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Recent extensive studies of the explosive percolation (EP) model revealed that the EP transition is second
order with an extremely small value of the critical exponent β associated with the order parameter. This result
was obtained from static networks, in which the number of nodes in the system remains constant during the
evolution of the network. However, explosive percolating behavior of the order parameter can be observed in
social networks, which are often growing networks, where the number of nodes in the system increases as
dynamics proceeds. However, extensive studies of the EP transition in such growing networks are still missing.
Here we study the nature of the EP transition in growing networks by extending an existing growing network
model to a general case in which m node candidates are picked up in the Achiloptas process. When m = 2, this
model reduces to the existing model, which undergoes an infinite-order transition. We show that when m � 3,
the transition becomes second order due to the suppression effect against the growth of large clusters. Using
the rate-equation approach and performing numerical simulations, we also show that the exponent β decreases
algebraically with increasing m, whereas it does exponentially in a corresponding static random network model.
Finally, we find that the hyperscaling relations hold but in different forms.
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I. INTRODUCTION

Percolation is a simple yet basic model for understanding
the emergence of a giant component as links are occupied
with a certain probability between each pair of nodes in a
system [1,2]. This simple model has been applied to a variety
of real-world phenomena such as the sol-gel transition [3–6],
spreading of epidemic diseases [7–10], and the metal-insulator
transition [11]. Conventionally, a percolation transition is sec-
ond order [1,2]; however, interest in other types of percolation
transitions such as first-order [12], infinite-order [13,14] or
mixed-order [15] phase transitions has increased recently. This
fashion has been triggered by the explosive percolation (EP)
model [16] and an cascading failure model in interdependent
networks [17,18].

An EP model was introduced aiming to generate a discon-
tinuous percolation transition, in which two potential edges are
chosen randomly, and then an actual connection is made by
the edge that produces the smaller component. After extensive
research was performed, it turned out that the EP model
undergoes a second-order transition in the thermodynamic
limit [19,20], even though it can be discontinuous when
sufficient global information is imposed [21]. The critical
exponent β of the order parameter for the original EP model
is extremely small [19], implying that the order parameter
increases drastically at a transition point. Moreover, properties
of the EP transition are unconventional [22]. Such diverse
features of the EP transitions were obtained mainly from
static networks, in which the number of nodes is fixed
from the beginning. However, real-world phenomena related
to such a drastic increase of the order parameter can be
observed in growing social networks [23]. Nevertheless, the
EP transition on growing networks has not been investigated

*sonswoo@hanyang.ac.kr
†bkahng@snu.ac.kr

in detail yet [24,25]. Thus, this paper aims to investigate an
EP transition on growing networks.

We recall a percolation model on growing networks, which
exhibits an infinite-order phase transition [13]. In this model,
at each time step, a node is added to the system, and then
two distinct nodes are chosen randomly and connected with a
certain probability p unless they are not connected yet. The
model we consider here is a generalization of this existing
model [13] by applying the so-called Achlioptas rule: Instead
of choosing two nodes, we choose m distinct nodes. However,
actual connection of an edge is made between the two nodes
which are contained in the smallest two clusters among the m

clusters to which the m selected nodes belong. When those two
nodes are selected from the same cluster, they are connected
but the size of that cluster does not change at all.

We investigate a percolation transition arising in the above
model as the control parameter m is varied and show that
the cluster size distribution changes drastically when the
Achlioptas rule is applied. When the Achlioptas rule is absent
(m = 2), the cluster size distribution follows a power law not
only at the transition point p = pc but also below pc; however,
when the Achlioptas rule is present (m � 3), it exhibits the
critical behavior only at pc but a subcritical behavior for
p < pc. The Achlioptas rule yields the suppression effect
against the growth of large clusters, leading to the change
of the tail part of the cluster size distribution from a power
law to an exponentially decaying form for p < pc. Thus, the
transition type changes from infinite order to second order.
We also show that the critical exponent β decreases with m

algebraically on the growing network model, whereas it does
exponentially on static network models [26,27]. This property
reflects that the suppression effect can be weaker on growing
network models than that on static network models. Moreover,
we obtain the critical exponents and their m dependency for
the growing network model and compare the results with those
for a corresponding static network model we introduce later.

The paper is organized as follows: The model we study is
introduced in Sec. II, and the rate equation of the cluster size
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distribution for the growing and the static network models are
derived in Sec. III. Finite-size scaling analysis is performed
for the growing and the static network models with m = 3 in
Sec. IV. The obtained critical exponents are compared with
those obtained from the rate-equation approach. In Sec. V, the
cluster size distribution for the original growing percolation
model, which exhibits an infinite-order phase transition, is
presented to compare it with those obtained from the explosive
percolation in the growing network model exhibiting a second-
order transition.

