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ABSTRACT Various dynamic cellular behaviors have been successfully modeled in terms of elementary circuitries showing
particular characteristics such as negative feedback loops for sustained oscillations. Given, however, the increasing evidences
indicating that cellular components do not function in isolation but form a complex interwoven network, it is still unclear to what
extent the conclusions drawn from the elementary circuit analogy hold for systems that are highly interacting with surrounding
environments. In this article, we consider a specific example of genetic oscillator systems, the so-called repressilator, as a starting
point toward a systematic investigation into the dynamic consequences of the extension through interlocking of elementary
biological circuits. From in silico analyses with both continuous and Boolean dynamics approaches to the four-node extension of
the repressilator, we found that 1), the capability of sustained oscillation depends on the topology of extended systems; and 2), the
stability of oscillation under the extension also depends on the coupling topology. We then deduce two empirical rules favoring the
sustained oscillations, termed the coherent coupling and the homogeneous regulation. These simple rules will help us prioritize
candidate patterns of network wiring, guiding both the experimental investigations for further physiological verification and the
synthetic designs for bioengineering.

INTRODUCTION

Cellular functions are realized by various dynamic processes

resulting from concerted actions of numerous molecular

components through diverse interactions and regulations, the

understanding of which is the major goal of systems biology

(1–4). Many dynamic features of the cellular processes have

been modeled with elementary circuits that can produce

given desired functions (5,6). For instance, feedback loops

have successfully accounted for diverse phenomena such as

the molecular switching (7) and biological clock (8). In

particular, it has been known that a negative feedback loop

architecture can render the oscillatory intracellular signals,

which constitutes the core of the homeostatic response and

the biological clock (9,10). Therefore, the identification of

feedback loop structure can be the first step to understand

and/or design systems having such an oscillatory behavior.

Elementary circuits with well-understood characteristics

such as the negative feedback loops, however, do not always

function in isolation within a cell, but rather are parts of a

complex network of biological components (11,12), leading

to coupling and/or interlocking with one another. From a

theoretical perspective, dynamic consequences of the cou-

plings, such as the capability of sustained oscillation for a

particular set of coupled feedback loops, are not clear a priori.

Furthermore, the high complexity arising from the multi-

plicity and biochemical details of molecular components

makes it a formidable task to study them through quantitative

mathematical modeling in full details. Yet, the study of

specific systems (13–19) has been proved to be useful to

understand the molecular origin of various dynamic behav-

iors. Synthetic model systems provide additional merits of

controllability of the components and their mode of cou-

plings (20). In this article, we employ the repressilator system

(21) as a basic elementary circuit, and then investigate its

dynamic consequences for extension and coupling.

The repressilator (21) is a synthetic construct of Escherichia
coli designed to emulate the in vivo oscillatory behavior

by using the components sequentially inhibiting the tran-

scriptional activity of neighbor genes. It consists of three

components: The protein LacI from E. coli inhibits the

transcription of the second gene tetR from the tetracycline-

resistance transposon Tn10, the protein product of which in

turn inhibits the expression of the third gene cI from l-phage.

Finally, CI inhibits the lacI expression, completing the three-

component feedback cycle. For example, LacI, TetR, and CI

are represented as N1, N2, and N3 in Fig. 1 a, respectively.

Thus, it makes up a negative feedback loop of transcriptional

regulators, capable of generating oscillatory protein levels for

all the three components (21). It has recently been utilized as

a basis for possible realization of a multicellular clock (22).

For continuous-value approximation, the basic kinetics of

the repressilator is described by (21,23)

dmi

dt
¼ �mi 1

a

1 1 p
n

j

1 a0; (1a)

dpi

dt
¼ �bðpi � miÞ; (1b)

where i¼ (lacI, tetR, cI) and j¼ (cI, lacI, tetR), respectively.

