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Fractal Network in the Protein Interaction Network Model
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Fractal complex networks (FCNs) have been observed in a diverse range of networks from the
World Wide Web to biological networks. However, few stochastic models to generate FCNs have
been introduced so far. Here, we simulate a protein-protein interaction network model, finding
that FCNs can be generated near the percolation threshold. The number of boxes needed to cover
the network exhibits a heavy-tailed distribution. Its skeleton, a spanning tree based on the edge
betweenness centrality, is a scaffold of the original network and turns out to be a critical branching
tree. Thus, the model network is a fractal at the percolation threshold.
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I. INTRODUCTION

Fractal complex networks (FCNs) have been discov-
ered in diverse real-world systems [1, 2]. Examples in-
clude the co-authorship network [3], metabolic networks
[4], the protein interaction networks [5], the World-Wide
Web [6] and so on. Here, FCNs are the networks satis-
fying the fractal scaling [7],

NB(`B) ∼ `−dB

B , (1)

where NB is the number of boxes needed to cover the
entire network and `B is the box size. While such FCNs
are ubiquitous, there exist only a few FCN models [2,8].
Here, we will introduce a stochastic model to generate
FCNs using protein interaction network model.

It was viewed that the fractal scaling originates from
the disassortative correlation between degrees of two
neighboring nodes [9]. Thus, hubs are not directly con-
nected to one another [10,11]. Based on this property, a
toy model and hierarchical models were introduced [2].
On the other hand, FCNs are regarded as the compo-
sition of a skeleton and shortcuts. The skeleton is a
spanning tree of the underlying network based on the
edge-betweenness centrality [12, 13] or load [14], which
can be regarded as the communication backbone of un-
derlying network [15]. Since the skeleton is composed
preferentially of high betweenness edges, edges connect-
ing different modules may be well represented, preserv-
ing overall modular structure. In fact, FCNs are modular
networks in which hubs are central nodes of each mod-
ule and separated from one another [3]. This picture is
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consistent with that of the hub-repulsion model [2]. The
fractal scaling of a FCN originates from the fractality of
its skeleton underneath it [8]. The skeleton is regarded
as a critical branching tree: It exhibits a plateau in the
mean branching number function n̄(d), defined as the
average number of offsprings created by nodes at a dis-
tance d from the root. Random branching tree exhibits
such a plateau, the average value of which we denote as
n̄. Such a persistent branching structure underlies the
fractality of the skeleton, as it is known that the random
branching tree is a fractal for the critical case, namely,
n̄ = 1 [16]. Specifically, SF random branching tree with
the branching probability bn that each branching event
produces n offsprings, bn ∼ n−γ , generates a SF tree,
which is a fractal when n̄ = 1. Using this property, a
fractal network model was introduced [8].

Recently, a fractal complex network was observed in
the intermediate regime in the evolution of co-authorship
networks [3]. Hinted from the evolution pattern, a
stochastic model was introduced, which exhibits a perco-
lation transition. FCNs can be generated near the perco-
lation threshold. Similar to this behavior, here we study
the fractality in a protein interaction network model in-
troduced by Solé et al. [17], called the Solé model here-
after.

Protein interaction networks (PINs) have been studied
in a variety of organisms including viruses [18], yeast [19],
C.elegans [20], etc. Previous studies have focused on dy-
namical or computational aspects of interacting proteins
as well as their potential links. Moreover, it has been of
interest to construct an evolution model of the PIN with
biological relevant ingredients. One of successful models
is the one introduced by Solé et al. In this model, they
used three edge dynamics, duplication, mutation, and
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Fig. 1. The protein-protein interaction network model in-
troduced by Solé et al. [17]

divergence, as key ingredients of the evolution of protein
interactions. Similar models follow this model, which are
listed in the references [21–25]. In this paper, we used the
Solé model to construct FCNs, because analytic solution
of the perolation transition is known for the Solé model.
We find that as in the case of the co-authorship network
[3], indeed FCNs can be obtained near the percolation
threshold.

