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Efficient algorithm to compute mutually connected components in interdependent networks
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Mutually connected components (MCCs) play an important role as a measure of resilience in the study of
interdependent networks. Despite their importance, an efficient algorithm to obtain the statistics of all MCCs
during the removal of links has thus far been absent. Here, using a well-known fully dynamic graph algorithm,
we propose an efficient algorithm to accomplish this task. We show that the time complexity of this algorithm is
approximately O(N1.2) for random graphs, which is more efficient than O(N2) of the brute-force algorithm. We
confirm the correctness of our algorithm by comparing the behavior of the order parameter as links are removed
with existing results for three types of double-layer multiplex networks. We anticipate that this algorithm will be
used for simulations of large-size systems that have been previously inaccessible.
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I. INTRODUCTION

Networks are ubiquitous in our world and many of these
interact with one another [1–4]. One striking instance of
a strong internetwork correlation was the power outage in
2003 in Italy [5], during which the power grid network
and a computer network strongly interacted with each other.
A failure in one network thus led to another failure in
the other network and this process continued back and
forth. Such avalanche processes can continue until no ad-
ditional node can fail. This avalanche of failures and its
devastating consequences triggered efforts to assess the re-
silience of interdependent network structures against external
forces [5–14].

As a natural measure of resilience of such interdependent
networks, the size of a mutually connected component (MCC)
per system size has served as an order parameter of the
percolation transition [5,15–18]. Here the MCC means that
a node belonging to an MCC is connected to all other
nodes directly or indirectly in the same MCC in each layer
network, called the A-layer network and the B-layer network,
respectively. Note that each node in the A-layer network has
a one-to-one correspondence with its counterpart node in
the B-layer network. However, each layer network has its
own set of link connections between nodes and these are
independent of those of the other layer network. Although
MCCs have been proven to be an excellent measure of
network resilience, obtaining results for large-size systems
has been computationally difficult because of the absence of
an efficient algorithm. This problem was partially solved by a
recently proposed algorithm in which a newly designed data
structure was used to keep track of the size of a giant MCC
efficiently during removal processes of nodes [19]. However,
one still needs to resort to the brute-force algorithm when other
physical quantities such as the size distribution of the MCCs
are requested.

Here we introduce another efficient algorithm that keeps
track of not only the size of a giant MCC but also the sizes of
all other MCCs and thus the size distribution of MCCs can be
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traced during removal processes. In particular, our algorithm is
designed to proceed as links are deleted. Thus, the percolation
transition of the size of a giant MCC can be traced in terms of
the actual number of removed nodes. To design it, we utilized
a fully dynamic graph algorithm widely used in the computer
science community, the one introduced in [20], which is called
the HDT algorithm hereafter.

For each layer network, once a component that is not a
tree is changed into a spanning tree, its connection profile
is saved in a special type of data structure called an Euler
tour (ET) tree [21,22], because ET trees can be efficiently
managed to merge or split spanning trees. However, to
maintain the spanning trees efficiently when link deletions
occur, information of redundant paths between nodes needs to
be organized properly. The HDT algorithm is a way to maintain
such information. It guarantees amortized O(log2 N ) time for
a link deletion or creation when the ET tree is used for the data
structure of the spanning trees. The details of the ET tree are
presented in Appendix A.

II. ALGORITHM

We first briefly introduce the prerequisites needed to explain
our dynamic graph algorithm. To query and update the
connection profile of networks, we maintain a data structure for
each layer in the form of ET trees. Those ET trees constitute
a dynamic forest (DF) denoted by F , which performs the
following four operations efficiently.

(1) Connected(v, w, F) determines whether or not the
nodes v and w are in the same component.

(2) Size (v, F) returns the size n of the component (tree)
that contains the node v.

