κ is schematically shown
in Fig. 1(a).

We are interested in how infected nodes spread as a
function of the cascade step n when the order parameter
jumps. We define un similarly to u but at time step n.
The probability un+1 can be derived from un as follows:

un+1 =

∞∑
q=1

qPd(q)

z

q−1∑
l=0

(
q − 1

`

)
u`n(1− un)q−1−`PR(`)

≡ f(un), (8)

where the factor qPd(q)/z is the probability that a node
connected to a randomly chosen edge has degree q. As
a particular case, when the network is an ER network
having a degree distribution that follows the Poisson dis-
tribution, i.e., Pd(q) = zqe−z/q!, where z =

∑
q qPd(q) is

the mean degree, the function f(un) is reduced as follows:

f(un) = 1−
(

1− µ

κ+ µ− η

)
e−(κ+µ)zun− µ

κ+ µ− η
e−ηzun .

(9)
We remark that on ER networks, un in the limit n→∞
becomes equivalent to m obtained from Eq. (7).

We pick up the contribution of the reaction S+I → 2I
from Eq. (9) but neglect the contribution of the reaction
W + I → 2I. Then, the probability that a node be-
comes directly infected by ` infectious neighbors, which

is denoted by P
(S→I)
R (`), is given as

P
(S→I)
R (`) =

`−1∑
m=0

(1−κ−µ)mκ =
κ

κ+ µ
[1− (1−κ−µ)`].

(10)
Applying the formula for the Poisson degree distribution
to Eq. (8), we obtain that

f (S→I)(un) =
κ

κ+ µ

[
1− e−(κ+µ)zun

]
. (11)

Because the order parameter increases from m = 0, we
assume that un is small in the early time regime. Thus,

u
(S→I)
n+1 = zκun − au2n +O(u3n), (12)

where a ≡ κ(κ + µ)z2/2. Actually, the coefficient zκ of
the first-order term is the mean branching ratio in the
early time regime. When the critical branching (CB)
process occurs, the mean branching ratio becomes unity,
so the transition occurs at κc = 1/z. On the other hand,
the discrete mapping (12) at κc may be rewritten in the
form of a saddle-node bifurcation, u̇(S→I) = −au2, where
u is a function of the continuous time variable n and the
overdot denotes differentiation with respect to it. Be-
cause a > 0, u∗ = 0 is a stable fixed point for u ≥ 0, and
this point represents the fixed point of the SIR model,
indicating a second-order transition.

Next, we consider the two successive reactions S+I →
W + I and W + I → 2I, in which a susceptible node
becomes infected in two steps and eventually recovers.
Because a node can be infected either by the reaction
S+I → 2I or by the reactions S+I →W+I andW+I →
2I, the probability f (S→W→I)(un) can be obtained using
the relation

f (S→W→I)(un) = f(un)− f (S→I)(un) (13)

as

f (S→W→I)(un) =
µ

κ+ µ

[
1 +

η

κ+ µ− η
e−(κ+µ)zun

]
− µ

κ+ µ− η
e−ηzun . (14)

Again, using un � 1, we obtain that

u
(S→W→I)
n+1 = bu2n +O(u3n), (15)

where b ≡ µηz2/2. Here we note that the first-order term
O(un) is absent. This discrete mapping is rewritten in
the form of a transcritical bifurcation, u̇ = −u + bu2.
There exist one stable fixed point u∗ = 0 and one unsta-
ble fixed point u∗ = 1/b. For 0 < u < 1/b, the dynamics
flows into u∗ = 0, whereas for u > 1/b, it flows out from
u∗ = 1/b. Combining Eqs. (12) and (15), we obtain that

un+1 = un + (b− a)u2n +O(u3n). (16)

Thus, u̇ = (b−a)u2. When b−a < 0, i.e., µη < κ2c +κcµ,
the fixed point u∗ = 0 is stable, and thus a continuous
transition occurs. Otherwise, the fixed point u∗ = 0 is
unstable, and a discontinuous transition occurs. The con-
dition µη > κ2c+κcµ for a discontinuous transition is con-
sistent with that previously obtained using the Landau–
Ginzburg approach [7, 13].

