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Robustness of the avalanche dynamics in data-packet transport on scale-free networks
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We study the avalanche dynamics in the data-packet transport on scale-free networks through a simple
model. In the model, each vertex is assigned a capacity proportional to the load with the proportionality
constant 1-&. When the system is perturbed by a single vertex removal, the load of each vertex is redistrib-
uted, followed by subsequent failures of overloaded vertices. The avalanche size depends on the parameter
as well as which vertex triggers it. We find that there exists a critical vajug which the avalanche size
distribution follows a power law. The critical exponent associated with it appears to be robust as long as the
degree exponent is between 2 and 3 and is close in value to that of the distribution of the diameter changes by
single vertex removal.
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Avalanche dynamics, triggered by small initial perturba-when every pair of vertices send and receive a unit data
tion, but spreading to other constituents successively, is ongacket. The data packets are allowed to travel along the
of the intriguing problems in physid4—11]. Such avalanche shortest pathways between a given pair of vertices and are
dynamics manifests itself in diverse forms such as culturaflivided evenly at each branching po[ri3,14. For SF net-
fads[1], virus spreading2], disease contagidi8], blackout ~ Works, the load of each vertex is heterogeneous, and its dis-
in power transmission gridgt,5], data-packet congestion in tribution also follows a power lawp(¢) ~¢~°. The super-
the Internet[6,7], and so on. In particular, the avalanche Script(0) in Eq. (1) indicates the load without any removal of
phenomena on complex networks are interesting, becausrtices. The excess terat'” in Eq. (1) provides the ability
they occur more frequently and their impact can be mordo tolerate the additional burden and may describe the excess
severe than those occurring in the Euclidean space due to tiffer at the routers in the Internet, for example. The basic
close interconnectivity among constituents in complex netassumption of the ML model is that the size of such an
works. excess buffer is proportional to the activity at the vertex, the

To understand the intrinsic nature of the avalanche dyfoad ¢\9. The control parametea sets the global level of
namics on complex networks, the sandpile model proposetblerance of the system.
by Bak, Tang, and Wiesenfeld has been studied on scale-free Next, we remove a vertekintentionally, which we call
(SP networks recently12]. The SF network is the network triggering vertex. Then each pair of remaining vertices
whose degree distribution follows a power lguy(k) ~ k™. whose shortest pathway had passed through that triggering
Since the sandpile model is a self-organized critical modelyertex should find detours, resulting in rearrangement of the
the avalanche size distribution follows a power lgwy(s) shortest pathways over the network, and the load at a remain-
~s77, wheres is the avalanche size. In the sandpile model,ing vertexj takes a new value, which is denoted&%{é If the
the exponentr depends on the degree exponenof the load ¢ exceeds its capacity; given by Eq.(1), then the
embedded SF network agry=7vy/(y—1) for2<y<3when vertex j would fail irreversibly. Other overloaded vertices
the toppling threshold of each vertex is equal to its degreealso fail at the same time. These are the failures by the first
However, when the toppling threshold is fixed as a constanishock, marked with a green symka} ) in Fig. 1. After then,
independent of degree, the exponegit=3/2, being equal the shortest pathway configurations would rearrange again,
to the mean field value in the Euclidean space. Thus it wouldnd the overloaded vertices fail successively until no over-
be interesting to find an example of avalanche dynamic$oaded vertices remain. The avalanche szes defined as
where the avalanche size distribution follows a power lawthe total number of failed vertices throughout the whole pro-
with a nontrivial exponent, but different from the mean field cess of the avalanche triggered by the veiteiote that in
value, and robust against variation of degree exponents. Fohis model, failures do not necessarily proceed contiguously,
this purpose, in this paper, we study the model proposed bthat is, through the neighbors of vertices previously failed,
Motter and Lai(ML) [7], designed to exploit the avalanche but spread over the entire system through nonlocal dynamics
dynamics in the process of data-packet transport on complexs shown in Fig. 1. For such nonlocal dynamics, the branch-