The variables mi and pi are the molecular concentrations of

the mRNA and the protein product, respectively, of the gene i.
The parameter a0 is the basal activity, or leakage, of the

promoter when fully repressed, and a 1 a0 is its maximal
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activity in the absence of repressors; b is the ratio of the decay

rate (i.e., inverse lifetime) of the protein to that of the cor-

responding mRNA; and n is the Hill coefficient. In Eq. 1,

time is rescaled in units of the mRNA lifetime; protein con-

centrations are written in units of KM, the number of repres-

sors required to half-maximally repress a promoter; and

mRNA concentrations are rescaled by the average number

of proteins produced per each corresponding mRNA mole-

cule. All of these parameters and scaling factors have to be set

by experimental values but the current knowledge about the

molecular details of them is rather limited. It has been dem-

onstrated that Eq. 1 can reproduce sustained oscillations for a

range of parameter values (21), and the existence of oscilla-

tory solutions in Eq. 1 has been shown more rigorously (23).

So, we assume that the mathematical representation in Eq. 1

provides us with a reasonable framework to study the es-

sential feature of the system through deterministic continuous

approximation.

To address our original question, we consider the in silico

extension of the repressilator system where additional com-

ponent(s) are introduced and interact with the original three-

node repressilator system. Specifically, we focus on the cases

in which the new components interact with the existing nodes

(genes) to make up a coupled, or interlocked, feedback

structure, and investigate the conditions under which sus-

tained oscillations can survive.

THEORY AND METHODS

Equations for the regulation function

We use the deterministic continuous approximation analogous to Eq. 1

for the extended systems. Let us consider the situation where the new

component (gene) interacts with two existing nodes to form an additional

feedback loop. There are eight possible interaction patterns as shown in

Fig. 1. We label the nodes of the original repressilator in Fig. 1 as N1, N2, and

N3, clockwise from the top, ignoring the molecular identity of the three

components as it is not essential for the generic approach here. The new

node (denoted as a solid circle in Fig. 1) is labeled as N4. For this four-node

system, Eq. 1 is modified into

dmi

dt
¼ �mi 1 aFiðfpjgÞ1 a0; (2a)

dpi

dt
¼ �bðpi � miÞ; (2b)

where the regulation function Fi depends on the molecular concentrations of

the regulatory proteins fpjg, whose form is determined by the characteristics

of the system such as the number of regulators and the enhancing/inhibitory

nature of those regulators as well as the combinatorial logic between them

(4,5,24,25). In the presence of a single regulator, a Hill-type function

FiðpjÞ ¼
1

1 1 p
n

j

; (3)

can be used for the inhibition by the regulator j as in Eq. 1. Corresponding

representation for the activating regulation is given by

FiðpjÞ ¼
p

n

j

1 1 p
n

j

: (4)

When multiple proteins regulate the expression of a common target gene,

such as for N1 by N3 and N4 in Fig. 1, a–d, and for N2 by N1 and N4 in Fig.

1, e–h, the form of Fi depends also on the combinatoric logic. To be specific,

we consider the following specific forms of Fi.

Let us first consider the case where both the regulators j and k are re-

pressors (Fig. 1, c, d, f, and h). If the simultaneous binding of the two re-

pressors is required to achieve the transcriptional repression of gene i, the

regulation function can be modeled as

FS

i ðpj; pkÞ ¼
1

1 1 p
n

j p
m

k

; (5)

where n and m are Hill coefficients of the protein j and k, respectively, which

are not necessarily the same. The superscript S stands for ‘‘simultaneous.’’

On the other hand, if the binding of either of the two repressors is sufficient to

inhibit the expression, the regulation function can be modeled as

F
I

iðpj; pkÞ ¼
1

1 1 p
n

j 1 p
m

k

; (6)

where the superscript I stands for ‘‘independent.’’ The regulatory effect of

these two schemes are depicted in Fig. 2, a and b. Next, if one regulator, say j,
is an inhibitor and the other, k, is an activator (Fig. 1, a, b, e, and g), the

expression of gene i can be maximal if the activator, but not the inhibitor,

binds to the promoter region, and minimal if only the inhibitor binds there.

