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We study the avalanche dynamics in the data-packet transport on scale-free networks through a simple
model. In the model, each vertex is assigned a capacity proportional to the load with the proportionality
constant 1+a. When the system is perturbed by a single vertex removal, the load of each vertex is redistrib-
uted, followed by subsequent failures of overloaded vertices. The avalanche size depends on the parametera
as well as which vertex triggers it. We find that there exists a critical valueac at which the avalanche size
distribution follows a power law. The critical exponent associated with it appears to be robust as long as the
degree exponent is between 2 and 3 and is close in value to that of the distribution of the diameter changes by
single vertex removal.
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Avalanche dynamics, triggered by small initial perturba-
tion, but spreading to other constituents successively, is one
of the intriguing problems in physicsf1–11g. Such avalanche
dynamics manifests itself in diverse forms such as cultural
fadsf1g, virus spreadingf2g, disease contagionf3g, blackout
in power transmission gridsf4,5g, data-packet congestion in
the Internetf6,7g, and so on. In particular, the avalanche
phenomena on complex networks are interesting, because
they occur more frequently and their impact can be more
severe than those occurring in the Euclidean space due to the
close interconnectivity among constituents in complex net-
works.

To understand the intrinsic nature of the avalanche dy-
namics on complex networks, the sandpile model proposed
by Bak, Tang, and Wiesenfeld has been studied on scale-free
sSFd networks recentlyf12g. The SF network is the network
whose degree distribution follows a power law,pdskd,k−g.
Since the sandpile model is a self-organized critical model,
the avalanche size distribution follows a power law,passd
,s−t, wheres is the avalanche size. In the sandpile model,
the exponentt depends on the degree exponentg of the
embedded SF network astBTW=g / sg−1d for 2,g,3 when
the toppling threshold of each vertex is equal to its degree.
However, when the toppling threshold is fixed as a constant,
independent of degree, the exponenttMF=3/2, being equal
to the mean field value in the Euclidean space. Thus it would
be interesting to find an example of avalanche dynamics
where the avalanche size distribution follows a power law
with a nontrivial exponent, but different from the mean field
value, and robust against variation of degree exponents. For
this purpose, in this paper, we study the model proposed by
Motter and LaisML d f7g, designed to exploit the avalanche
dynamics in the process of data-packet transport on complex
networks.

In the ML model, each vertex is assigned a finite capacity,
given as

cj = s1 + ad, j
s0d, s1d

wherea is a control parameter and, j
s0d is the load of vertex

j . The load of a given vertex is defined as the sum of the
effective number of data packets passing through that vertex

when every pair of vertices send and receive a unit data
packet. The data packets are allowed to travel along the
shortest pathways between a given pair of vertices and are
divided evenly at each branching pointf13,14g. For SF net-
works, the load of each vertex is heterogeneous, and its dis-
tribution also follows a power law,p,s,d,,−d. The super-
scripts0d in Eq. s1d indicates the load without any removal of
vertices. The excess terma, j

s0d in Eq. s1d provides the ability
to tolerate the additional burden and may describe the excess
buffer at the routers in the Internet, for example. The basic
assumption of the ML model is that the size of such an
excess buffer is proportional to the activity at the vertex, the
load , j

s0d. The control parametera sets the global level of
tolerance of the system.

Next, we remove a vertexi intentionally, which we call
triggering vertex. Then each pair of remaining vertices
whose shortest pathway had passed through that triggering
vertex should find detours, resulting in rearrangement of the
shortest pathways over the network, and the load at a remain-
ing vertexj takes a new value, which is denoted as, j

sid. If the
load , j

sid exceeds its capacitycj given by Eq.s1d, then the
vertex j would fail irreversibly. Other overloaded vertices
also fail at the same time. These are the failures by the first
shock, marked with a green symbolsLd in Fig. 1. After then,
the shortest pathway configurations would rearrange again,
and the overloaded vertices fail successively until no over-
loaded vertices remain. The avalanche sizesi is defined as
the total number of failed vertices throughout the whole pro-
cess of the avalanche triggered by the vertexi. Note that in
this model, failures do not necessarily proceed contiguously,
that is, through the neighbors of vertices previously failed,
but spread over the entire system through nonlocal dynamics
as shown in Fig. 1. For such nonlocal dynamics, the branch-
ing process formalism cannot be used to obtain the avalanche
size distribution of the ML model.