(3) Insert (e, F) adds a link e to F .
(4) Delete (e, F) removes a link e from F .
All of these operations can be performed within O(log2 N )

computing time using the HDT algorithm.
Our algorithm consists of two main parts: identifying

MCCs of a given multiplex network and evolving the MCCs
as links are removed one by one. Each update utilizes the
previous information of the details of MCCs. Throughout these
processes, we trace the evolution of MCCs as a function of the
number of links removed.
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FIG. 1. (a) Initial configurations of A-layer (upper) and B-layer (lower) networks. (b) First, each connected component is maintained in
a spanning tree form. Link D-F (gray line) in the A layer is treated as a redundant link. Second, ad hoc links (dashed lines) B-D in the
A layer and A-B in the B layer are added between two nodes through random selection from each component to connect the networks. Then
there is only one MCC and all links including the ad hoc links are active (thick lines). (c) An ad hoc link B-D is deleted in the A layer. This
deletion splits the A network into two components. Subsequently, link A-E in the B layer becomes inactive (thin line) and we identify two
MCCs {A,B,C} and {D,E,F}. (d) The other ad hoc link A-B in the B layer is deleted. Subsequently, link A-B in the A layer becomes inactive
(thin line) and the component {A,B,C} is split into two components {A,C} and {B}. At this stage, there are no remaining ad hoc links and
the MCCs (represented by different node symbols) of the networks in (a) have been retained with identification of active and inactive links. (e)
Now we delete links in the original networks one by one in the same manner. Here we show two examples of link deletion that do not cause
a cascade of inactivations: (i) link E-D deletion in the A layer and (ii) link A-E deletion in the B layer. For case (i) the redundant link D-F is
recovered and maintains the spanning tree. For case (ii), because the link is inactive, nothing occurs.

To be specific, each link is categorized as active or inactive.
Here an active link is the one that belongs to an MCC. The rest
of the occupied links are regarded as inactive. For example,
the thick solid and dashed lines in Fig. 1 represent active links,
whereas the thin lines represent inactive ones. We remark
that, even if two nodes (v,w) are connected by a link e in
layer A and through a certain pathway in layer B, link e

can be inactive when the pathway in layer B contains one
or more inactive links. However, once a link is deemed to
be inactive, it remains inactive permanently throughout link
removal processes. Using this simple fact, we design the
algorithm to identify MCCs.

In a double-layer multiplex network with N nodes on each
layer, let LA and LB denote the sets of links present on layers
A and B, respectively. The DFs in each network are denoted by
FA and FB , respectively. Each FX (where X represents either
A or B) stores the structure of MCCs of layer X containing
connection information of active links.

The first part of the algorithm proceeds as follows.
(i) For a given initial configuration of each layer network

[see Fig. 1(a)], a spanning tree is extracted randomly from each
component, based on which FX (X = A,B) is constructed.
By using Connect(v,w,F), the connection profile of each
network is obtained.

(ii) To identify MCCs, some ad hoc links are added between
disconnected trees, which means adding ad hoc links to FX.1

Let DX denote the set of all ad hoc links in layer X. Then the

1The standard ways are visiting each node of a network in a
depth-first order or a breadth-first order. Connected components are
identified naturally in the visiting and ad hoc links between them

set of active links can be denoted by AX = LX ∪ DX and the
set of inactive links becomes IX = ∅ [Fig. 1(b)].

(iii) Choose a link at random from the set of ad hoc links
DA and remove it [Fig. 1(c)]. If e ∈ IA, then e is removed from
IA. This case does not occur at the beginning, but it can occur
during the iterative processes. If e /∈ IA, execute Delete(e =
(v,w),FA). If no other pathway connecting v and w exists,
this component would be split into two. The connection
between v and w can be checked via Connect(v,w,FA) after
deleting e.

(iv) As shown in Fig. 1(d), the above division process in
one layer may trigger some active links in the other layer
into becoming inactive. For each of those inactivated links
e, execute Delete(e,FX) and add it to IX. This deletion
in turn can trigger some other links in AY into becoming
inactive; then we repeat the above processes iteratively, where
Y represents the counterpart layer of X. The details can be
found in Appendix B.