For other cases, if both the regulators simultaneously bind or unbind to the

promoter regions, the expression can be of an intermediate level. A simple

form of the regulation function in this case can be modeled as

F
M

i ðpj; pkÞ ¼
1 1 p

m

k

2 1 p
n

j 1 p
m

k

; (7)

where the superscript M stands for ‘‘mixed’’ (see Fig. 2 c).

Numerical procedure and parameters used

For the original three-node repressilator system, the existence of an oscil-

latory solution has been attributed to the instability of a stationary solution

(23,26). We follow this criterion to investigate the parameter space for

sustained oscillations in the four-node extended systems. To this end, a sta-

tionary solution is identified and the Jacobian matrix is numerically evaluated

at this point. The positivity of the maximum real part of its eigenvalues in-

dicates the instability of the stationary solution. To find a parameter region

inducing the sustained oscillations for different topologies of the extended

system, we vary the two parameters, the maximum regulatory strength a and

FIGURE 1 Eight possible configurations of the repressilator with an

additional regulator forming a coupled feedback structure. Open circles

represent the elements of the original three-node repressilator and the solid

circle denotes the additional element newly introduced. The arrow denotes

activation and the blunted line indicates repression. Nodes are labeled from

N1 to N4, as shown in panel a.
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the relative inverse lifetime of protein to mRNA b, while fixing other pa-

rameters such as the Hill coefficients n¼m¼ 2 and the leakage level a0/a¼
10�3, following Elowitz and Leibler (21). For larger values of the Hill

coefficients, the system may exhibit more complex behaviors such as bi-

stability. Excluding such exceptional cases, the results found in this study is

at least qualitatively valid even for some larger Hill coefficients.

Oscillability and regulatory homogeneity

We define the oscillability of an extended system as the fraction of (a, b)

parameter region for sustained oscillations in the original three-node re-

pressilator in which the oscillation is maintained after the extension (the gray

region within the dotted curve in Figs. 3 and 4). It quantifies the likelihood of

preserving sustained oscillations after the coupling with other components,

implicating the ‘‘robustness’’ of oscillations under the system extension. The

regulatory homogeneity of a transcription factor with multiple targets is

defined as the larger of the fractions of positive (activating) or negative

(inhibitory) regulatory actions it has. For example, the regulatory homoge-

neity of N2 is 0.5 for Fig. 1 a and 1 for Fig. 1 b.

Boolean dynamics

As the sigmoidal nonlinearity effect in the stimulus-response relationship

increases, the continuous approximation can be simplified into a steplike

regulatory response that can be modeled by Boolean dynamics (16,27),

which can also be regarded as the case with n / N in the continuous ap-

proximation. As the exact degree of nonlinearity in most of the real systems is

not fully understood, we need to check how the system dynamics depends on

such a degree of nonlinearity to draw a general conclusion. The Boolean

dynamic rules we employed in this study are as follows. Each component

(either mRNA or protein) can have one of the two states S(t) ¼ 1 or S(t) ¼ 0

where the state 1 (0) means that the mRNA or protein is present (absent). The

state of a protein is determined by the state of the corresponding mRNA as

Spi
ðt 1 1Þ ¼ Smi

ðtÞ; (8)

that is, a protein is present only if the corresponding mRNA was present in

the previous time step, otherwise, the protein degrades and vanishes. The

corresponding rule for mRNA is slightly more complicated. If a gene is

regulated by a single transcription factor pj, the Boolean rule becomes

Smi
ðt 1 1Þ ¼ Spj

ðtÞ ðpj activatorÞ;
1� Spj

ðtÞ ðpj inhibitorÞ:

�
(9)

When a gene is regulated by more than one transcription factor, the com-

binatorial rule has also to be considered. The Boolean rule corresponding to

Eq. 5, the AND logic for the inhibitory effects, can be represented as

Smi
ðt 1 1Þ ¼ 1� Spj

ðtÞSpk
ðtÞ; (10)

while that for Eq. 6, the OR logic for the inhibition, can be represented as

Smi
ðt 1 1Þ ¼ ½1� Spj

ðtÞ�½1� Spk
ðtÞ�: (11)

