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Online auctions have expanded rapidly over the last decade and have become a fascinating new type of
business or commercial transaction in this digital era. Here we introduce a master equation for the bidding
process that takes place in online auctions. We find that the number of distinct bidders who bid k times up to
the tth bidding progresses, called the k-frequent bidder, seems to scale as nk�t�� tk−2.4. The successfully
transmitted bidding rate by the k-frequent bidder is likely to scale as qk�t��k−1.4, independent of t for large t.
This theoretical prediction is close to empirical data. These results imply that bidding at the last moment is a
rational and effective strategy to win in an eBay auction.
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Electronic commerce �e-commerce� refers to any type of
business or commercial transaction that involves information
transfer across the Internet. As a formation of e-commerce,
the online auction, i.e., the auction via the Internet �1�, has
expanded rapidly over the last decade and has become a
fascinating new type of business or commercial transaction
in this digital era. Online auction technology has several ben-
efits compared with traditional auctions. Traditional auctions
require the simultaneous participation of all bidders or agents
at the same location; these limitations do not exist in online
auction systems. Owing to this convenience, “eBay.com,”
the largest online auction site, boasts over 40 million regis-
tered consumers and has experienced rapid revenue growth
in recent years.

Interestingly, the activities arising in online auctions gen-
erated by individual agents proceed in a self-organized man-
ner �2–7�. For example, the total number of bids placed in a
single item or category and the bid frequency submitted by
each agent follow power-law distributions �8�. These power-
law behaviors �9–11� are rooted in the fact that an agent who
makes frequent bids up to a certain time is more likely to bid
in the next time interval. This pattern is theoretically analo-
gous to the process that is often referred to as preferential
attachment, which is responsible for the emergence of scal-
ing in complex networks �12�. This is reminiscent of the
mechanism of generating the Zipf law �10,13,14�. The accu-
mulated data of a detailed bidding process enable us to quan-
titatively characterize the dynamic process. In this paper, we
describe a master equation for the bidding process. The
master-equation approach is useful to capture the dynamics
of the online bidding process because it takes into account of
the effect of openness and the nonequilibrium nature of the
auction. This model is in contrast to the existing equilibrium
approach �15,16� in which there is a fixed number of bidders.
The equilibrium approach is relevant to traditional auctions;
however, it is unrealistic to apply this approach to Internet
auctions. The fat-tail behavior of the bidding frequency sub-
mitted by individual agents can be reproduced from the mas-
ter equation. Moreover, we consider the probability of an
agent who has bidden k times, called the k-frequent bidder,
becoming the final winner. We conclude that the winner is
likely to be the one who bids at the last moment but who
placed infrequent bids in the past.

Our study is based on empirical data collected from two

different sources �8�. The first dataset was downloaded from
the web, http://www.eBay.com, and is composed of all the
auctions that closed in a single day. The data include 264 073
auctioned items, grouped into 194 subcategories. The dataset
allows us to identify 384 058 distinct agents via their unique
user IDs. To verify the validity of our findings in different
markets and time spans, the second dataset was accumulated
over a period of one year from eBay’s Korean partner, auc-
tion.co.kr. The dataset comprised 215 852 agents that bid on
287 018 articles in 355 lowest categories.

An auction is a public sale in which property or items of
merchandise are sold to the bidder who proposes the highest
price. Typically, most online auction companies adopt the
approach of English auction, in which an article or item is
initially offered at a low price that is progressively raised
until a transaction is made. Both “eBay.com” and “auction-
.co.kr” adopt this rule and many bidders submit multiple bids
in the course of the auction. An agent is not allowed to place
two or more bids in direct succession. It is important to no-
tice that the eBay auction has a fixed end time: It typically
ends a week after the auction begins, at the same time of day
to the second. The winner is the latest agent to bid within this
period. In such an auction that has a fixed deadline, bidding
that takes place very close to the deadline does not give other
bidders sufficient time to respond. In this case, a sniper—the
last moment bidder—might win the auction, while the bid
has a substantial probability of not being transmitted suc-
cessfully. While such a bidding pattern is well known em-
pirically, no quantitative analysis has been performed on it as
yet. In this study we analyze this issue through the rate equa-
tion approach.