II. TWO TYPES OF NETWORK MODELS:
GROWING AND STATIC

In this paper, we introduce two types of network models:
growing and static. In a growing network model, the number
of nodes increases one by one at each time step, whereas in a
static network model, the number of nodes is fixed from the
beginning. Edges are added one by one at each time step in
both models according the following rules:

(i) The growing network model begins with an isolated
node, and at each time step, a node is added in the system. Thus,
the number of nodes N (t) at time t becomes N (t) = t + 1.
Next, m candidate nodes are selected randomly. When N (t)
is less than m, all nodes are regarded as candidates. When
N (t) � m, m nodes are selected randomly, and their m clusters
are identified. Some of those clusters can be identical when
more than one selected nodes are contained in the same cluster.
The two selected nodes belonging to the smallest two clusters
among those m clusters are connected with probability p

unless they are already connected. When m = 2, this growing
network model reduces to an existing growing network model
proposed by Callaway et al. [13].

(ii) The static network model contains N isolated nodes
from the beginning and they remain fixed. At each time step,
m candidate nodes are selected uniformly at random, and the
two nodes among them, which belong to the smallest two
clusters, are connected with probability one. When m = 2,
this static network model reduces to the Erdős-Rényi (ER)
random network model [28].

III. RATE EQUATION APPROACH FOR THE CLUSTER
SIZE DISTRIBUTION

A. The growing network model with m = 3

Let ns(p,t) be the number of clusters of size s divided by
N (t) at time step t , where p denotes the probability that a
link is connected between the two selected nodes. The rate
equation of ns(p,t) is given by

d(N (t)ns)
dt

= p

[ ∑
i+j=s;i<j

3ini(jnj )2 +
∑

i+j=s;i<j

6inijnj cj+1

+
(

s

2
n s

2

)3

+ 3

(
s

2
n s

2

)2

(c s
2 +1) − 2(sns

)3

− 6(sns)
2cs+1 − 3(sns)

2(1 − cs)

− 3sns(cs+1)2 − 6sns(1 − cs)cs+1

]
+ δ1s , (1)

where ni denotes ni(p,t) and cs(p,t) = 1 − ∑
i<s ini(p,t).

The first term, 3ini(jnj )2, of the right-hand side of Eq. (1)
comes from the merging of two clusters of size i and j under
the constraint i < j , which produces a cluster of size s =
i + j . One node is selected from a cluster of size i and the other
two nodes are selected from either (i) one cluster of size j or
(ii) two distinct clusters of size j . However, the probability to
occur the case (i) is j Ni

N

j

N
, which is much smaller than (j Nj

N
)2

for the case (ii), and thus the first case was ignored. The factor
3 comes from the combinatorics of the three possible clusters.
For simplicity, this process is denoted as (i,j > i,j > i)i+j=s .
The second term comes from the process (i,j > i,k > j )i+j=s .
This means that the three nodes are chosen from the clusters
of different sizes i, j , and k under the constraint i < j < k,
and the two smallest clusters of sizes i and j are merged.
Since the size k can be arbitrary as long as k > j , we used
cj+1 ≡ ∑

k>j knk instead of knk . The factor 6 again comes
from the combinatorics. The third term comes from the process
( s

2 , s
2 , s

2 ), which represents that three nodes are chosen from
three distinct clusters of size s/2. Similarly, the fourth term
comes from the process ( s

2 , s
2 ,k > s

2 ), which means that two
nodes are chosen from two distinct clusters of size s/2 and the
other node are chosen from a cluster of size k larger than s/2.
Note that if two nodes are chosen from the same cluster of
size s/2, then there is no cluster merging and the probability
of this case occurring becomes s

2
Ns/2

N

s/2
N

, which is smaller than
( s

2n s
2
)2. Thus, this case was ignored. The factor 3 again comes

from the combinatorics. The third and fourth terms appear only
when s is even. Up to this point all terms are for the creation
of s-size clusters.

The terms from the fifth to the ninth are for the annihilation
of s-size clusters. The fifth and the sixth terms come from
the processes (s,s,s) and (s,s,k > s), respectively. These two
terms correspond to the third and the fourth terms presented
above. But the prefactors are 2 times bigger because two
clusters of size s merge and annihilate simultaneously. The
seventh term comes from the process (s,s,k < s), which
represents that two nodes are chosen from two distinct clusters
of size s and the other node is chosen from a cluster of
size k smaller than s. Again, we note that we ignore the
case where two or more nodes are selected from the same
one cluster, because that case occurs with smaller probability
than that of two or more nodes being selected from distinct
clusters in the limit N (t) → ∞. The factor 3 again comes from
the combinatorics. The eighth term comes from the process
(s,i > s,i > s), which represents the case that one node is
chosen from a cluster of size s and the other two nodes are
chosen from the clusters of size i larger than s. The factor 3
again comes from the combinatorics. The ninth term comes
from the process (s,i < s,j > s), which means that three
nodes are chosen from three different-size clusters: clusters
of size s, of smaller than s, and of bigger than s, respectively.
The factor 6 comes from the combinatorics. Overall, factor p

is the probability that the two nodes determined are connected.
The last term δ1s arises when a node is added to the system at
each time step.