When contagion starts from a single infectious node, its
spread in the early time regime is governed by the linear
term of Eq. (16). It proceeds in the form of a CB tree [16].
Specifically, when n is small (in the early time regime),
the mean branching ratio (un+1 − un)/(un − un−1) is
almost unity, and the main contribution is that of the
reaction S + I → 2I. However, as time passes, the con-
tribution of the nonlinear term −au2n for the reaction
S + I → 2I increases gradually, so the mean branch-
ing ratio decreases slowly. However, owing to the slow
spread of CB process, the decrease is hardly noticeable
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in the early time regime. This CB process is sustained for
a long time until the contagion dynamics is perturbed by
the finite-size effect. This behavior is shown in Fig. 2(a).
On the other hand, the branching ratio of the two-step
reaction for S + I → W + I and W + I → 2I becomes
(un+1−un)/(un−un−1) = 2bun, which is almost zero in
the early time regime because we start from u0 = 1/N .
However, un increases gradually, because u = 0 is an
unstable fixed point and b > 0, as shown in Fig. 2(a).
The growth rate of u for both the one-step and two-step
reactions becomes (b− a)u2n from Eq. (16). We find nu-
merically that a ≈ 0.736 and b ≈ 1.8; thus, b > a for the
parameter values κ = 1/8, µ = 1/16, and η = 0.9. Thus,
supercritical epidemic spread is prevalent. Conclusively,
in the early time regime, the one-step contagion dynam-
ics is dominant, whereas in the late time regime, the two-
step contagion dynamics leads to a pandemic outbreak,
as shown in Fig. 2(a) and (b). For the mapping (16)
with b > a, the role of the nonlinear term is quite dis-
tinct, leading to a discontinuous transition.

In the thermodynamic limit, un always stays zero so
that nonlinear terms in Eq. (16) do not appear. On the
other hand, in finite systems, un grows gradually and
nonlinear term becomes significant after a characteristic
time nc(N). On the other hand, it was argued in [26]
that for the SIR model at the epidemic threshold, the
maximum size of outbreaks is proportional to N2/3 in the
mean field limit. When un grows up to O(N2/3), the non-
linear terms in Eq. (12) suppresses further growth of the
cluster, leading to a subcritical branching process. This
means that the CB process driven by Eq. (12) persists
up to O(N1/3), because the fractal dimension of the CB
tree is two. On the other hand, for the SWIR model, the
coefficient of the nonlinear term (16) is positive, and the
nonlinear term encourages further increase of removed
nodes. The CB process turns into a supercritical pro-
cess, leading to a pandemic outbreak. Accordingly, the
golden time, the duration of the CB process, scales simi-
larly as ∼ N1/3 to that of the SIR model, which is what
we observed in a previous work [16].

It may be interesting to notice that in the SWIR model,
the population of weakened nodes increases with time
step, whereas in the SIR model, such behavior cannot be
found. Thus, the increasing pattern of the population
of weakened node can be an indicator of a forthcoming
pandemic outbreak.

B. The multiple-seed case

Next, when the number of infectious nodes is O(N),
i.e., the initial density of seeds is finite as ρ0 > 0 in the

thermodynamic limit, there exists a critical value ρ
(c)
0

such that when ρ0 < ρ
(c)
0 , a hybrid phase transition oc-

curs [9–11, 14] at a transition point κc, whereas when

ρ0 = ρ
(c)
0 , a continuous transition occurs. Here we focus

on the formal case, in which the order parameter m(κ)

increases continuously as κ is increased from zero and
exhibits critical behavior as κ approaches κc as shown
in Fig. 1(b). Subsequently, the order parameter jumps
from m(κc) = md to another value mu as represented in
Fig. 1(b). Thus the transition is hybrid.

We notice that for the multiple-seed case, an infected
node can be in contact with a node that was weakened by
a different infectious root [14]. Accordingly, the reaction
W + I → 2I can occur even in the early time regime, as
shown in Fig. 2(c) with red zig-zag curve. Moreover, the
CB process appears not from the beginning but slightly
after that indicated by an arrow at n∗ in Fig 2(c). We
find that the density of recovered node rn∗ is close to md

indicated in Fig. 1(b). From this step n∗, rn almost re-
mains for a long time as shown in Fig. 2(d). This means
that rn is trapped around md by the so-called bottle-neck
effect as we discuss later. For some configurations, the
dynamics is trapped at md forever, but for other con-
figurations, it escapes from the trap and so the plateau
ends at nc, and then rn increases abruptly and reaches
a stable point mu. We focus on the latter case in the
following.