To characterize the dynamic process, we first introduce
several quantities for each item or article as follows:

�i� When a bid is successfully transmitted, time t
increases by 1.

�ii� Terminal time T is the time at which an auction
ends. Thus the index of bids runs from i=1 to T.

�iii� N�t� is the number of distinct bidders who suc-
cessfully bid at least once up to time t. Thus the index of
bidders �or agent� runs from i=1 to N�t�.

�iv� ki�t� is the number of successful bids transmit-
ted by an agent i up to time t.

�v� nk�t� is the number of bidders who bid k times
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successfully up to time t.
From the above, we obtain the relations

N�t� = �
k

nk�t� �1�

and

t = �
k

knk�t� �2�

for any time t including the terminal time T.
It is numerically found that N�T� is likely to increase lin-

early with increasing T, in particular when T is large, for
both the eBay and the Korean auction data. When the bid-
ding sequence T is small, N�T� is rather scattered for the
eBay data �Fig. 1�. In this paper, our interest is focused on
the case of large T. The proportional coefficient a, defined in
the relation N�T�=aT, is estimated to be a�1 for the eBay
and a�0.22 for the Korean auction data. On the other hand,

the bidding frequencies and the number of bidders for each
article are not uniform. Their distributions, denoted as Pf�T�
and Pn�N�, respectively, follow the exponential functions
Pf�T��exp�−T /Tc� and Pn�N��exp�−N /Nc�, respectively,
where Tc�7.4 and 10.8 for the eBay and the Korean auction
data, respectively, and Nc�2.5 and 5.6 for the eBay and the
Korean auction data, respectively �Fig. 2�.

We introduce the master equation for the bidding process
as follows:

nk�t + 1� − nk�t� = wk−1�t�nk−1�t� − wk�t�nk�t� + �k,1ut, �3�

where wk�t� is the transition probability that a bidder,
who has bid k−1 times up to time t−2, bids at time t suc-
cessfully. In this case, the total successful bid frequency of
that agent up to time t becomes k. Note that a bidder is not
allowed to bid successively. In the master equation, we pre-
sume that the bidding pattern is similar over different items
when N�T� is sufficiently large. Then, wk�t� may be written
as wk�t���dk /dt	 on average over different items. Empiri-
cally, we find that

wk�t� � �dk/dt	 � bk/t , �4�

where b is estimated to be b�0.7 for both the eBay and
Korean auctions �Fig. 3�. The fact that wk�k is reminiscent
of the preferential attachment rule in the growing model of

FIG. 2. Plot of Pf�T� vs T in �a� and �c�, and Pn�N� vs N in �b�
and �d�, where Pf�T� is the distribution of total number of bids, and
Pn�N� is the distribution of total number of participating bidders on
each items, for the eBay �a� and �b� and the Korean auction �c� and
�d� in semilogarithmic scale. The dotted lines have slopes of 2.5 in
�a�, 5.6 in �b�, 7.4 in �c�, and 10.8 in �d�.

FIG. 3. Plot of the transition rate �dk /dt	 averaged over different
items vs k / t for the eBay �a� and for the Korean auction �b�. The
dotted lines, obtained by the least square fit in the range �0.1:1� for
�a� and �0.01:1� for �b�, respectively, fit to the formula, �0.7k / t for
both data.

FIG. 4. Plot of �N�t�	 vs t, averaged over different items for the
eBay data. The straight line has a slope of 0.7 obtained from the
least square fit.