The rate equation was set up under the following approxi-
mations, which are valid in the long-time limit, N (t) → ∞.
To be specific, let us suppose that the process generating the
first term of the right-hand side of Eq. (1) is 3ini(jnj )2. The
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FIG. 1. The growing network model with m = 3: Plot of ns(p)
versus s at p = pc (blue solid line), p > pc (red dashed curves),
and p < pc (black solid curves) based on numerical values obtained
from the rate equation. The transition point pc and the exponent τ

are estimated as pc = 0.413842(1) and 2.5, respectively. The black
dotted line is a guide line with slope −2.5.

probability of picking up two nodes from two distinct clusters
of equal size j is given as jNj

N

j (Nj −1)
N

. We approximate this
probability as (jnj )2 under the assumption that Nj is larger
than 1. We also exclude the case in the rate equation that more
than one node is selected from the same cluster. For instance,
when two nodes are selected from single cluster of size j ,
the probability becomes jNj

N

j

N
, which is regarded negligible

compared with jNj

N

jNj

N
. We believe that this approximation is

valid in the limit N (t) → ∞.
Based on this rate equation, we calculate ns(p) in the steady

state up to a certain size s∗, for instance, s∗ = 106. Note
that ns(p) decays in a power-law way as ns(pc) ∼ s−τ at a
transition point pc and exhibits crossover behavior ns(p) ∼
s−τ exp(−s/sc) for p �= pc with sc ∼ |p − pc|−1/σ [1,2].
When p > pc, an infinite cluster exists separately from finite
clusters. The percolation threshold is estimated as pc =
0.413842(1) using the criterion that ns(pc) follows power
law at pc as shown in Fig. 1. Moreover, the exponent τ is
determined as τ ≈ 2.5. We also check the crossover behaviors
for p < pc and p > pc in Fig. 1. The exponent σ is obtained by
scaling the plots of ns(p)sτ versus s|p − pc|1/σ for different
p values. It can be shown that the data are well collapsed onto
a single curve with σ ≈ 0.72 (Fig. 2).

Next, the order parameter is obtained using the relation,
G(p) ≈ 1 − ∑s∗

s=1 sns(p) [1,2], where s∗ is a characteristic
size which distinguishes an infinite cluster from finite clusters.
We take several cluster sizes for s∗ to check whether G(p)
depends on the chosen candidates of s∗. The obtained order
parameter follows a power-law form, G(p) ∼ (p − pc)β ,
where β = 0.694(2). The inset of Fig. 3 is a double logarithmic
plot of the order parameter as a function of (p − pc), which
exhibits power-law behavior as expected. The obtained value
of β satisfies the scaling relation β = (τ − 2)/σ [1,2].

The mean cluster size 〈s〉 is obtained from the cluster
size distribution as 〈s〉 = ∑s∗

s=1 s2ns(p), which diverges as
〈s〉 ∼ (p − pc)−γp for p > pc and (pc − p)−γ ′

p for p < pc.
We also determine γp = γ ′

p = 0.696 ± 0.003. The numerical
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FIG. 2. The growing network model with m = 3: Scaling plot of
ns(p)sτ versus s|p − pc|1/σ for different values of p in the region (a)
p < pc and (b) p > pc. Data for different p values are well collapsed
onto a single curve by choosing σ = 0.720(2) and τ = 2.500(1).

values obtained from the rate equation are shown in Fig. 4. In
the insets, 〈s〉 is plotted in double logarithmic axes as a function
of p − pc for p > pc and pc − p for p < pc. The exponent γp

satisfies the well-known scaling relation γp = (3 − τ )/σ [1,2].
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FIG. 3. The growing network model with m = 3: Plot of G(p)
versus p. Data points are obtained from the rate equation. Inset:
Dashed line is a guideline with slope 0.694(2).
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FIG. 4. The growing network model with m = 3: Plot of the mean
cluster size 〈s〉 as a function of p. Data points are obtained from the
rate equation. To take into account of finite-size effect, we truncate
cluster size at given sizes s∗ = 103,104,105 (dashed curves from
below), and 106 (solid curve). Insets: Plots of 〈s〉 versus |p − pc| for
p < pc (left) and p > pc (right). Dashed lines are guidelines with
slope −0.696(3).