(v) Repeat steps (iii) and (iv) until DA = ∅ and DB = ∅.
After the above first part is completed, all MCCs for a

given multiplex network are identified and their structural
information such as the sizes of each MCC can also be
obtained from FX (X = {A,B}). Next we take the following
step to determine the evolution of the MCCs as links are
actually removed. This second part of the algorithm can be
accomplished by taking steps similar to (iii) and (iv).

can be created easily. One simple way may be to pick up a node,
from which links are added to the nodes that are not connected to
it. However, such a way is inefficient for simulation because a large
number of ad hoc links are needed.
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(vi) Repeat steps (iii) and (iv) on LA and LB instead of DA

and DB . This process is repeated until the number of removed
links reaches the value one wants [Fig. 1(e)]. The order of link
removals depends on the problem given.

Step (vi) contains the process of removals of active links in
the original networks. Thus, we can trace the control parameter.
Each updating of the second part builds on the DFs that
store the MCC structures obtained in the previous iteration.
Therefore, by performing step (vi), we can easily garner the
MCCs as a function of the number of remaining links.

III. ASSESSMENT

We check the correctness of our algorithm for three types of
double-layer multiplex networks, including (i) random graphs
proposed by Erdős and Rényi [23] and (ii) scale-free random
graphs introduced in [24], in which the degree of a node in one
layer is statistically the same as the one of the corresponding
node in the other layer. Thus, degrees of nodes with the same
node index on each layer are assortatively correlated [25].
In addition, we also consider (iii) two-dimensional regular
lattices. For each type of network, the size of a giant MCC
and the number of MCCs are measured as a function of the
mean degree. Here the mean degree is given as k = 2L/N ,
where L is the number of links remaining in either LA or LB

at each iteration step. Actually, those numbers are the same.
To compare the results in a consistent manner, all networks are
initiated by mean degree k = 4.

We first examine the size P∞ of a giant MCC normalized
by the system size N in Fig. 2(a). For Erdős-Rényi (ER)
graphs, the order parameter exhibits a jump of P

jump
∞ ≈ 0.51

at kc ≈ 2.46, values that are in agreement with the result
in [5,15]. For scale-free networks, the jump sizes diminish as
the degree exponent γ decreases to 3. For γ � 3, the transition
becomes continuous and no jump is obtained. This result is also
consistent with the previous result in [25] obtained using the
conventional algorithm even though nodes are deleted there.

We also perform similar simulations for two-dimensional
double-layer regular lattices. We obtain the transition point
kc ≈ 2.29 in Fig. 2(b), corresponding to the occupation
probability pc ≈ 0.57 in the conventional scheme. This tran-
sition point is between pc = 0.5 for the bond percolation
transition and pc ≈ 0.593 for the site percolation transition
in a two-dimensional monolayer network. Through the nu-
merical results obtained thus far, we have confirmed that our
algorithm successfully reproduces the previous results using
the conventional algorithms.

We also examine the number NC of MCCs divided by the
system size s = NC/N . One may expect that this quantity s is
small when a giant MCC exists in a large mean degree region;
however, it is large when most of the links are deleted in a small
mean degree region. The behavior of s is shown in Fig. 3. For
ER and scale-free networks, we find that s exhibits a behavior
similar to that of P∞ in Fig. 2 but in an upside-down manner.
However, for the two-dimensional case, it looks somewhat
different. The examination of the behavior of s vs k in such
large-size systems would not be possible unless our algorithm
is applied.

Next we consider the time complexity of the algorithm.
Step (v) forces steps (iii) and (iv) to be repeated O(N ) times

FIG. 2. (Color online) Plot of P∞ (the size of a giant MCC
divided by N ) vs the mean degree k = 2L/N , where L is the number
of remaining links in the system. The system size N = 106 and an
initial mean degree k0 = 4 are taken. As links are removed randomly
one by one from each layer, P∞ exhibits various discontinuous or
continuous transitions depending on the underlying networks.

and for each (iii) and (iv) the Delete operation has to be
executed at least once. These steps request the computing time
O(N log2 N ). However, when one link is deleted, inactivation
of a multiple number of links can follow, which may induce
cascading of deletions of links back and forth between the
two layers. However, it is also possible that the deletion of
one link may not induce any further inactivation process.
Such complicated processes make it difficult to extract time
complexity in a closed form. Thus, we resort to numerical
methods to estimate time complexity.