networks. ing process formalism cannot be used to obtain the avalanche
In the ML model, each vertex is assigned a finite capacitysize distribution of the ML model.
given as In the original work, ML measured the rati@;=N; /N,
whereN andN/ are the numbers of vertices before and after
¢=(1 +a)t?, (1)  cascading failures, respectively, when the triggering vertex is

i. Note that the avalanche size correspondg+iN—N/. ML
wherea is a control parameter ango) is the load of vertex found thatG; depends on the degrde of the triggering
j- The load of a given vertex is defined as the sum of thevertexi as well as the control parameterWhena is large
effective number of data packets passing through that verteggmal)), the capacity of each vertex is largemall), so that
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FIG. 2. Plot of the avalanche size distribution for the BA model
at a;=0.15 with differenty=3.0 (0), 2.6 (), and 2.2(<). The
mean degree is 4, and the system sizd3sL0*. The dotted line has
a slope -2.1, drawn for reference. The avalanche size distributions
are obtained by deleting each vertexn turn and measuring the
respective avalanche siz then tabulating the histogram &,
normalized by the number of triggering vertics Inset: the ava-
lanche size distributioficumulative under the same condition for
v=3.0, but witha=0.11 (top), 0.15(middle), and 0.2(bottom).

FIG. 1. (Color onling Plot of the avalanche dynamics pattern at Y&@St protein interaction network and the Internet, we obtain
a.=0.15 for a given small-size network. Cascading failures starting”= 2-3(1) and 7=~1.8(1), respectively, as shown in Fig. 4.
from the central vertex spread in a nonlocal way following the Note that the degree exponent of the yeast protein interaction
steps,O (red), ¢ (green, and (blue). network isy=3.4[16], slightly larger than 3, thus the expo-

nent 7= 2.3 is somewhat larger than 211 obtained in the

the number of failed vertices is smalarge) andG; is close ~ BA model for 2<y<3. _

to one(zerg. Moreover, when the degree of the triggering Th_e dgwauon of the exponentfor the Internet is rooted.
vertex is large(smal), G; is close to zeroone, and the from |ts_d|fferent network structure from those of the p_rotem
system is vulnerablé&obus). Such numerical results suggest interaction networks or the BA-type model networks: it was
that there may occur a phase transition in the avalanche sizEund through several recent studies that the Internet struc-
In this paper, we find numerically that indeed there exists dure is effectively treelike, while the protein interaction net-
critical valuea, at which the avalanche size distribution fol- WOrk and BA-type model networks contain diverse connec-
lows a power lawp,(s) ~s". We also study various features tions[14,17). Accordingly, when a vertex on a branch of tree
of the avalanche dynamics at the critical point. structure is removed, the giant cluster is divided into two or

Let us first investigate the distribution ¢&}, the ava- More components, and the giant cluster size apparently
lanche size distributiop,(s). For large(smal) a, the number shrinks. Such a case occurs more often in the Internet than in

of overloaded vertices is smalarge), so that the avalanche ot_her-type networks, becz_iuse th_e Internet is treelike. Due to
size is finite(diverges and the system may be considered aSth|s fact, the avalanche size statistics of the Internet are dif-
in a subcritical(supercritical phase. We find that there exists ferent from that of other networks. On the other hand, while

a characteristic valua, between the two regimes, where the

avalanche size distribution follows a power lauy(s) ~s™" 10° 7
as shown in Fig. 2. Numerical simulations are performed for 107 ]
the Barabasi-AlbertBA) model [15] with different degree — 102 .. ]
exponent values. We find that~0.15 andr=2.1(1), both G "B R
of which are likely to be robust for different degree expo- §10_4 .."Ei._‘.Q\ ]
nentsy as long as & y<3. While it is not manifest why =10 w0, E
such a robust behavior occurs in the avalanche size distribu- <107 5% E
tion, it is noteworthy to remind one that other problems re- = 0 B o 3
lated to the shortest pathways such as the load distribution 107 m"--.ﬂ“g,\ _
and the diameter change distribution are also likely to be Ll il ey e