In the original work, ML measured the ratioGi =Ni8 /N,
whereN andNi8 are the numbers of vertices before and after
cascading failures, respectively, when the triggering vertex is
i. Note that the avalanche size corresponds tosi =N−Ni8. ML
found that Gi depends on the degreeki of the triggering
vertex i as well as the control parametera. Whena is large
ssmalld, the capacity of each vertex is largessmalld, so that
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the number of failed vertices is smallslarged andGi is close
to one szerod. Moreover, when the degree of the triggering
vertex is largessmalld, Gi is close to zerosoned, and the
system is vulnerablesrobustd. Such numerical results suggest
that there may occur a phase transition in the avalanche size.
In this paper, we find numerically that indeed there exists a
critical valueac at which the avalanche size distribution fol-
lows a power law,passd,s−t. We also study various features
of the avalanche dynamics at the critical point.

Let us first investigate the distribution ofhsij, the ava-
lanche size distributionpassd. For largessmalld a, the number
of overloaded vertices is smallslarged, so that the avalanche
size is finitesdivergesd and the system may be considered as
in a subcriticalssupercriticald phase. We find that there exists
a characteristic valueac between the two regimes, where the
avalanche size distribution follows a power law,passd,s−t

as shown in Fig. 2. Numerical simulations are performed for
the Barabási-AlbertsBAd model f15g with different degree
exponent values. We find thatac<0.15 andt<2.1s1d, both
of which are likely to be robust for different degree expo-
nentsg as long as 2,g,3. While it is not manifest why
such a robust behavior occurs in the avalanche size distribu-
tion, it is noteworthy to remind one that other problems re-
lated to the shortest pathways such as the load distribution
and the diameter change distribution are also likely to be
robust. Thus the robustness of the avalanche size distribution
may be caused by the notion of the shortest pathway. For
g.3, however,passd decays with exponent larger thant
<2.1 or exponentially depending ong. The avalanche size
distribution by the first shock behaves differently aspassfd
,sf

−2.3, which is shown in Fig. 3. We also check the ava-
lanche size distribution for real world networks. For the

yeast protein interaction network and the Internet, we obtain
t<2.3s1d and t<1.8s1d, respectively, as shown in Fig. 4.
Note that the degree exponent of the yeast protein interaction
network isg<3.4 f16g, slightly larger than 3, thus the expo-
nent t<2.3 is somewhat larger than 2.1s1d obtained in the
BA model for 2,g,3.

The deviation of the exponentt for the Internet is rooted
from its different network structure from those of the protein
interaction networks or the BA-type model networks: it was
found through several recent studies that the Internet struc-
ture is effectively treelike, while the protein interaction net-
work and BA-type model networks contain diverse connec-
tions f14,17g. Accordingly, when a vertex on a branch of tree
structure is removed, the giant cluster is divided into two or
more components, and the giant cluster size apparently
shrinks. Such a case occurs more often in the Internet than in
other-type networks, because the Internet is treelike. Due to
this fact, the avalanche size statistics of the Internet are dif-
ferent from that of other networks. On the other hand, while

FIG. 1. sColor onlined Plot of the avalanche dynamics pattern at
ac=0.15 for a given small-size network. Cascading failures starting
from the central vertex spread in a nonlocal way following the
steps,q sredd, L sgreend, andh sblued.