B. The growing network model with general m

We extend the rate equation Eq. (1) to the one for arbitrary
m as follows:

d(N (t)ns)
dt

= p

[ m−1∑
r=1

m

(
m − 1

r − 1

) ∑
i+j=s;i<j

ini(jnj )m−r (cj+1)r−1

+
m−1∑
r=1

(
m

r − 1

)(
s

2
n s

2

)m−(r−1)

(c s
2 +1)r−1

− 2
m∑

r=2

(
m

r

)
(sns)

r (cs+1)m−r − m(sns)(cs+1)m−1

−
m−1∑
r=1

m

(
m − 1

r

)
(1 − cs)(sns)

r (cs+1)m−1−r

]
+ δ1s . (2)

Again, the second term on the right-hand side is valid only
when s is even. Repeating the steps taken for the case m = 3,
we obtain the critical exponents τ , σ , β, γp, and the percolation
threshold pc up to m = 10, which are listed in Table I.

Following the conventional formalism for the second-order
percolation transition, we examine m dependencies of the
critical exponents. We find that the transition point pc and
the critical exponent β seem to behave as 1 − pc ≈ 1.81/m

and β ≈ 1/(m − 1.56), as shown in Fig. 5. However, rigorous
derivation of those formulas is still needed. Next, we estimate
the exponents τ and σ for m = 4, . . . ,10 by following similar
steps used for m = 3. We find that the estimated values seem
to fit to the formulas τ = 2 + 1/(m − 1) and 1/σ = (m − 1)β
as shown in Fig. 6. Furthermore, we find that γp seems to
behave as (m − 2)β.

TABLE I. The growing network model: Numerical estimates of
pc, τ , σ , β, and γp for m = 3, . . . ,10. τ̃ and β̃ were obtained from
the empirical formulas τ̃ = 2 + 1/(m − 1) and β̃ = 1/(m − 1.56),
respectively.

m pc τ̃ τ σ β̃ β γp

3 0.413842(1) 5
2 2.500(1) 0.720(2) 0.694 0.694(2) 0.696(3)

4 0.555873(1) 7
3 2.333(1) 0.812(2) 0.410 0.410(2) 0.813(3)

5 0.642748(1) 9
4 2.250(1) 0.858(2) 0.291 0.291(1) 0.874(6)

6 0.701282(1) 11
5 2.200(1) 0.885(2) 0.225 0.226(1) 0.904(2)

7 0.743370(1) 13
6 2.167(1) 0.905(2) 0.184 0.184(1) 0.922(2)

8 0.775078(1) 15
7 2.143(1) 0.918(2) 0.155 0.156(1) 0.934(2)

9 0.799820(1) 17
8 2.125(1) 0.928(2) 0.134 0.135(1) 0.944(3)

10 0.819663(1) 19
9 2.111(1) 0.936(2) 0.119 0.119(1) 0.950(3)

C. The static network model with m = 3

We consider the evolution of the static network model under
the rule described in Sec. II. In this case, the number of nodes
is fixed all the way under the evolution of the network. The
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FIG. 5. The growing network model: (a) Plot of 1 − pc versus m.
Data points obtained from the rate equation seem to fit to the formula
1 − pc = 1.81/m. (b) Plot of β versus m. Data points obtained from
the rate equation seem to fit to the formula β = 1/(m − 1.56).
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FIG. 6. The growing network model: shown are the testings whether the empirical formulas for the exponents (a) τ − 2 = 1/(m − 1),
(b) 1/σ = (m − 1)β, and (c) γp = (m − 2)β are correct. Data points are obtained from the rate equation.

rate equation is written as

N
dns

dt
=

∑
i+j=s;i<j

3ini(jnj )2 +
∑

i+j=s;i<j

6inijnj cj+1

+
(

s

2
n s

2

)3

+ 3

(
s

2
n s

2

)2

(s s
2 +1)

− 2(sns)
3 − 6(sns)

2cs+1 − 3(sns)
2(1 − cs)

− 3sns(cs+1)2 − 6sns(1 − cs)cs+1, (3)

where ni denotes ni(t) and cs(t) = 1 − ∑
i<s ini(t). The terms

with n s
2

are valid only when s is even. In contrast to the case
of the growing network model, there is no steady state in the
size distribution, and ns depends on t . Accordingly, it takes
longer time to evaluate ns(t) explicitly compared with that for
the growing network model. We obtain ns(t) up to a certain
cluster size s∗ = 5 × 105.

We determine the percolation threshold tc as shown in
Fig. 7 based on the criterion that the cluster size distribution
follows power law at tc. It is obtained that tc = 0.849130(1) and
ns(tc) ∼ s−τ with τ ≈ 2.105. For t < tc and t > tc, the cluster
size distribution exhibits a crossover behavior as ns(t) ∼
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FIG. 7. The static network model with m = 3: Plot of ns(t) versus
s at t = tc (blue solid line), for t > tc (red dashed curves), and
for t < tc (black solid curves) based on numerical values obtained
from the rate equation. The transition point tc is determined as
tc = 0.849130(1) and the exponent τ is estimated as τ = 2.105(5).
The black dotted line is a guideline with the slope −2.105.

s−τ exp(−s|t − tc|1/σ ). Using the data-collapse method, we
obtain σ ≈ 0.79 as shown in Fig. 8.