The recursive equation for un is written as

un+1 = ρ0 + (1− ρ0)f(un, κ), (17)

where f(un, κ) is equivalent to f(un) in Eq. (9), but for
further discussion, we explicitly present κ in the form
of f(un, κ). The epidemic dynamics begins at n = 0
with the densities of susceptible, weakened, infected and
recovered nodes s0 = 1− ρ0, w0 = 0, i0 = ρ0 and r0 = 0,
respectively. Generally, the densities of each species of
nodes at a certain time step m are denoted as sm, wm, im,
and rm, respectively. Then for n > m, hn,m ≡ un − rm
satisfies

hn+1,m = im + smf(hn,m) + wmg(hn,m) (18)

where

g(hn,m) = 1−
∞∑
q=1

qPd(q)

z

[
hn,m(1− η) + (1− hn,m)

]q−1
= 1− e−ηzhn,m , (19)

where the last step is valid for the ER case. With r0 =
w0 = 0, i0 = ρ0, and s0 = (1 − ρ0) at m = 0, Eq. (18)
reduces to Eq. (17). Particularly, we denote md − rm as
hd,m, which becomes a fixed point of Eq. (18). When
the epidemic dynamics starts from infected nodes with
density ρ0, then sn+1 (wn+1) is determined by right hand
side of Eq. (8) but PR(`) is replaced by PS(`) (PW (`)).
Thus, we can trace sm and wm at each time step m.
Moreover, using Eq. (8) and the relation in = un+1−un,
we can trace im and rm as well.

In finite systems, fluctuations arise in those densities
due to the randomness of infected nodes and stochastic
process of epidemic spread. These fluctuations are there
at the characteristic time n∗, from which the CB pro-
cess begins. To take into account those fluctuations, we
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FIG. 2. (a) For the single-seed case, plot of the branching ratios as a function of time step n for each type of reaction at
κc = 1/8. (b) Evolution of the densities of recovered nodes (red curve, top) and weakened nodes (blue curve, bottom) as a
function of n for the single-seed case. Data are obtained from a single realization of infinite outbreak in the SWIR model
starting from a single seed (ρ0 = 0) with reaction probabilities µ = 1/16 and η = 0.9 for both (a) and (b). (c) Similar to (a)
but for the multiple-seed case at κc ≈ 0.1149487. (d) Similar to (b) but for the multiple-seed case. For both (c) and (d), data
are obtained using the parameters ρ0 = 0.002, µ = κ, and η = 0.5. The ER networks on which the simulations were performed
have a size N = 5.12× 106 and mean degree z = 8. Legends “transferring X to Y ” in (a) and (c) indicate the mean number of
neighbors of an infected node that change their state from X to Y at step n. In (d), the characteristic time steps n∗ and nc,
from and at which the CB process starts and ends, respectively, are marked.

split the densities of each species of nodes into two parts:
xn∗ + δxn∗ , where the first term represents mean value
at n∗, and x does s, w, i and r, respectively. Each δxn∗

follows the Gaussian distribution with the standard devi-
ation proportional to N−1/2. Then for n > n∗, Eq. (18)
becomes

hn+1,n∗ = in∗ + δin∗ + (sn∗ + δsn∗)f(hn,n∗)

+(wn∗ + δwn∗)g(hn,n∗). (20)

At κ = κc, Eq. (20) is rewritten with εn = un −md as

εn+1 = d1 + (1 + δd2)εn + (d3 + δd3)ε2n +O(ε3n), (21)

where

d1 = δin∗ (22)

and

δd2 = δsn∗
df

dh

∣∣∣∣
hd,n∗

+ δwn∗
dg

dh

∣∣∣∣
hd,n∗

(23)

d3 = ((1− ρ0)/2)(∂2f(un, κ)/∂2un)
∣∣
md,κc

> 0 (24)

δd3 =
1

2

(
δsn∗

d2f

dh2

∣∣∣∣
hd,n∗

+ δwn∗
d2g

dh2

∣∣∣∣
hd,n∗

)
. (25)

Eq. (21) is rewritten in an alternative form,

ε̇ = d1 + (d3 + δd3)

(
ε+

δd2
2(d3 + δd3)

)2

− (δd2)2

4(d3 + δd3)
.

(26)
Because δin∗ ∼ δsn∗ ∼ δwn∗ � 1 for large N , the terms
including δd2 and δd3 can be neglected compared with
the respective leading terms and Eq.(26) is rewritten sim-
ply as

ε̇ = d1 + d3ε
2 +O(ε3). (27)

It is well known that the nonlinear mapping Eq.(27)
includes the so-called bottleneck effect at ε = 0 [18, 22,
27]. The time step to pass through the bottleneck is
calculated as

T =

∫ ∞
−∞

dε

d1 + d3ε2
∼ π√

d1
, (28)

which corresponds to the time interval of the plateau
region, i.e, nc−n∗. Because n∗ is negligible to nc, nc ∼ T ,
which is the golden time for a single configuration.
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FIG. 3. The bar graph represents the numerical data of
the distribution Q(δin∗) versus δin∗ for a given system size
N = 2.048× 107. The solid curve is a fitting to the Gaussian
distribution. Inset: plot of estimated standard deviation of
the Gaussian distribution versus the system size N . The solid
line has a slope −1/2.