Complex network becomes a fractal if it is com-
posed of well-organized modules within it, in which
many short range edges and few long range edges are
contained [26–29]. Then, why do PINs have few long
range edges? Because, proteins within a particular
module are the one playing a particular function. For
example, proteins which take part in cell cycle have to
be closely connected, but they do not need to connect
to proteins which have different functions such as signal
transduction. In this model, modules are made by short
range connections such as duplication and divergence.
Furthermore, few densities of long range connec-
tions, that is, few mutation, make this model fractal.

II. THE SOLÉ MODEL FOR PIN

Solé et al. [17] proposed a protein-protein interaction
network model which contains three ingredients: (i) du-
plication, (ii) divergence, and (iii) mutation. The model
is a growing network model in which a node (protein) is
created in the system at each time step. This is achieved
in the form of duplication: The new node duplicates a
randomly chosen pre-existing protein and its links are
also endowed from its ancestor. Among those links, links
of the new protein are deleted with probability δ (diver-
gence) and each new protein also links to any pre-existing
node with probability β/N (mutation), where N is the
total number of nodes at each time step. The two param-
eters δ and β control the densities of the short-ranged and
the long-ranged edges, respectively. This model has been
solved analytically [30]. Here, we review some important
analytic results relevant to our works in this paper.

Let ns(N) be the number of s-size clusters per node at
time step N , and g(z) =

∑
s nsz

s the generation func-
tion for ns, where the sum excludes the giant percolating

cluster. g(1) is the fraction of finite clusters and g′(1) is
the average cluster size, i.e., 〈s〉 =

∑
s2ns. The model

exhibits unconventional percolation transition in which
the parameter δ turns out to be irrelevant, and thus it
is ignored for the time being. Within this scheme, the
analytic solution yields that

〈s〉 =


1−2β−

√
1−4β

2β2 for β ≤ βc,

e−βG+G−1
β(1−e−βG)

for β > βc,

(2)

where the size of the giant cluster G = 1 − g(1) = 1 −∑
s sns. βc is the percolation threshold and obtained as

βc = 1/4. The cluster-size distribution follows a power
law,

ns ∼ s−τ , (3)

where the exponent is solved as

τ = 1 +
2

1−
√

1− 4β
. (4)

This power-law behavior holds in the entire range β < βc

in contrast to the behavior of the conventional perco-
lation transition. At the transition point β = βc, the
cluster-size distribution decays as ns ∼ 1/[s3(ln s)3].

The order parameter of the percolation transition is
written as

G(β) ∝ exp
(
− π√

4β − 1

)
. (5)

Thus, all derivatives of G(β) vanishes as β → βc, and
the transition is of infinite order.

The degree distribution was also studied in [30] for
general δ. When δ > 1/2 and β > 0, the degree distribu-
tion follows a power law Pd(k) ∼ k−γ , where the degree
exponent is determined from the relation,

γ(δ) = 1 +
1

1− δ
− (1− δ)γ−2. (6)

III. SIMULATION RESULTS

We performed extensive numerical simulations for the
Solé model with system sizes N = 103 and 104 and vari-
ous parameter values β and δ. The obtained results are
as follows:

First, to see a percolation transition behavior, we mea-
sure the mean component size 〈s〉 as a function of β at a
fixed parameter value δ = 0.95, corresponding to the case
with little duplication. We find that the mean compo-
nent size exhibits a peak at a point βc, which is estimated
to be βc ≈ 0.29 (Fig. 2). This critical point is regarded
as a percolation threshold. The percolation threshold βc

varies as a function of δ. Thus, we plot in Fig. 3 the
mean component size as a function of β and δ. The peak
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Fig. 2. Mean component size 〈s〉 versus β at δ = 0.95.
Data, obtained from system sizes N = 104 (O) and 105 (◦),
display peaks at the percolation transition, which is to be β ≈
0.29. All data points are averaged over 100 configurations.