Next, we consider behavior of the order parameter G(t) at
time step t . The order parameter is calculated using the relation
G(t) = 1 − ∑s∗

s=1 sns(t). We expect that G(t) ∼ (t − tc)β and
obtain β = 0.133(1) in Fig. 9. We also obtain the mean cluster
size defined as 〈s〉 = ∑s∗

s=1 s2ns(t). Following the convention,
it behaves as 〈s〉 ∼ |t − tc|−γp . We estimate that γp = 1.131(6)
in Fig. 10. The obtained exponent values β ≈ 0.133 and
γp ≈ 1.133 satisfy the scaling relation β = (τ − 2)/σ and
γp = (3 − τ )/σ , respectively.
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FIG. 8. The static network model with m = 3: Scaling plot of
ns(t)sτ versus s|t − tc|1/σ (a) for t < tc and (b) for t > tc. Data points
are well collapsed by taking τ = 2.105(5) and σ = 0.790(1).
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FIG. 9. The static network model with m = 3: Plot of the order
parameter G(t) as a function of t . Inset: The dotted line is a guideline
with the slope 0.133(1).

D. The static network model with general m

We extend the rate equation for m = 3 to the one for
arbitrary m as follows:

N
dns

dt
=

m−1∑
r=1

m

(
m − 1

r − 1

) ∑
i+j=s;i<j

ini(jnj )m−r (cj+1)r−1

+
m−1∑
r=1

(
m

r − 1

)(
s

2
n s

2

)m−(r−1)

(c s
2 +1)r−1

− 2
m∑

r=2

(
m

r

)
(sns)

r (cs+1)m−r − m(sns)(cs+1)m−1

−
m−1∑
r=1

m

(
m − 1

r

)
(1 − cs)(sns)

r (cs+1)m−1−r , (4)

where the term for n s
2

is valid only when s is even.

1
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FIG. 10. The static network model with m = 3: Plot of 〈s〉 as a
function of t . To take into account the finite-size effect, we truncate
cluster size at given sizes Nc = 104,5 × 104,105 (dashed curves from
below), and 5 × 105 (solid curve). Inset: Plot of the mean cluster size
as a function of t for t > tc (right) and for t < tc (left). Both dashed
lines are guidelines with slope −1.131(6).

TABLE II. The static network model: Numerical estimates of
tc, τ , σ , and β and γp for m = 2, . . . ,5. τ̃ and β̃ were obtained
from the empirical formulas τ̃ = 2 + β/[1 + (m − 1)β] and β̃ ≈
0.465 exp(−0.70m), respectively.

m tc τ̃ τ σ β̃ β γp

2 0.5 2.5 2.5 0.5 0.115 1 1
3 0.849130(1) 2.105 2.105(1) 0.790(1) 0.057 0.133(1) 1.131(6)
4 0.939678(1) 2.037 2.037(1) 0.890(1) 0.028 0.042(1) 1.082(6)
5 0.972672(1) 2.016 2.015(2) 0.940(1) 0.014 0.017(1) 1.050(4)

Taking similar steps used for m = 3, we determine the
transition point and the critical exponent β for general m up to
m = 15. It is likely that these values behave asymptotically as
1 − tc ≈ exp(−0.59m) and β ≈ exp(−0.70m), respectively.
This conjecture was also alluded in Refs. [26,27]. A numerical
test is shown in Fig. 11.

Furthermore, we determine the exponent values τ and σ for
m = 4 and m = 5. The obtained values are listed in Table II.
Notice that the values approximate to the formulas τ = 2 + β/

[1 + (m − 1)β] and 1/σ = 1 + (m − 1)β as shown in Fig. 12.
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FIG. 11. The static network model: (a) Plot of estimated values
of 1 − tc versus m on a semilogarithmic scale. (b) Plot of estimated
values of β versus m on a semilogarithmic scale. Data points likely
lie on a straight line asymptotically. The error bar of each data point
is smaller than the respective symbol size.
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(a) (b) (c)

FIG. 12. The static network model: Shown are the testings of whether the empirical formulas for (a) τ , (b) σ , and (c) γp are fit to numerical
data points obtained from the rate equation.

This conclusion is based on the previous analytic solution
for a slightly different static network model in [26,27]. Since
the value of m in our model corresponds to 2m in the
model [26,27], the analytic solution in Refs. [26,27] is valid
to our model but with replacing 2m with m. This allows us to
obtain γp = 1 + (m − 2)β.