We measure the total computing time T to keep track of
the MCCs from k = 4 to 1 for the three types of underlying
networks. In Fig. 4 we plot T vs system size N . Each data point
is obtained by averaging over ten different samples. For ER and
scale-free networks, it is likely that the degree exponent γ does
not affect time complexity for k � 3, but the constant factor can
vary. We find in Fig. 4 that the time complexity depends on the
system size as O(N1.2) for those complex networks. For a two-
dimensional regular lattice, we find that the time complexity
is estimated as T ∼ O(N1.3). This numerical difference may
be caused by the nature of the avalanche failures depending on
the underlying network structures. Apart from the power-law
behavior, one may expect logarithmic corrections affected by
the four operations of the DF data structure, but this is not
clearly conclusive in Fig. 4.

022814-3



S. HWANG, S. CHOI, DEOKJAE LEE, AND B. KAHNG PHYSICAL REVIEW E 91, 022814 (2015)

ER
=4.0
=3.3
=3.0
=2.8

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

k

s

2D Lattice

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

k

s
(a)

(b)

FIG. 3. (Color online) (a) Plot of s (the number of MCCs divided
by the system size N ) vs the mean degree k under the same conditions
as those in Fig. 2. Here s exhibits behavior similar to m but in an
upside-down manner for complex networks. (b) However, s exhibits a
behavior somewhat different from m for the two-dimensional lattices.

IV. SUMMARY

We have introduced an efficient algorithm that keeps track
of the MCCs in an interdependent multiplex network. Our
algorithm maintains the full structural information of MCCs
during deletions of links and thus it enables one to extract
various interesting physical quantities such as the sizes of a
giant MCC as well as other MCCs. A similar algorithm was
introduced in [19], in which nodes, however, instead of links
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FIG. 4. (Color online) Plot of total computing time T vs system
size N for different underlying network structures. Each point is
obtained by taking an average over ten samples. The solid and dashed
line are guidelines with slopes of 1.2 and 1.3, respectively.
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FIG. 5. (Color online) (a) The tree we want to represent. (b) Euler
tour sequence from node C of the tree. (c) Sequence stored in a
balanced tree. The number next to each node of (c) is the size of the
subtree from the node.

are deleted. In this case the algorithm can be simpler and
a multiple number of links can be simultaneously deleted.
Accordingly, the computing time is reduced as O(N log N ).
Moreover, the algorithm was designed to trace only the
largest cluster. In contrast, our algorithm provides other useful
information on structural features of the MCCs. Therefore, we
anticipate that our algorithm can facilitate further studies in
various directions.

Finally, we remark that the HDT algorithm utilized here
can be applied to other problems such as temporal network
models [26] in which links can be added or deleted.
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APPENDIX A: THE ET TREE AND HDT ALGORITHM

The Euler tour tree is a scheme to represent a dynamical
tree efficiently. For a spanning tree of size n, for example,
the tree in Fig. 5(a), an Euler tour of the tree is a sequence
of nodes recorded in a depth-first walk on the tree from an
arbitrarily chosen root. It has length (the number of links)
2n − 2, as shown in Fig. 5(b). It starts from an arbitrary node
and ends at the same node. This cycle can be represented as a
sequence of 2n − 1 node indices. Each sequence is then stored
in a self-balanced tree consisting of 2n − 1 nodes [Fig. 5(c)]
and its ordering is preserved. Each node of the tree carries the
index of the node; thus the leftmost and rightmost nodes of
each tree carry the same index. We refer to the trees built this
way as Euler tour trees [Fig. 5(c)]. It is noteworthy that a node
having degree k in the spanning tree appears k times in the
Euler tour tree with one exception being the starting node, the
root [node E in Fig. 5(c)], which appears k + 1 times.

