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The first passage time (FPT) for random walks is a key indicator of how fast information diffuses in a

given system. Despite the role of FPT as a fundamental feature in transport phenomena, its behavior,

particularly in heterogeneous networks, is not yet fully understood. Here, we study, both analytically and

numerically, the scaling behavior of the FPT distribution to a given target node, averaged over all starting

nodes. We find that random walks arrive quickly at a local hub, and therefore, the FPT distribution shows a

crossover with respect to time from fast decay behavior (induced from the attractive effect to the hub) to

slow decay behavior (caused by the exploring of the entire system). Moreover, the mean FPT is

independent of the degree of the target node in the case of compact exploration. These theoretical results

justify the necessity of using a random jump protocol (empirically used in search engines) and provide

guidelines for designing an effective network to make information quickly accessible.
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In the information age, as data are created in abundance
and uploaded on the World Wide Web, it is crucial to be
able to search and access pages quickly. In this context, one
might wonder which node, hub, or any other component of
the web is more quickly accessible for data mining on the
web. To answer this question, the problem of the first
passage time (FPT) by random walk (RW) in complex
networks can be posed as a conceptual framework. Many
studies on the FPT have been carried out (with particular
focus on fractals or disordered media [1,2]), demonstrating
its crucial dependence on the spectral dimension of the
structure [3–5]. Moreover, the FPT problem has also been
studied on heterogeneous networks to better understand the
impact of heterogeneity of degrees on transport phe-
nomena. However, such studies remain in the early stages
of investigation. The mean FPT was obtained in a random
graph [6] by an effective medium approximation and in
deterministic networks using a recurrence relation [7,8].
However, a general framework for the scaling behavior of
the FPT in heterogeneous networks has not been con-
structed yet.

Whereas previous studies focused on the FPT problem
between two fixed nodes, we consider in this study the
mean FPT for arriving at a given target node averaged over
all possible starting nodes in the system; this is referred to
as the global FPT (GFPT) problem. Consideration of this
problem may be useful in finding the mean clicking num-
ber for reaching a given target web page from any other
web page for the first time. In fact, this problem was
initially identified in the seminal work of Montroll [9],
which was followed by several studies on disordered sys-
tems. Recently, this problem was examined on heteroge-
neous networks; results reveal that the mean GFPT shows a
sublinear behavior with respect to the system size N in
some limited cases. This implies that average RW time

steps to reach a target node depends weakly on the system
size. Here, we obtain the GFPT distribution and the mean
GFPT as a function of the degree of the target node,
the exponent of the degree distribution, and the spectral
dimension for general cases of random heterogeneous
networks that exhibit power-laws degree distributions.
The GFPT’s finite-size scaling behavior is also obtained.
The values of the spectral dimension and the exponent
of the degree distribution affect the mean GFPT and the
GFPT distribution. We present their lowest-order behav-
iors analytically for all possible cases. Moreover, we test
our analytical solutions with numerical simulations on
diverse complex networks including artificial networks
such as (3,5) and (1,2) flower models [10] and the BA
model [11], and real-world networks such as the World
Wide Web [12], Internet [13], the protein interaction net-
works of H. sapiens [14] and S. cerevisiae [15], and the
protein folding network [16,17].
Suppose RW motion occurs on a scale-free network,

composed of N nodes and L links, and in which degrees
of each node are heterogeneous, and are distributed follow-
ing a power law pdðkÞ � k��. For the moment, we consider
the case of simple graphs, in which the number of links
between two nodes can be either zero or one, and degree-
degree correlation between two connected nodes being
absent. A RWer at a certain node i jumps to one of its ki
neighbor nodes with probability 1=ki in the next time step.
This process is repeated at each subsequent time step. We
are interested in how quickly the RWer arrives at the target
node m for the first time. Let FmiðtÞ be the FPT probability
distribution from node i to m. In the steady state [18], the
probability of finding the RWer at node i is given by ki=2L.
Averaged over all starting node i, the distribution of the
GFPT FmðtÞ to the target m after t time steps from i is
represented by
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FmðtÞ �
XN

i¼1

ki
2L

FmiðtÞ; (1)

where 2L � P
N
j¼1 kj.