IV. FINITE-SIZE SCALING ANALYSIS

A. Hyperscaling relations in explosive percolation

In EP, the susceptibility was defined in unconventional
way [27] using the correlation function C(i,j ) as follows:

χ = 1

N

N∑
i,j=1

C(i,j ), (5)

where C(i,j ) is the correlation function, defined as C(i,j ) = 1
if nodes i and j belong to the same cluster and C(i,j ) = 0
otherwise. The susceptibility diverges at the critical point as
χ ∼ |p − pc|−γ for the growing network model and χ ∼ |t −
tc|−γ for the static network model. It was shown that in the
EP problem, the hyperscaling relations are given as (i) df =
1/(σν), (ii) df = d − β/ν, and (iii) d − 2 + η = 2β∗/ν. Here
β∗ is the exponent of the so-called observable order parameter,
which is modified from the exponent β to take into account of
the effect of choosing m candidates.

In our model, according to the dynamic rule, the probability
that the two nodes belong to the giant cluster is x2

pc, where xpc

denotes the probability to select a node in the giant cluster
(following the notation in Ref. [27]). To choose the two nodes
from the giant cluster, the other m − 2 candidate nodes have
no choice but to belong to the same giant cluster. Thus, the
probability to choose m nodes from the giant cluster is given as
Gm. Thus, xpc = Gm/2, leading to β∗ = (m/2)β. On the other
hand, in Eq. (5), if we take integral range as [0,ξ ], then we
can obtain the relation 2 − η = γ /ν. Thus, the hyperscaling
relation (iii) can be expressed in a different form (iv) 2β∗ +
γ = dν. In the following subsections, we will check if the
hyperscaling relations (iii) and (iv) hold in the growing and
the static network models.

B. Simulation results for the growing network
model with m = 3

To determine the exponents τ and σ of the cluster size
distribution, we perform numerical simulations for the growing

network model with different system sizes N/104 = 23 − 210.
The ensemble average is taken over 104 runs.

We first examine the cluster size distribution for several
values of p around the transition point pc in Fig. 13. The cluster
size distribution follows a power law at pc and exhibits the
crossover behavior of ns(p) ∼ s−τ exp(−s|p − pc|1/σ ). We
determine pc = 0.4138(2) using the criteria that at pc, ns(pc)
decays in a power-law way and the size of the giant cluster per
node, GN (pc), follows a power law, GN (pc) ∼ N−β/ν̄ . Using
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FIG. 13. The growing network model with m = 3: Scaling plot
of ns(p)sτ versus s|p − pc|1/σ . Data points are obtained from Monte
Carlo simulations. Data collapse is established onto a single curve by
choosing τ = 2.5 and σ = 0.72 for (a) p < pc and for (b) p > pc.
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FIG. 14. The growing network model with m = 3: Scaling plot of
GNβ/ν̄ versus (p − pc)N 1/ν̄ for the system sizes N/104 = 23 − 210.
Data points obtained from numerical simulations are well collapsed
onto a single curve with 1/ν̄ = 0.35(3) and β/ν̄ = 0.24(3).

the data-collapse method, we determine the exponent values of
τ and σ to be τ ≈ 2.5 and σ ≈ 0.72, respectively, which are in
good agreement with the values obtained by the rate-equation
approach.

By direct measuring the exponent β of GN (pc) and using the
finite-size scaling formula GN (p) = N−β/ν̄f [(p − pc)N1/ν̄],
we determine the ratios β/ν̄ = 0.24(3) and 1/ν̄ ≈ 0.35(3), as
shown in Fig 14. We determine β ≈ 0.69. These values are
consistent with those obtained from the rate equation.

The mean cluster size is also examined by plotting it in a
scaling form, i.e., 〈s〉N−γp/ν̄ versus (p − pc)N1/ν̄ with γp =
0.70 ± 0.03 and 1/ν̄ = 0.35 in Fig. 15 for different system
sizes N/104 = 26 − 210. Ensemble average is taken over 104

runs. Data are well collapsed.
Next, to check the hyperscaling relations, we use the

obtained values of β/ν̄ and 1/ν̄ and calculate β = 0.70 ± 0.15
(β∗ = 1.05 ± 0.22 for m = 3) and ν̄ = 2.88 ± 0.25. In the
mean-field limit, the hyperscaling relation becomes du − 2 =
4β∗, where du denotes the upper critical dimension, η = 0 and
ν = 1/2. Using the value of β∗, we obtain du = 6.19 ± 0.87
and the correlation volume exponent ν̄ ′ ≡ duν = 3.10 ± 0.44,
which is roughly consistent with the directly measured value
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FIG. 15. The growing network model with m = 3: Scaling
plot of 〈s〉N−γp/ν̄ versus (p − pc)N 1/ν̄ for different system sizes
N/104 = 26 − 210. Data obtained from numerical simulations are
well collapsed onto a single curve with γp = 0.696 and 1/ν̄ = 0.35.