FIG. 2. Plot of the avalanche size distribution for the BA model
at ac=0.15 with differentg=3.0 sqd, 2.6 shd, and 2.2sLd. The
mean degree is 4, and the system size isN=104. The dotted line has
a slope −2.1, drawn for reference. The avalanche size distributions
are obtained by deleting each vertexi in turn and measuring the
respective avalanche sizesi, then tabulating the histogram ofsi,
normalized by the number of triggering verticesN. Inset: the ava-
lanche size distributionscumulatived under the same condition for
g=3.0, but witha=0.11 stopd, 0.15 smiddled, and 0.2sbottomd.

FIG. 3. Plot of the avalanche size distribution for the BA model
with g=3 by the first shockshd, compared with the avalanche size
distribution including the entire processsqd. The slopes of dotted
and dashed lines are −2.3 and −2.1, respectively, drawn for
reference.
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the rule of the ML model may not be relevant to the dynam-
ics in the protein interaction network or cellular networks,
cascading failure occurring in cellular networks is an impor-
tant concept. For example, the protein interaction network
provides the basic operational protocol in various signal
transduction and functional pathways. In such a system,
when a certain elementsa protein or a substrated fails or is
removedsperturbedd, others should take over its burden to
survive the lack thereof, although the mechanism by which
the cascade spreads could be different from that of the ML
model. Studies in this direction have recently been carried
out for the metabolic networksf18,19g.

Next, we examine the relationship of the mean avalanche
size, denoted bykslskdeld, over different triggering vertices
but with a given degreekdel at ac in Fig. 5. We find that the
quantity kslskdeld increases with increasingkdel. However,
there occur large fluctuations inkslskdeld, in particular, for
small kdel. Note that if the orderings in the magnitude of
kslskdeld and kdel are preserved,passdds=pdskddk and hence
one has the relationkslskdeld,kdel

sg−1d/st−1d. Indeed, Fig. 5

exhibits such a behavior. To examine the fluctuations of
kslskdeld for given kdel, we consider the distribution function
qsxd of the avalanche sizes for givenkdel with a rescaled
quantity,x=s/kdel

sg−1d/st−1d. Shown in the inset of Fig. 5 are the
data of the cumulative distribution ofqsxd for different kdel,
which collapse onto a single curve exhibiting a fat-tail be-
havior asqsxd,x−3.2 for largex.

Next, to study how much a given vertex with degreek is
vulnerable or robust under a random vertex failure, we count
the number of failuresnj of a vertex j out of N cascading
events when each ofN vertices acts as the triggering vertex.
At this point, it is convenient to consider the random vari-
ablesxj

i which take the value 1 if the vertexj topples due to
the triggering vertexi and 0 otherwise. In terms ofxj

i , o jxj
i

=si and oixj
i =nj. Let fskd be the average ofnj /N over the

vertices with degreek. Figure 6 shows the functionfskd ver-
susk. It increases with increasingk for small k and exhibits
a peak in the intermediate range ofk. For largek, fskd is
almost independent ofk. This result implies that the vertices
with degree in the intermediate range are more vulnerable.
Meanwhile, we note that the asymptotic value offskd for
large k is ,Os1/Nd. This is because a vertex with largek
hardly fails through the cascading failure process triggered
by other vertices, but fails trivially when itself acts as the
triggering vertex. The peak at the intermediate value ofk in
fskd can be understood in the following heuristic way. The
load itself quantifies the level of traffic coming through the
vertex, so we can expect that the higher the load is, the more
excess traffic it would get by the breakdown of other verti-
ces. On the other hand, since the excess capacitya, j

s0d is
assigned in a multiplicative way, the higher the load is, the
larger the room to accommodate the excess is, reducing the
occasion to be overloaded. These two factors compete each
other, generating a peak in the intermediate range ofk in
fskd. That implies the vertices with intermediate degrees are
more vulnerable. Such a behavior can also be seen in the
information cascade model of Wattsf1g.