The FPT distribution FmiðtÞ of a RW satisfies the re-
newal equation [19]:

PmiðtÞ ¼ �mi�t0 þ
Xt

t0¼0

Fmiðt0ÞPmmðt� t0Þ; (2)

where PmiðtÞ is the occupation probability of the RWer at
node m at time t that started from node i at time t ¼ 0.
Then the generating function F miðzÞ �

P
tz

tFmiðtÞ is re-
lated to the generating function PmiðzÞ �

P
tz

tPmiðtÞ as

F miðzÞ ¼
�
1� 1=RmðzÞ for m ¼ i;
PmiðzÞ=RmðzÞ for m � i:

(3)

Here, RmðzÞ is the generating function of the return-
to-origin (RTO) probability: RmðzÞ ¼ P

tz
tRmðtÞ, where

RmðtÞ ¼ PmmðtÞ. Then, the generating function of the
GFPT distribution FmðzÞ � P1

t¼0 FmðtÞzt can be written

in a closed form:

F mðzÞ ¼ km
2L

�
1� 1

RmðzÞ
�
þ X

i�m

ki
2L

PmiðzÞ
RmðzÞ

¼ kmz

2Lð1� zÞ
1

RmðzÞ ; (4)

where we used the relations kiPmiðzÞ ¼ kmP im [18] andP
i�mP imðzÞ ¼ ð1� zÞ�1 �RmðzÞ. We note that F mðzÞ

depends only on RmðzÞ.
The mean GFPT for a given target node m, defined as

Tm ¼ P
ttFmðtÞ, is obtained as the first derivative of F mðzÞ

with respect to z at z ¼ 1. Using the fact that the RTO
probability is constant, Rmð1Þ ¼ km=ð2LÞ as t ! 1, we
observe that the generating function RmðzÞ is contributed
mainly by km=½2Lð1� zÞ� in the limit z ! 1. Then, we
introduce R�

mðzÞ�
P

tz
t½RmðtÞ�Rmð1Þ�¼RmðzÞ�km=

½2Lð1�zÞ�, and Eq. (4) is rewritten as F mðzÞ ¼
kmz=½km þ 2Lð1� zÞR�

mðzÞ�. Then, the mean GFPT is
obtained as

Tm ¼ @

@z
F mðzÞ

��������z¼1
� 2L

km
R�

mð1Þ þ 1

¼ 2L

km

X1

t¼0

ðRmðtÞ � Rmð1ÞÞ þ 1: (5)

In fact, this formula was obtained in Refs. [18,20], which
corresponds to the inverse of the RW centrality defined
in Ref. [18], thus characterizing the potential-like influ-
ence on the RW motion that is caused by the degree
heterogeneity.

The relation between the RTO probability and the mean
GFPT in Eq. (5) enables us to derive the specific behav-
ior of Tm. In our previous study [21], it was shown for
random scale-free networks, in which the degree-degree

correlation is absent, that RmðtÞ exhibited crossover
behavior as

RmðtÞ �

8
>>><
>>>:

t�dðhubÞs =2 for 1 � t � tcðkmÞ;
kmt

�ds=2 for tcðkmÞ � t � tx;
km
2L for t � tx;

(6)

where ds is the spectral dimension of a given network,
defined using the density function of the eigenvalues � of

the Laplacian matrix as �ð�Þ � �ds=2�1 in the limit � ! 0

[22]. Here dðhubÞs ¼ ds
��2
��1 . tcðkmÞ � k

2ð��1Þ=ds
m is a cross-

over time between the two power-law behaviors, and

tx � ð2LÞ2=ds is the crossover time to reach the stationary

state. It should be noted that dðhubÞs < ds, in particular

when � ! 2, dðhubÞs is almost zero, and thus, the RTO
probability remains almost constant in time. In this
case, a RWer can be effectively trapped at the hub when
the network is scale-free with the degree exponent � ! 2.
When the target node is the hub, we obtain tcðkhÞ � tx,

using kh � N1=ð��1Þ obtained from the natural cut off.
Thus, the intermediate time region disappears. For some
random network ensembles [23,24], the maximum degree

of hub scales differently as N1=ð5��Þ when 2< �< 3,
which is less than natural cut off. In this particular case,
the intermediate time region does not disappear since

tcðkhÞ � N2ð��1Þ=½dsð5��Þ� < tx � N2=ds .
Plugging RmðtÞ into Eq. (5), we find that the behavior of

the mean GFPT may be classified into three cases, depend-
ing on the spectral dimension:

Tm � 2L

km

Z tx

1
½RmðtÞ � Rmð1Þ�dt

�
8
><
>:

N2=ds ðIÞ ds < 2;

Nk��
m ðIIÞ 2< ds < dc;

Nk�1
m ðIIIÞ ds > dc;

(7)

where dc ¼ 2ð�� 1Þ=ð�� 2Þ and � ¼ ð1� 2=dsÞ	
ð�� 1Þ. To derive this result, we used tx � L2=ds and
L� N. It is noteworthy that the mean GFPT does not
depend on the degree of the target for case (I) of compact
exploration; however, mean GFPT does depend on the
degree of the target for cases (II) and (III) in which
ds > 2. For example, the spectral dimension of the World
Wide Web is ds � 1:8< 2 [21], and thus, the access time
to any target node is of the same order, irrespective of their
degree. That is, the hub would not be a better location for
posting information than any other node. However, for
the Internet in the AS system in which ds > 2, the hub
can be the most quickly accessible. For artificial networks
such as the Barabási-Albert (BA) model or the static
model, ds ¼ 1, and thus, the mean GFPT to the hub is
the least out of those to all nodes.
We schematically present the regions of the three

cases and indicate the region each network occupies in
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the (�, ds) plane in Fig. 1. Note that dðhubÞs ¼ 2 locates at
the boundary between (II) and (III).