ν̄ = 2.88 ± 0.25 within the error bars. Thus, the hyperscaling
relation du − 2 + η = 2β∗/ν holds. Moreover, using β∗ =
1.05 ± 0.22 and γ = 1, we obtain 2β∗ + γ = 3.10 ± 0.44.
This value is consistent with ν̄ ′ and the measured value within
the error bar. Thus, the hyperscaling relation 2β∗ + γ = ν̄ also
holds.

C. Simulation results for the static network model with m = 3

To determine the exponents τ and σ for the cluster size
distribution, we perform Monte Carlo simulations for the static
network model of different system sizes N/104 = 27 − 210.
The ensemble average was taken over 105 for each data point.
The cluster size distributions ns(t) for different times are
plotted in a scaling form, i.e., ns(t) ∼ s−τ exp(−s|t − tc|1/σ ),
as shown in Fig. 16. Using the previously obtained values
tc = 0.84913(1) and τ ≈ 2.1, we find that the data for different
t are well collapsed onto a single curve with σ = 0.79.

Next, we consider the order parameter GN (t) as a function
of time t for different system sizes N/104 = 27 − 210. The
critical point tc and the critical exponent β are determined us-
ing the scaling ansatz GN (t) = N−β/ν̄f [(t − tc)N1/ν̄]. Based
on the criterion that GN (t) ∼ N−β/ν̄ at t = tc, we determine
tc = 0.84913(1) and β/ν̄ ≈ 0.06(1) in Fig. 17. Moreover,
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FIG. 16. The static network model with m = 3: Scaling plot of
ns(t)sτ versus s|t − tc|1/σ (a) for t < tc and (b) for t > tc. Data points
obtained from numerical simulations are well collapsed onto a single
curve with τ = 2.105 and σ = 0.79.
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FIG. 17. The static network model with m = 3. Scaling plot of
GNβ/ν̄ versus (t − tc)N 1/ν̄ for different system sizes N/104 = 27 −
210. Data points obtained from numerical simulations are reasonably
collapsed with 1/ν̄ = 0.45 and β/ν̄ = 0.06.

we find that all data points of different system sizes are
systematically collapsed onto a single curve when 1/ν̄ =
0.45 ± 0.05 was used, shown in Fig. 17. This suggests that
β = 0.138 ± 0.04 and ν̄ = 2.25 ± 0.25. This estimated value
of β is consistent within the error bar with the one obtained
from the rate-equation approach in Sec. III c.

Next we examine the mean cluster size 〈s〉 as a function of t

in a scaling form, i.e., 〈s〉N−γp/ν̄ versus (t − tc)N1/ν̄ with γp =
1.15 ± 0.05 and 1/ν̄ = 0.45 ± 0.05 in Fig. 18. We find that
the data are well collapsed. The obtained value from the data-
collapse method is consistent with the one directed measured
from the rate-equation approach in Sec. III c.

Finally, to test the hyperscaling relations, we use the
obtained values of β/ν̄ and 1/ν̄ to calculate β = 0.138 ±
0.04 (β∗ = 0.207 ± 0.06 for m = 3) and ν̄ = 2.25 ± 0.25.
Using those values, we obtain du = 2.83 ± 0.23 and the
correlation volume exponent ν̄ ′ ≡ duν = 1.42 ± 0.12, which
is inconsistent with the one ν̄ = 2.25 ± 0.25 obtained by
the data-collapse method. Thus, the hyperscaling relation
du − 2 + η = 2β∗/ν does not hold. Moreover, using the mean-
field value γ = 1 [27], we obtain 2β∗ + γ = 1.42 ± 0.12.
This value is consistent with ν̄ ′ but is not consistent with
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FIG. 18. The static network model with m = 3: Scaling plot of
〈s〉N−γp/ν̄ versus (t − tc)N 1/ν̄ for different system sizes N/104 =
27 − 210. Data points obtained from Monte Carlo simulations are
well collapsed with γp = 1.133 and 1/ν̄ = 0.45.

the measured value by the data-collapse method. Thus, the
hyperscaling relation 2β∗ + γ = ν̄ does not hold for the static
network model using the data obtained from Monte Carlo
simulations.

D. Testing the hyperscaling relations by the data
from the rate equation

We test the hyperscaling relation again with the data
obtained by the rate-equation approach for the static network
model. Specifically, to extract the finite-size effect from the
rate equation, we introduce a cutoff of cluster size sk ≡ Nc

and calculate the susceptibility [27] as

χ = N

k∑
i

[
3

(
si

N

)2 k∑
j

sj

N
+

(
si

N

)3]
, (6)

where i, j , and k are the indices of clusters and the summation
runs following the ascending order of cluster size from si = 1
up to sk = Nc. The cluster size with the index j satisfies the
inequality sj > si for a given si . The statistics of the number
of clusters of size si is obtained by the rate equation for the
static network model Eq. (3).