Fig. 3. Mean component size 〈s〉 as a function of two pa-
rameters β and δ for N = 104. The peak line is the boundary
between two phases, the percolating and the non-percolating
phases.

locus lies in the small β region, indicating that a small
fraction of long-range edges are sufficient to develop the
giant component.

Second, we show a giant component of the model net-
work with small system size N = 104 at the percolation
threshold in Fig. 4. This network is constructed with
parameter values β = 0.29 and δ = 0.95. The network
topology is effectively a tree but with small-size loops
within it.

Third, we examine the degree distribution of the giant
component at evolution steps N = 103 and N = 104

with parameter values used in Solé et al. [17] δ = 0.58
and β = 0.16 and show them in Fig. 5. It shows heavy-
tailed behaviors, but tends to converge to a power-law
behavior with increasing N . Solid line in Fig. 5 has a
slope −2.94, the theoretical value obtained from Eq. (6).
Thus, numerical data are expected to converge to the
theoretical prediction asymptotically.

Fourth, in order to see the fractality of the model net-
work, we measure the number of boxes NB defined in
Eq. (1) as a function of box size `B using the box-covering
method [8]. In Fig. 6, NB(`B) exhibits a heavy-tailed dis-

Fig. 4. Snapshot of the giant component near the perco-
lation threshold δ = 0.95 and β = 0.29 for size N = 568.

Fig. 5. Degree distribution Pd(k) versus k for the giant
component of the Solé model with δ = 0.58 and β = 0.16.
Shown are the distributions for N = 103 (◦) and 104 (O).
The solid line is the predicted line with slope −2.94.

Fig. 6. Fractal scaling analysis of the giant component
(©) and its skeleton (�) near the percolation transition point
δ = 0.95 and β = 0.29 (©, �). The number of boxes follows
a heavy-tailed distribution. However, data obtained at δ =
0.6 and β = 0.3 (N), located far away from the percolation
threshold, decay faster than the previous one. All data points
are log-binned and are averaged over 100 configurations.



Fractal Network in the Protein Interaction Network Model – Pureun Kim and Byungnam Kahng -1023-

Fig. 7. Mean branching number as a function of distance
from a root for the skeleton of the giant component produced
by the parameter values δ = 0.95 and β = 0.29.

tribution with respect to `B when the data are obtained
near the percolation threshold (δ = 0.95 and β = 0.29).
The numbers of boxes covering the skeleton for each box
size are also shown in Fig. 6: They overlap with those
covering the entire network. Since power-law behavior is
not manifest, one may wonder if this model network is
indeed a fractal. Thus, we present NB(`B) for the net-
work obtained from different parameter values, particu-
larly, locating far away from the percolation threshold.
Indeed, NB(`B) for this case decays fast compared with
that obtained near the percolation threshold. Moreover,
we show next that the skeleton is a critical branching
tree with mean branching rate is one. Since the critical
branching tree was shown to be a fractal analytically,
and together with the above numerical results, we can
claim that the original model is also a fractal.

Lastly, the criticality of the skeleton is checked. We
measure the mean branching number function n̄(d) as a
function of distance from a root. Indeed, it fluctuates
around one, implying that the skeleton can be regarded
as a critical branching tree and thus a fractal manifestly
(Fig. 7). Since the box numbers to cover the entire net-
work with each box size and the skeleton only are the
same, we can say that the entire network is a fractal.

IV. CONCLUSION

In summary, we simulated the protein-protein inter-
action network model introduced by Solé et al., finding
that the obtained network near the percolation threshold
was a fractal. We measured the number of boxes needed
to cover the network by using the box-covering method
for both the full network and its skeleton and found that
their values were approximately the same and fat-tailed.
We also measured the mean branching ratio for the
skeleton and found that it fluctuated around the critical
value of one as a function of the distance from the root.

The fat-tailed distribution in fractal analysis and the
criticality of the skeleton with mean branching ratio
being one support the fractality of the model network.
Thus, we conclude that the protein-protein interaction
network model obtained near the percolation threshold
can be used to generate fractal complex networks.
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