Note that, in self-balanced ET trees, the hierarchical steps
from the root to any terminal node are almost the same. Thus
the length is O(log N ) and the time complexity is determined
accordingly. This property is preserved even in the process
of merging and splitting of the spanning trees. There are
several widely used algorithms to maintain the balance (e.g.,
the AVL tree or the red-black tree [27]) and any of them can be
used.

One useful piece of information would be the size of the
connected component to which a given node belongs. For this,
we augment each node of the tree to keep track of the number
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of its descendants. For example, 11, the augmentation of node
E in Fig. 5(c), indicates the number of descendants. Whenever
a node is given, identifying the root and hence finding the size
of the component can be obtained in O(log N ) steps.

After constructing such an ET tree, we run the four principal
operations to the data structure F . Let E denote a set of links
in the network and S the set of links that constitute the forest.
Usually, E is the set of all links in the network, but in our
algorithm it is the set of all active links.

(1) Connected (v,w, F) determines whether v and w are
in the same component.

(a) Let rv and rw be the roots of the Euler trees containing
v and w, respectively.

(b) Return true if rv = rw; return false otherwise.
(2) Size (v, F) returns the size n of the component that

contains v.
(a) Find the root of the Euler tree containing v.
(b) The root will contain the number s of its decedents,

which would be s = 2n − 2. Thus return n = s/2 + 1.
(3) Insert (e = (v,w), F) adds a link e to the DF.
(a) Add e to E .
(b) If Connected (v,w), do nothing. Otherwise, connect

the two Euler trees adjacent to e.
(4) Delete (e = (v,w), F) removes a link e from the DF.
(a) Remove e from E .
(b) If e /∈ S, do nothing. If e ∈ S, remove e from S. This

will split a tree into two pieces. Determine whether there exists
a link e′ ∈ E that can replace e, i.e., connect the two again. If
so, add e′ to S.

It is clear that Connected, Size, and Insert each require
O(log N ) steps. In contrast, in Delete, finding e′ efficiently
is nontrivial. To achieve this, the HDT algorithm assigns an
integer, called a level, for each link and maintains a spanning
forest for each level. The levels are updated during the search
process of e′ so that further calls of Delete can find their e′
more efficiently, which sets the amortized costs of Insert and
Delete to O(log2 N ). For details we refer the reader to [20].

We, however, found that a brute-force searching for e′
without the HDT algorithm is actually faster for our problem.
We implemented two versions of our MCC algorithm. One
uses brute-force searching and the other uses the HDT
algorithm. They exhibit the same time complexity, but the
HDT algorithm has a larger prefactor in our empirical tests.
Moreover, the HDT algorithm needs additional information
and consumes more memory. Thus, we used ET trees without
the HDT algorithm in the assessment of our MCC algorithm.
However, the HDT algorithm might be needed when the
network size becomes much larger than the sizes used in our
tests because it theoretically guarantees the O(log2 N ) time
complexity, while we cannot provide a precise time complexity
for the brute-force searching.

APPENDIX B: SUCCESSIVE REMOVAL OF LINK e
FROM DA

(1) If e ∈ IA, remove e from IA.
(2) Otherwise, perform Delete (e = (u,v),FA). This might

split an MCC into two. Check whether this occurs using
Connect (u,v,FA).

(a) If Delete does not split any connected component,
nothing more needs to be done.

(b) If it does, some links in AB have to be changed to
inactive, as one can see from Fig. 1.

(i) All links in AB that connect the two split components
will become inactive. To find them, one can scan each node
in the smaller component exhaustively and determine whether
any of its outgoing links connect it to a node belonging to the
larger component.

(ii) For each link e of these, perform Delete (e,FB) and
add it to IB .

(iii) Of course, this in turn can trigger some links of AA into
becoming inactive and again we perform Delete for each.

(iv) This recursive process has to be performed until no
more inactive links are generated.
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