The susceptibility exhibits a peak at a certain transition
point tc(Nc). We plot the susceptibility versus cutoff size in a
scaling form, χN

−γ /ν̄r
c versus (t − tc)N1/ν̄r

c in Fig. 19, where
the subscript r of ν̄r indicates that ν̄ is obtained from the
data obtained by the rate-equation method. With the choice of
γ = 1.01 and 1/ν̄r = 0.73 (ν̄r ≈ 1.370), data points obtained
by the rate-equation method are well collapsed onto a single
curve. This value ν̄r ≈ 1.370 is consistent with ν̄ ′ within the
error bar, and therefore the hyperscaling relation is satisfied.
We also obtained 1/ν̄r ≈ 0.87(1) for m = 4. Together with
this exponent, and β ≈ 0.042(1) in Table II, we find that the
hyberscaling relation 2 × 2β + γ = ν̄r holds.

We note that 1/ν̄r ≈ 0.73 for m = 3 was also obtained
for the mean cluster size 〈s〉 together with γp ≈ 1.120(3)
using the data-collapse method with the data obtained by the
rate-equation method. This result suggests that the exponents
ν̄ and ν̄r obtained from Monte Carlo simulations and the
rate-equation approach, respectively, differ from each other.
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FIG. 19. The static network model with m = 3: Scaling plot of
χN−γ /ν̄r

c versus (t − tc)N 1/ν̄r
c for different cutoff sizes Nc/103 =

26 − 29. Data points obtained by the rate-equation method are well
collapsed with γ = 1.01 and 1/ν̄r = 0.73.
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FIG. 20. The growing network model with m = 2: Plot of ns(p)
versus s at p = pc (blue solid line), for p > pc (red dashed curves),
and for p < pc (black solid lines) based on numerical values obtained
from the rate equation. The transition point is estimated as pc =
0.125. For p � pc, ns(p) decays in a power-law manner, indicating
that the transition is infinite order.

In the EP problem, due to the suppression effect, near the
transition point, there exists a hump in the tail part of the
cluster size distribution. The hump size reduces as the system
size is increased; however, the systems of which sizes are
feasible by Monte Carlo simulations still contain big humps.
The correlation size exponent can be distorted by this hump in
finite-size scaling analysis with Monte Carlo simulation data.

V. COMPARISON OF ns( p) FOR THE GROWING
NETWORK MODEL WITH DIFFERENT m VALUES

It is interesting to note that the percolation occurring in
the growing network model with m � 3 is a second-order
transition, whereas it is of infinite order when m = 2. To
understand the underlying mechanism between this difference,
we investigate the cluster size distribution ns(p) for m = 2.
As shown in Fig. 20, ns(p) decays in a power-law manner
for p � pc, while it exhibits crossover behavior for p > pc.
The power-law behavior of ns(p) for p � pc implies that the
region p � pc is in the critical phase, which is a noticeable
feature of the infinite-order transition. Intuitively, for m = 2,
when p � pc, the fraction of nodes that belong to small-size
clusters is relatively small compared with the one for the
model showing second-order phase transition, for instance,
the case of m � 3 in Fig. 1. Instead, the power-law behavior
sustains even to the tail region of the cluster size distribution.

However, when m � 3, the formation of large-size clusters is
suppressed by the Achlioptas rule, which leads to the crossover
behavior to the exponential decay in the tail region of the
cluster size distribution for p < pc for the case m = 3. Thus,
the percolation transition in the growing network model for
m � 3 becomes second order.

VI. SUMMARY AND DISCUSSION

We have investigated properties the percolation transition
under the Achlioptas processes with general m-candidate rule
on both the growing and the static ER network models using
the rate-equation approaches and numerical simulations. For
the growing network model, as m is increased from two
to three, the type of percolation transition changes from
an infinite-order one to a second-order one. The Achlioptas
rule [16] yields the suppression effect against the growth
of large clusters, which causes the tail part of the cluster
size distribution to change from a power-law form to an
exponential-decay form. Thus, the transition type changes to
the second-order transition. On the other hand, in the static
network model, the type of the phase transition remains the
same as the second-order transition, even when m is increased.

Moreover, we showed that the critical exponent β decreases
algebraically with increasing m in the growing network model;
however, it decays exponentially in the static network model.
This fact implies that the suppression effect in the growing
network model is weaker than that in the static network model.
Furthermore, we obtained other critical exponents for general
m in both the growing and the static network models. We also
found that the scaling relations β = (2 − τ )/σ and γp = (3 −
τ )/σ hold for general m [1,2]. Importantly, the hyperscaling
relations d − 2 + η = 2β∗/ν and ν̄ = 2β∗ + γ also hold
in the growing and static network models, where β∗ and γ

replace the conventional exponents β and γp of the order
parameter and the mean cluster size. Here β∗ = (m/2)β and
γ in Eq. (6), which take into account of the EP rule of multiple
node candidates. We noticed that the Monte Carlo simulation
method did not produce the correlation size exponent ν̄

correctly for the static network model.
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