Finally, when a gene is regulated by two regulators with opposite effects

as in Eq. 7, the corresponding Boolean rule can be represented as

Smi
ðt 1 1Þ ¼

Smi
ðtÞ ðSpj

ðtÞ ¼ Spk
ðtÞÞ;

½1� Spj
ðtÞ1 Spk

ðtÞ�=2 ðotherwiseÞ;

�

(12)

that is, when the opposite effects compete, the state of the mRNA remains

unchanged. To assess the capability of sustained oscillations for a given net-

work configuration, we simulate the Boolean dynamics based on the above

rules for all possible initial conditions (28 initial conditions for four-node

systems) and see if the oscillation is observed independent of initial conditions.

RESULTS

Our main results are presented in Figs. 3 and 4. We show in

the figure, for each extended four-node configuration, the

phase diagram in the (a, b) parameter space with a0/a ¼
10�3 and n ¼ 2. Among all possible configurations and

regulation functions, only the cases showing sustained os-

cillations for some parameter region are considered. The

combinatoric regulation function used is indicated beside the

phase diagram. In the phase diagram, the gray region indi-

cates the parameter range within which the sustained oscil-

lation occurs after the extension. The region enclosed by the

dotted line is the parameter range within which the sustained

oscillation is observed in the original three-node repressilator

system. Along with the phase diagrams, typical temporal

profiles of the four-node systems with both continuous and

Boolean dynamics are also shown.

Not all extended configurations can produce
sustained oscillations

We first note that not all extended configurations in Fig. 1 are

capable of exhibiting sustained oscillations. For example, the

configurations in Fig. 1, b and e, do not exhibit sustained

oscillations for any parameter sets investigated and therefore

they do not appear in Figs. 3 and 4. We also note that the size

of the parameter region in which the sustained oscillation

occurs varies significantly across different configurations. To

assess it, we measure the oscillability (see Theory and

Methods). The oscillability VC
i of the configuration i with the

regulation function FC is measured for each configuration as

V
M
a ¼ 0:06; V

S
c ¼ 0:002; V

S
d ¼ 0:80; V

I
d ¼ 0:85;

V
S
f ¼ 0:13; V

I
f ¼ 0:08; V

M
g ¼ 0:96; V

S
h ¼ 0:002;

(13)

FIGURE 2 Plots of the multivariate regulation functions Fi used in this

study, Eq. 5 (a), Eq. 6 (b), and Eq. 7 (c), with n ¼ m ¼ 2.
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where the oscillability of all other cases is zero. For the

configurations c and h, we observe the sustained oscillations

only for a particular type of the regulation function FS, but

not for FI. Furthermore, the oscillability is measured to be

smaller by at least an order of magnitude than other oscillable

cases. This observation prompted us to examine these cases

in more detail. We turn to the Boolean dynamics and found

that these two cases do not show oscillatory behaviors for

most of the initial conditions as shown in the rightmost

column of Figs. 3 c and 4 h. On the other hand, for all other

configurations that are found to be capable of sustained

oscillations by the continuous modeling, the oscillatory

behavior appears regardless of the initial conditions also in

the Boolean dynamics. Thus, we suppose that the sustained

oscillations rarely found for the configurations c and h may

not represent the real observable oscillatory dynamics in

which higher nonlinearity and complicated regulations may

be involved. Thus, we disregard these two cases from the

configurations that can produce sustained oscillations, leav-

ing the four configurations a, d, f, and g as the oscillable

extended configurations.