Since d1 = δin∗ follows the Gaussian distribution with
the standard deviation proportional to N−1/2, which was
shown in Fig. 3, we introduce a probability distribution

Q(δin∗) =
1√

2πσN 2
e
−

(δin∗)
2

2σN 2
, (29)

where σN ∼ N−1/2. With Eq. (28) and Eq. (29) we
obtain

〈nc〉 ∼
∫ ∞
0

πQ(δin∗)√
δin∗

d(δin∗) ∼ N1/4. (30)

This result is supported by Fig. 4. The integration is
started from zero because no infinite outbreaks occur
when δin∗ < 0.

When κ > κc, d1 is naturally obtained as d1 = (1 −
ρ0)(∂f(un, κ)/∂κ)

∣∣
md,κc

(κ − κc). Thus, the golden time

is determined. We do not need to take average over δin∗

as

〈nc〉 =

∫ ∞
−∞

dε

d1 + d3ε2
∼ π√

κ− κc
. (31)

Numerical result in Fig. 5 supports this prediction.

III. UNIVERSAL BEHAVIOR

We also investigate the golden times of other mod-
els such as k-core percolation [20] and the threshold
model [24]. We find that the golden time 〈nc〉 ∼ N1/4 is
universal for epidemic disease spread initiated from mul-
tiple seeds.

106 107 108

102.6

102.8

103.

103.2

n c

FIG. 4. For the multiple-seed case, plot of the average cascade
time step 〈nc〉 versus N at κc ≈ 0.1149487. Guide line has
a slope of 0.25. Data were obtained from ER networks of
different sizes but with the same mean degree, z = 8. ρ0 =
0.002, µ = κ, and η = 0.5 were used.
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FIG. 5. For the multiple-seed case, scaling plot of the average
cascade time step 〈nc〉N−1/4 versus (κ−κc)N

1/2 for different
system sizes N . Data for different system sizes collapse well
onto a single curve, indicating that 〈nc〉 ∼ N1/4 for κ > κc.
Numerical simulations were performed on ER networks with
mean degree z = 8 and initial density of seeds ρ0 = 0.002.

A. k-core percolation

Here we first consider the avalanche dynamics of k-core
percolation induced by failures of multiple nodes. In k-
core percolation, the dynamics starts with the removal of
all nodes that have degree less than k. These removals
may decrease the degrees of the remaining nodes to less
than k. If such nodes exist, they are removed as well.
This process is repeated until no more such nodes re-
main. When the mean degree z of the original network is
larger than a threshold zc, a k-core subgraph of size O(N)
can exist. Next, we randomly remove a fraction ρ0 of the
remaining nodes and repeat the avalanche process. The
avalanche size can be either finite or infinite depending
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FIG. 6. Plot of the average cascade time step 〈nc〉 versus
N for k-core percolation with k = 3 starting from multiples
nodes of O(N). Guide line has a slope of 0.25. Data were
obtained from ER networks of different sizes N but with the
same mean degree, z = 3.38476, and ρ0 = 0.01.

106 107 108

102.

102.2

102.4

102.6

n c

FIG. 7. Plot of the average cascade time step 〈nc〉 for the
threshold model starting from initial multiple active nodes.
Guideline has a slope of 0.25. Data were obtained from ER
networks of different sizes N but with the same (z, ρ0, φ) =
(9.191, 0.01, 0.18).

on z and ρ0. If it is finite, the k-core would still ex-
ist; otherwise, it would collapse to zero. For sufficiently
large z, there exists a critical density ρc such that an
infinite avalanche can occur when ρ0 > ρc in the thermo-
dynamic limit. In Fig. 6, we measure the mean cascade
time step (golden time) 〈nc〉 of infinite avalanches for dif-
ferent system sizes N . It was found that 〈nc〉 ∼ N0.28.
The exponent is close to 1/4.

B. The threshold model

Next we consider the threshold model, which was in-
troduced to study the spread of cultural fads on social
networks. Each node i is assigned its threshold value φi
and has one of two states, active or inactive. An inactive

node i surrounded by mi active neighbors and ki − mi

inactive neighbors changes its state to active when the
fraction of active neighbors mi/ki > φi. This thresh-
old model is known to exhibit a hybrid phase transition
on ER networks when the mean degree z is sufficiently
large. Here, we initially introduce ρ0N active nodes in a
system. At each generation, every inactive node i whose
number of active neighbors mi > kiφi is identified and
changes its state to active. We performed simulations
with a single threshold value φi = 0.18 for all nodes on
ER networks with (z, ρ0) = (9.191, 0.01). The mean cas-
cade time step of infinite outbreaks, 〈nc〉, is obtained as
∼ N0.263 in Fig. 7. The exponent is also close to 1/4.