robust. Thus the robustness of the avalanche size distribution 10° 10’ 10 0®
may be caused by the notion of the shortest pathway. For o8

y>3, however,p,(s) decays with exponent larger than FIG. 3. Plot of the avalanche size distribution for the BA model
~2.1 or exponentially depending on The avalanche size jth y=3 by the first shockO), compared with the avalanche size
distribution by the first shock behaves differently @gs;)  distribution including the entire proce$s)). The slopes of dotted
~s;%3 which is shown in Fig. 3. We also check the ava-and dashed lines are -2.3 and -2.1, respectively, drawn for
lanche size distribution for real world networks. For thereference.
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FIG. 4. Plot of the avalanche size distribution for the yeast pro- FICG- 6. Plot of the failure fractior vs degreek ata. for the BA
tein interaction network() and the InternetC]) ata.=0.15. The =~ model(y=3) with N=10". Data points are logarithmically binned.
slopes of dotted and dashed lines are —1.8 and 2.3, respectivel@,”or bars represent the standard deviations for each bin.

drawn for reference. exhibits such a behavior. To examine the fluctuations of

(s)(kqe) for given kg, we consider the distribution function
the rule of the ML model may not be relevant to the dynam-y(y) of the avalanche sizes for givee with a rescaled
ics in the protein interaction network or cellular networks'quantity,x:s/kfjgl)’”'l). Shown in the inset of Fig. 5 are the

cascading failure occurring in cellular networks is an impor-y5ta of the cumulative distribution af(x) for different kyg,

tant concept. For example, the protein interaction networkyhich collapse onto a single curve exhibiting a fat-tail be-
provides the basic operational protocol in various signagyior asq(x) ~x 32 for largex.

transduction and functional pathways. In such a system, pNext to study how much a given vertex with degteis
when a certain elemerta protein or a substratdails or is \inerable or robust under a random vertex failure, we count

removed(perturbed, others should take over its burden 10 {ne number of failures; of a vertexj out of N cascading

survive the lack thereof, although the mechanism by whiclyyents when each of vertices acts as the triggering vertex.
the cascade spreads could be different from that of the Mlat this point, it is convenient to consider the random vari-
model. Studies in this direction have recently been carriedpasy which take the value 1 if the vertgxtopples due to
out for the metabolic networks8,19. the triggering vertex and 0 otherwise. In terms of, 3;X|
Next, we examine the relationship of the mean avalanchgS and =X =n;. Let f(k) be the average af/N over the

size, denoted bys)(kye), over different triggering Vertices o icas with degre. Figure 6 shows the functiof(k) ver-

but with a given degregqe atac in Fig. 5. We find that the gy 1t increases with increasinigfor smallk and exhibits

quantity (s)(kse) increases with increasingse. However, 5 hoay in the intermediate range kf For largek, f(k) is

there occur large fluctuations ¥®)(kee), in particular, for 516t independent df This result implies that the vertices

small kge.. Note that if the orderings in the magnitude of yjith degree in the intermediate range are more vulnerable.

(9)(kge) andkges are preservedp,(s)ds=py(k)dk and hence \eanwhile, we note that the asymptotic value fok) for

one has the relations)(kge) ~K; """, Indeed, Fig. 5 largek is ~O(L/N). This is because a vertex with large
hardly fails through the cascading failure process triggered

10* g by other vertices, but fails trivially when itself acts as the
£ - 3 triggering vertex. The peak at the intermediate valu& of
103 _ q'_e-‘" _ f(k) can be understood in the following heuristic way. The
£ R 3 load itself quantifies the level of traffic coming through the
5 ° 1 vertex, so we can expect that the higher the load is, the more
VAL 3 10" excess traffic it would get by the breakdown of other verti-
0 ces. On the other hand, since the excess capa(ffﬂ)/ is
10' £ 10° 3 assigned in a multiplicative way, the higher the load is, the
- H‘ﬁ} 10410-2 10" 100 10 larger the room to accommodate the excess is, reducing the
100 & R R occasion to be overloaded. These two factors compete each
10" k 10? 10° other, generating a peak in the intermediate rangé& of