Each oscillable configuration exhibits a distinct
temporal profile

The four configurations capable of sustained oscillations

show distinct temporal patterns. Some typical patterns are

shown in Figs. 3 and 4. In the original repressilator, three

elements oscillate alternatively, with the peak in LacI con-

centration followed by the peak in TetR concentration, which

in turn is followed by the peak in CI concentration (21). A

simple pattern observed for the four-node extensions is that of

d, in which the oscillating phase of three original elements

is unchanged albeit with small changes in the oscillating

amplitudes. The new element N4 shows the identical temporal

profile as that of the node N3, which is expected from the

FIGURE 3 Dynamic characteristics of the original three-node repressilator (top row) and the four-node extended repressilators a–d. The phase diagram in

(a, b) parameter space with a0/a ¼ 10�3 and n ¼ m ¼ 2 is shown for each oscillable configuration and regulation function, both in linear and logarithmic

scales, for clarity. Labeling of the panels follows that of Fig. 1. The configuration b is not shown since it does not support the sustained oscillations for any

parameter set investigated. The configuration d is shown for each of the regulation functions of the form FS (fourth row) and FI (fifth row). The gray region in

the phase diagram indicates the cases where the sustained oscillation occurs in the extended system and the region enclosed by the black-dotted curve denotes

the cases where the sustained oscillation occurs in the original three-node repressilator, shown for comparison. Also shown is the temporal profile of the

continuous modeling with the parameters a¼ 20 and b¼ 0.4 (marked by ‘‘3’’ in the phase diagram). Each curve shows the profile of the node N1 (red solid),

N2 (orange dashed), N3 (blue dotted), and N4 (cyan dash-dotted), respectively. Note that trajectories of N3 and N4 overlap in d. Typical temporal profiles for

the corresponding Boolean dynamics are shown in the rightmost column. The color-coding of the Boolean dynamic profiles follows that of the continuous

modeling.

Genetic Oscillatory Systems 4273

Biophysical Journal 94(11) 4270–4276



symmetry in the configuration (Fig. 3 d). For the configuration

g, the alternating pattern of the original three nodes is largely

preserved as in d, but the oscillating profile of N4 is quite

different and it oscillates almost in phase with the node N2 in

this case (Fig. 4 g). In these two configurations, the oscillating

pattern of the original repressilator is only slightly altered for

nodes N1 and N2, and the changes for the node N3 can be seen

as redistribution of the oscillating activity of node N3 in the

original repressilator into those of nodes N3 and N4 in the

extended configuration. Interestingly, we observe largest V

for these two configurations than other cases (see Eq. 13).

For the other two configurations a and f, we observe more

nontrivial changes in the oscillating pattern. For example, in

a, although the alternating pattern is still present, the node N2

shows a suppressed oscillating amplitude, with the fourth

element oscillating almost in phase with the node N1 (Fig.

3 a). In f, a different pattern appears in that the oscillating ac-

tivity of node N1 is relatively suppressed and that of node N3,

together with that of the new element N4, becomes enhanced,

resulting in the oscillation with disproportionate active and

inactive periods for each node (Fig. 4 f). As mentioned above,

the oscillability of these two configurations are significantly

smaller than that of the configurations d and g, for which the

alteration of oscillating pattern is found to be weak.

Simple rules for sustained oscillations in
extended circuits

We found that each extended configuration exhibits different

dynamic characteristics, such as the capability of sustained

oscillations and the different oscillabilities and temporal

profiles. All these characteristics can be obtained by detailed

mathematical modeling, which is, however, prohibitively

impractical for larger systems. Thus it would be desirable if

we could deduce some rules of thumb that enable us to pick

out oscillable configurations without performing the detailed

analysis. Such rules will help us not only prioritize the can-

didate patterns of molecular wirings where sustained oscil-

lations play an important role, but also design synthetic

circuits that can be embedded in the wild-type without in-

terfering with the oscillatory functions.