In Fig. 2, the plot of logNTm vs logNkm is presented
for various networks, showing different slopes for the net-
works belonging to the different regions (I), (II), and (III).
These slopes are in agreement with the theoretical values
indicated by the dashed lines. Finally, we note that loga-
rithmic corrections to the mean GFPT can appear at the
boundaries between the different regions (I), (II), and (III).

If the target is the hub, then using the relation

kh � N1=ð��1Þ, we obtain that

Th �
8
<
:
N2=ds ðI and IIÞ:
Nð��2Þ=ð��1Þ ðIIIÞ: (8)

Thus, the mean travel time is sublinear for (III), that is, a
RWer can reach the hub without visiting all nodes. For the

case where the degree of hub scales as kh � N1=ð5��Þ for
2<�< 3, we obtain that

Th �

8
>>><
>>>:

N2=ds ðIÞ;
N½2ð3��Þþ2ð��1Þ=ds�=ð5��Þ ðIIÞ;
Nð4��Þ=ð5��Þ ðIIIÞ:

(9)

Next, we solve the long time behavior of the GFPT
distribution FmðtÞ using Eq. (4) and (6), which can be
determined by RmðzÞ for small � ¼ 1� z. To implement

this behavior, we use the approximationRmðz ¼ 1� �Þ ’
Rmð1Þ=�þ Rtx

1 ðRmðtÞ � Rmð1ÞÞe��tdt and determine the

leading behavior of RmðzÞ by comparing different time
scales ��1, tc, and tx. Here RmðzÞ, which depends on the
magnitude of �, is determined as follows:

Rmðz ¼ 1� �Þ � km
2N�

�

8
>>><
>>>:

maxð1; �dðhubÞs =2�1Þ for �c � � � 1;

maxð1; km�ds=2�1
c ; km�

ds=2�1Þ for �x � � � �c;

maxð1; km�ds=2�1
c ; km�

ds=2�1
x Þ for � � �x;

(10)

where �c ¼ 1=tcðkmÞ and �x ¼ 1=tx.
Inserting this result forRmðz ¼ 1� �Þ into Eq. (4), one

finds the leading singularity of F mðz ¼ 1� �Þ for small
values of �. Next, applying the Tauberian theorem to
F mðzÞ for each case, we obtain FmðtÞ as listed in Table I.
We note that the prefactor of FmðtÞ in the early-time regime
t � tcðkmÞ for cases (I) and (II) or t � �ðIIIÞ for case (III) is
commonly km=ð2LÞ, suggesting that FmðtÞ is proportional
to km=N using N � L for finite t. This results because a
RWer far from the target cannot reach it within a finite
number of time steps; FmðtÞ for finite t is contributed
mainly by a RWer who is located close to the target

FIG. 2 (color online). Plots of logNTm versus logNkm are
presented. (a) The artificial networks: for the (3,5)-flower model
with ds � 1:54< 2 [26,27] in region (I), Tm is independent of
km. However, for the (1,2)-flower model with ds � 3:17> 2
[26,27] which is smaller than dc � 5:44 and thus in region
(II), Tm decays in a power law manner with the exponent
� ¼ ð1� 2=dsÞð�� 1Þ, estimated as � 0:23 (dashed line). For
the BA model, ds ¼ 1 [28] in region (III). Tm decays in a power
law manner with an exponent of unity. The similar plots are
drawn for several real-world networks in (b) and (c). For a S.
cerevisiae yeast protein interaction network in (b), we obtain
ds � 1:6< 2. Together with the World Wide Web (c) having
ds � 1:8< 2, the yeast network belongs to Region (I) and Tm is
independent of km. For a human protein interaction network, we
obtain ds � 2:5< dc � 3:5 in region (II), Tm decays following
a power law with � � 0:43. Finally, for the AS network (b) and
a protein folding network (c), we obtain ds ¼ 1 and thus in
region (III). Tm decays following a power law with an exponent
of unity. All dashed lines are guide lines that were theoretically
predicted and are are close to the numerical data.