del f(k). That implies the vertices with intermediate degrees are

FIG. 5. Plot of the mean avalanche sizs vs the degree of the MOre vu_InerabIe. Such a behavior can also be seen in the
triggering vertexkge for the BA model(y=3) at a.. Data points information cascade model of Wafts]. _
(O) are averaged over different avalanche sizes triggered by the This result is also reminiscent of the avalanche dynamics
vertices with a giverkye. The standard deviation of each data point Of the sandpile model. The hubs, vertices with large degrees,
is represented by a bar. The slope of the dotted line is the theoretic@lay a role of the reservoir against failurgs2]. We also
value 1.8, drawn for reference. Inset: Cumulative plot of the avaconsider the failure correlation functiaitk,kye), defined as
lanche size distribution with the rescaled quaniitys/ki, Y™ the average ok; with the constraints;=k and k=K k
for kge=3 (O), 5 (0), 10 (<), and 15(A). denoting the degree of a vertéxThe darkest region in the
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~2.2(1) for most artificial SF networks including the BA
model, insensitive to the degree exponenas long as 2
<y<3, and{=2.3(1) for the yeast protein interaction net-
work, but{=1.7(1) for the Internet. All the above values of
the exponent are close to corresponding valuessdbr the
avalanche size distribution of the ML model. In addition, the
exponentsr and{ are also close in values to the load distri-
bution exponents except for a few examples such as the
4 Internet. Thus it would be interesting to investigate the origin
of such coincidences on a fundamental level.

Finally, it is noteworthy that recently Zhaat al.[21] also
studied the phase transition of the cascading failure for the
log Ky ML model. They estimated the critical point to bg=0.1 by
comparing the load distribution before and after the deletion
of the hub. Their estimation is not inconsistent with our nu-
merical estimation. However, the avalanche size distribution
astudied in this work provides a better criterion for the phase

transition point.

In conclusion, we have studied the avalanche dynamics in
bottom-right corner of Fig. 7 indicates that vertices with the model proposed by Motter and Lai, describing the data-
small degrees easily fail by the trigger of vertices with largepacket transport on SF networks. Depending on the model
degrees, whereas the reverse rarely happen, particularly fparameten, which controls the magnitude of the capacity of
largekge, @s manifested by the white region in the upper-lefteach vertex, the pattern of avalanche dynamics can change.
part of Fig. 7. . ) ~_ For smalla, cascading failure spreads over the entire system,
_ Itis interesting to notice that the avalanche size distributorresponding to supercritical behavior in avalanche dynam-
tion behaves ;lmllarly to the diameter change distribution.g While, for largea, cascading failure is confined in a
[20]. Diameter is the(o?verage number of hops between every,| region, and avalanche size follows a subcritical behav-
pair of vertices. Leq be the diameter of a given network, ior. At the critical pointa., the avalanche size distribution
where the superscrifgd) means unperturbed network. When ¢ii0ws a power law with exponent The exponent seems
the network is perturbed by the removal of a vertexhe to be robust for different degree exponeptas long as

diameter changes accordingly, and the diameter of the rey y<3, and is likely to be close to the exponent of the
maining network is denoted a”. Then the dimensionless diameter change distribution.

quantityA;=(dV-d@)/d© is measured for all, and then its
distribution function, composed @f\;}, behaves appc(A) This work is supported by the KOSEF Grant No. R14-
~A~¢ for large A. The exponent was measured to b&  2002-059-01000-0 in the ABRL program.

FIG. 7. Plot of the logarithnfwith base 2 of the failure corre-
lation functionc(k,kge) as functions of the degrees of the failed
vertexk and of the triggering vertekyo. Data are logarithmically
binned to reduce fluctuations. Simulation is performed for the B
model with y=3, N=3000 and averaged over 10 configurations.
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