IV. SUMMARY

The SWIR model is a simple model and enables us
to understand pandemic outbreaks analytically. Using
the local tree approximation at a transition point,
we could represent the cascade dynamics of two-step
contagion in terms of a nonlinear mapping that has the
form of saddle-node bifurcation. When the epidemic
dynamics starts from a single infected node, we showed
that the linear and nonlinear terms of the nonlinear
mapping have distinct roles. In the early time regime,
the linear term governs a critical branching (CB) process
of disease spread, which can be regarded as the growth
of a cluster in percolation. However, in the late time
regime, the nonlinear term causes explosive spread of
epidemic disease. The golden time is determined by
the finite-size effect on the linear term, which scales as
∼ N1/3. On the other hand, when the dynamics starts
from multiple seeds of O(N), the linear and nonlinear
terms are coupled, and one cannot separate them. In
this case, the golden time relies on the fluctuations
induced by the stochastic process of disease transmission
and the randomness of location of infected seeds. Those
fluctuations lead to the so-called bottle-neck effect of
the nonlinear mapping. Because such fluctuations are
generated by random processes, the average bottle-neck
size depends on the system as ∼ 1/

√
N . Then, following

the saddle-node bifurcation theory, the average golden
time was obtained as ∼ N1/4, which was confirmed by
numerical data. We also argued that the population of
weakened nodes can play a role of an indicator of the
forthcoming outbreak. Tracing the increasing or de-
creasing trend of this population is useful for predicting
the pandemic. Furthermore, we showed that these two
scaling behaviors are universal and can be obtained from
other models showing discontinuous percolations into an
absorbing state induced by cascade dynamics, such as
k-core percolation and the threshold model.
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[5] P. Erdős and A. Rényi, Publ. Math. 6, 290 (1959).
[6] W. Cai, L. Chen, F. Ghanbarnejad, and P. Grassberger,

Nat. Phys. 11, 936 (2015).
[7] G. Bizhani, M. Paczuski, and P. Grassberger, Phys. Rev.

E 86, 011128 (2012).
[8] H.-K. Janssen, M. Müller, and O. Stenull, Phys. Rev. E

70, 026114 (2004).
[9] H.-K. Janssen and O. Stenull, Europhys. Lett. 113,

26005 (2016).
[10] T. Hasegawa and K. Nemoto, J. Stat. Mech. P11024

(2014).
[11] T. Hasegawa and K. Nemoto, arXiv:1611.02809.
[12] K. Chung, Y. Baek, M. Ha, and H. Jeong, Phys. Rev. E

93, 052304 (2016).
[13] W. Choi, D. Lee, and B. Kahng, Phys. Rev. E 95, 022304

(2017).
[14] W. Choi, D. Lee, and B. Kahng, Phys. Rev. E 95, 062115

(2017).

[15] J. Yoo, J. S. Lee, and B. Kahng, Physica A 390, 4571
(2011).

[16] D. Lee, W. Choi, J. Kertész, and B. Kahng,
arXiv:1608.00776.

[17] M. Scheffer, et al., Nature 461, 53 (2009).
[18] S. H. Strogatz, Nonlinear Dynamics and Chaos (Addison-

Wesley, New York, 1994).
[19] D. Lee, S. Choi, M. Stippinger, J. Kertész, and B. Kahng,

Phys. Rev. E 93, 042109 (2016).
[20] J. Chalupa, P. L. Leath, and G. R. Reich, J. Phys. C

12, L31–L35 (1979).
[21] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes,

Phys. Rev. Lett. 96, 040601 (2006).
[22] G. J. Baxter, S. N. Dorogovtsev, K. E. Lee, J. F. F.

Mendes, and A. V. Goltsev, Phys. Rev. X 5, 031017
(2015).

[23] D. Lee, M. Jo, and B. Kahng, Phys. Rev. E 94, 062307
(2016).

[24] D. J. Watts, Proc. Natl. Acad. Sci. (U.S.A.) 99, 5766
(2002).

[25] P. S. Dodds and D. J. Watts, Phys. Rev. Lett. 92, 218701
(2004).

[26] E. Ben-Naim and P. L. Krapivsky, Phys. Rev. E 69,
050901 (2004).

[27] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and
S. Havlin, Nature 464, 1025 (2010).