This result is also reminiscent of the avalanche dynamics
of the sandpile model. The hubs, vertices with large degrees,
play a role of the reservoir against failuresf12g. We also
consider the failure correlation functioncsk,kdeld, defined as
the average ofxj

i with the constraintskj =k and ki =kdel, ki
denoting the degree of a vertexi. The darkest region in the

FIG. 4. Plot of the avalanche size distribution for the yeast pro-
tein interaction networksqd and the Internetshd at ac=0.15. The
slopes of dotted and dashed lines are −1.8 and −2.3, respectively,
drawn for reference.

FIG. 5. Plot of the mean avalanche sizeksl vs the degree of the
triggering vertexkdel for the BA modelsg=3d at ac. Data points
sqd are averaged over different avalanche sizes triggered by the
vertices with a givenkdel. The standard deviation of each data point
is represented by a bar. The slope of the dotted line is the theoretical
value 1.8, drawn for reference. Inset: Cumulative plot of the ava-
lanche size distribution with the rescaled quantityx=s/kdel

sg−1d/st−1d

for kdel=3 ssd, 5 shd, 10 sLd, and 15snd.

FIG. 6. Plot of the failure fractionf vs degreek at ac for the BA
model sg=3d with N=104. Data points are logarithmically binned.
Error bars represent the standard deviations for each bin.
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bottom-right corner of Fig. 7 indicates that vertices with
small degrees easily fail by the trigger of vertices with large
degrees, whereas the reverse rarely happen, particularly for
largekdel, as manifested by the white region in the upper-left
part of Fig. 7.

It is interesting to notice that the avalanche size distribu-
tion behaves similarly to the diameter change distribution
f20g. Diameter is the average number of hops between every
pair of vertices. Letds0d be the diameter of a given network,
where the superscripts0d means unperturbed network. When
the network is perturbed by the removal of a vertexi, the
diameter changes accordingly, and the diameter of the re-
maining network is denoted asdsid. Then the dimensionless
quantityDi =sdsid−ds0dd /ds0d is measured for alli, and then its
distribution function, composed ofhDij, behaves aspDCsDd
,D−z for large D. The exponentz was measured to bez

<2.2s1d for most artificial SF networks including the BA
model, insensitive to the degree exponentg as long as 2
,g,3, andz<2.3s1d for the yeast protein interaction net-
work, butz<1.7s1d for the Internet. All the above values of
the exponentz are close to corresponding values oft for the
avalanche size distribution of the ML model. In addition, the
exponentst andz are also close in values to the load distri-
bution exponentd except for a few examples such as the
Internet. Thus it would be interesting to investigate the origin
of such coincidences on a fundamental level.

Finally, it is noteworthy that recently Zhaoet al. f21g also
studied the phase transition of the cascading failure for the
ML model. They estimated the critical point to beac<0.1 by
comparing the load distribution before and after the deletion
of the hub. Their estimation is not inconsistent with our nu-
merical estimation. However, the avalanche size distribution
studied in this work provides a better criterion for the phase
transition point.

In conclusion, we have studied the avalanche dynamics in
the model proposed by Motter and Lai, describing the data-
packet transport on SF networks. Depending on the model
parametera, which controls the magnitude of the capacity of
each vertex, the pattern of avalanche dynamics can change.
For smalla, cascading failure spreads over the entire system,
corresponding to supercritical behavior in avalanche dynam-
ics. While, for largea, cascading failure is confined in a
small region, and avalanche size follows a subcritical behav-
ior. At the critical pointac, the avalanche size distribution
follows a power law with exponentt. The exponentt seems
to be robust for different degree exponentg as long as
2,g,3, and is likely to be close to the exponent of the
diameter change distribution.
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FIG. 7. Plot of the logarithmswith base 2d of the failure corre-
lation function csk,kdeld as functions of the degrees of the failed
vertexk and of the triggering vertexkdel. Data are logarithmically
binned to reduce fluctuations. Simulation is performed for the BA
model withg=3, N=3000 and averaged over 10 configurations.
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