To understand the condition under which the oscillation

can survive, we note that the extended four-node system con-

tains two feedback loops: One by the original repressilator,

N1–N2–N3–N1, and the other by the nodes N1–N2–N4–N1

in a–d and N1–N4–N2–N3–N1 in e–h. In a, d, f, and g, the

new feedback loop contains an odd number of inhibitory

interactions (thus, its overall regulatory sign is negative),

whereas in b, c, e, and h, it has an even number of inhibitions

(thus, positive in sign). As the original repressilator forms a

negative feedback loop, we call the former cases—a, d, f, and

g—a coherent coupling, and the latter an incoherent cou-

pling. The configurations with the coherent coupling coin-

cide with those capable of sustained oscillations. For the

incoherently coupled cases, on the other hand, since the

positive feedback loop cannot support a sustained oscillation

(23), the effects of two feedback loops, one negative and

one positive, compete with each other. As a result, the os-

cillation is destroyed. Thus the coherence property of the

coupling of feedback loops can discriminate the oscillable

FIGURE 4 Same as Fig. 3 for the four-node extended systems e–h. The configuration e is not shown since it does not show sustained oscillations. For the

configuration f, both the cases with different regulation functions, FS (first row) and FI (second row), are shown. The color-coding of the curves follows that of Fig. 3.
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and nonoscillable configurations, implying that it plays an

important role in the oscillatory dynamics.

The coherence of coupling alone cannot, however, explain

the observed difference in oscillabilities displayed by, e.g.,

those of d and a. To understand the origin of this distinct

oscillability property, we note the fact that, in d and g, where

we have rather high oscillability, the element regulating two

targets (N2 in d and N1 in g) has the same sign of regulation

(inhibition, in this case) on both of the regulated targets. On

the other hand, in a and f associated with small oscillabilities,

such multi-target node acts as both the activator and the in-

hibitor. We call the former case a homogeneous regulation

and the latter an inhomogeneous regulation. Thus the homo-

geneous regulation of multi-regulators might be another key

ingredient for the oscillatory stability of the extended network

in addition to the coherent coupling of feedback loops, and

can be used as an indicator for high-oscillability configura-

tions. It is interesting to note that we observe an enhanced

propensity of such homogeneous regulations in the recon-

structed transcriptional regulation network of the bacterium

E. coli (28). In this network, 67 out of 77 (�87%; empirical

P¼ 10�4) multi-target transcription factors exhibit a perfectly

homogeneous regulation activity. Such an enrichment in reg-

ulatory homogeneity (4) might be the consequence of selec-

tive pressure in favor of the homogeneous regulatory activity

during the course of evolution as well as their physico-

chemical properties such as the operon structures in E. coli,
raising an interesting question on the connection between the

biochemical regulatory functions and biological dynamic

functions.

SUMMARY AND DISCUSSION

In summary, we have shown that upon the extension and

coupling the capability of sustained oscillations for genetic

oscillatory systems depends on the network topology. Dif-

ferent configurations yield different oscillabilities and tem-

poral patterns. From the in silico experiments, we deduced

two simple empirical rules—the coherent coupling and the

homogeneous regulation. These can be used to discriminate

the capability of sustained oscillations in extended configu-

rations before detailed mathematical analysis or experiments.

The rules may be interpreted as that the evolutionary pressure

acts to minimize the incoherent interference at the coupling

points at which the crosstalk between the feedback loops

occur. Such biologically plausible interpretation guides us to

study the underlying dynamics at the system level.

There are many examples of biological systems in which

interacting feedback loop structures comprise key dynamic

factors, ranging from the simple chemotactic responses of

microorganisms such as Dictyostelium (29) to the cancer-

related human systems involving the p53-Mdm2 feedback

loops (18). One of the key challenges is to identify the un-

derlying network wiring of molecular components that al-

lows us to understand its functioning more accurately and to

modulate it safely. It is, however, far from trivial to map the

wiring of key components unambiguously (30) due to the

complexity of molecular networks. In the engineering point

of view, the repressilator represents one of the most suc-

cessful demonstrations of the power and potential of syn-

thetic biology (20), as it provides an experimental testbed for

more precise understanding of cellular dynamics in a con-

trollable manner. The repressilator currently works as a rel-

atively independent module, using some components alien to

the host organism. As one would ultimately like to use native

components to engineer existing biological circuits, problems

will then arise due to the evident connectivity of biological

networks. The interplay between the network topology and

biological function will thus be an increasingly important

topic, representing a wide avenue for theoretical and exper-

imental investigations in the future.
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