FIG. 1 (color online). Classification of networks by the degree
exponent � and the spectral dimension ds. Three regions are
defined as (I) ds<2, (II) 2<ds<dc where dc¼2ð��1Þ=
ð��2Þ, and (III) ds > dc. The networks in different regions
show different scaling behaviors in the mean GFPT as well as
the GFPT distribution.
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node, which is proportional to the degree of the target
node km. On the other hand, in the long time regime, for
t � �ðI;II;IIIÞ, the RTO probability converges to the nonzero

value km=2L, which causes the GFPT distribution to decay
exponentially in finite networks via the inverse Laplacian
transformation. The characteristic times �ðI;II;IIIÞ show the

same scaling property as the mean GFPT Tm given in
Eq. (7). It is also worth mentioning that for case (I),
i.e., ds < 2, the exponent in the intermediate time regime
1� ds=2 is different from 2� ds=2 obtained for the FPT
between two given nodes a finite distance apart [25]. This
difference implies that a large delay is more likely to occur
when receiving information from a source of unknown
position.

If the degree km of the target node is on the order of
one, the crossover time tcðkmÞ is of order one as well,
resulting in the behavior in the intermediate time regime

FmðtÞ � t�ð1�ds=2Þ for ds < 2 and FmðtÞ � const for ds > 2
dominating the whole nonstationary time regime t �
�ðI;II;IIIÞ. In case of (I) and (II), i.e., for ds < dc, the different
functional behaviors of the GFPT distributions between the
early- and the late-time regimes can be represented by
using a scaling function as

FðI;IIÞ
m ðtÞ � k�m

N
HðI;IIÞ

�
t

tcðkmÞ
�
; (11)

where the scaling function HðI;IIÞðxÞ is defined as

HðIÞðxÞ ¼
�
x�1þdðhubÞs =2 x � 1;
x�1þds=2 x � 1;

(12)

and

HðIIÞðxÞ ¼
�
x�1þdðhubÞs =2 x � 1;
e�x=ðNk1��

m Þ x � 1:
(13)

The crossover behavior in the scaling form is shown in
Fig. 3.

Finally, we add two remarks: First, even though our
analytic solutions were derived for the networks without
the degree-degree correlation, but simulations were carried
out for the networks with degree-degree correlation,

numerical data are in good agreement with theoretical
predictions. This indicates that the degree-degree correla-
tion weakly affects on the mean GFPT and the GFPT
distribution. Second, when the network is uncorrelated,
maximally random networks allowing for multiple edges,

maximal degree scales as kh � N1=ð��1Þ for � > 2 [23,24].
In this case, the mean GFPT to the hub behaves as in
Eq. (8).
In summary, we have presented the scaling properties

of the mean GFPT and the GFPT distribution analytically
for various types of heterogeneous networks. The scaling
properties can be classified into three cases depending
on the spectral dimension, the exponent of the degree
distribution, and the degree of a target node. Because of
the heterogeneity of degrees in the networks, the mean
GFPT displays a sublinear scaling with the system size
and the GFPT distribution shows crossover behavior
from fast decay behavior to slow decay behavior with
respect to time. These properties can now be used in
many applications, for example, search engines on the
World Wide Web, packet transport on the Internet, and
protein folding dynamics in biological systems.
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TABLE I. The GFPT distribution for each case (I), (II),

and (III). tcðkmÞ � k
2ð��1Þ=ds
m and tx � ð2NÞ2=ds . dðhubÞs ¼ ds

��2
��1 .

c1, c2, and c3 are constants. �ðIÞ � Nds=2, �ðIIÞ � Nk��
m , and

�ðIIIÞ � Nk�1
m .

FmðtÞ 1 � t � tcðkmÞ tcðkmÞ � t � tx t � tx

(I) km
2N t

�ð1�dðhubÞs =2Þ 1
2N t

�ð1�ds=2Þ ��1
ðIÞ expð� t

�ðIÞ
Þ

(II) km
2N t

�ð1�dðhubÞs =2Þ ��1
ðIIÞ expð� t

�ðIIÞ
Þ

(III) ��1
ðIIIÞ expð� t

�ðIIIÞ
Þ

FIG. 3 (color online). Plot of the GFPT distribution in the
scaling form for cases (I) (a) and (II) (b). The data in (a) are
obtained from the (3–5) flower network, in which ds � 1:54 and

� ¼ 4. Thus, 1� dðhubÞs =2 � 0:49 and 1� ds � 0:23 theoreti-
cally, which is represented by solid and dashed lines, respec-
tively. The data in (b) are obtained from the (1–2) flower network
with system size N ¼ 29526, in which ds � 3:17 and � ¼ 2:58.

Thus, 1� dðhubÞs � 0:42 theoretically, which is represented by
solid line. To see N-dependent behavior of the characteristic
time ofHðIIÞðxÞ for x � 1 in Eq. (13), we add a data set of degree

km ¼ 32 for a smaller system size N ¼ 9843 denoted with the
asterisk in the legend. The additional data set are also collapsed
well to other data sets in the small regime of x ¼ t=tcðkmÞ, but it
decays at an earlier point t=tcðkmÞ than the corresponding point
for the larger system N ¼ 29526.
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