FIG. 1. Plot of N�T� vs T for the eBay �a� and the Korean
auction �b�, where N�T� is the number of distinct bidders who suc-
cessfully bid at least once up to terminal time T. The dotted lines
have slopes of 1 for �a� and 0.22 for �b�.
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the complex network �12�. ut is the probability that a new
bidder makes a bid at time t. Using the property that
�knk�t�=N�t�, we obtain

ut = N�t + 1� − N�t� . �5�

Next we then change the discrete equation, Eq. �3�, to a
continuous equation as follows:

�nk�t�
�t

= −
�

�k
�wk�t�nk�t�� + �k,1ut, �6�

which can be rewritten as

�nk�t�
�t

= −
b

t

�

�k
�knk�t�� + �k,1ut. �7�

When k�1, we use the method of separation of variables,
nk�t�= I�k�T�t�, thus obtaining

�

�k
�kI�k�� + � I�k� = 0, �8�

where � is a constant of separation, and

�T�t�
�t

=
b�

t
T�t� . �9�

Thus, we obtain

nk�t� � tb�k−�1+��. �10�

When k=1,

�n1�t�
�t

= −
b

t
n1�t� + ut. �11�

Next from the fact that N=�knk, we obtain

�N

�t
= �

k�1

�nk

�t
+

�n1

�t

= �
k�1

−
b

t

�

�k
�knk� −

b

t
n1 +

�N

�t

=
b�

t
�N − n1� −

b

t
n1 +

�N

�t
.

Therefore we obtain N�t�= �1+1/ � �n1�t� and n1�t�� tb� by
using Eq. �11�. Note that N�t�� t, and the linear relationship
holds asymptotically. The linear relationship breaks down for
small t. From the empirical data, Fig. 4, we find that
�b�1. Since b�0.7 in Fig. 3, we obtain ��1/b�1.4.
Therefore

nk�t� � tk−2.4 �12�

for large t, which fits reasonably with the numerical data
shown in Fig. 5.

In the eBay and the Korean auctions, the winner is the last
bidder in the bidding sequence. Now, we trace the bidding
activity of the winner in the bidding sequence in order to find
the winning strategy. To proceed, let us define qk�t+1� as the
probability that a bidder, who has bid k−1 times up to time
t−1, bids at time t+1 successfully. Note that a bidder is not
allowed to bid successively. In this case, qk�T� is nothing but
the probability that a k-frequent bidder becomes the final
winner. The probability qk�t+1� satisfies the relation

qk�t + 1� = �1 − ut+1��
j=1

N�t�

qj�t�
�k − 1��nk−1�t� − � j,k−1�

t − j
+ �k,1ut+1

�13�

with the boundary conditions q1�1�=1 and q1�2�=1. The first
term on the right hand side of Eq. �13� is composed of three
factors: �i� 1−ut+1 is the probability that one of the existing
bidders bids successfully at time t+1, �ii� qj�t� means that
bidding at time t is carried out by the j-frequent bidder, and
�iii� the last factor is derived from the bidding rate, Eq. �4�,
where the contribution by the bidder at time t is excluded
because he/she is not allowed to bid at time t+1. The second
term represents the addition of a new bidder at time t.

The rate equation, Eq. �13�, can be solved recursively. To
proceed, we simplify Eq. �13� by assuming that nk−1�t� is
significantly larger than � j,k−1, which is relevant when the
number of bidders is large. Then,

FIG. 5. Plot of nk�t� /n1�t� vs k for the eBay auction �a� and for
the Korean auction �b� for various terminal times T. Different ter-
minal times are represented by different symbols shown in each
panel. The solid lines have a slope of −2.4 drawn for guidance.

FIG. 6. Plot of the relative winning probability qk�T� /q1�T� of
the k-frequent bidder to that of the one-frequent bidder at the last
moment vs frequency k. The dotted line has a slope of −1.4 drawn
for guidance.
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qk�t + 1� � �1 − ut+1��
i=1

N�t�

qi�t�
�k − 1�nk−1�t�

t − i
+ �k,1ut+1

= �k − 1�nk−1�t�

�=2

t

�1 − u�+1�

���
i=1

�−1
�i − 1�ni−1���

�� − i� �q1�2� + �1 − ut+1��k

− 1�nk−1�t��
�=3

t
u�

� − 1 

��=�+1

t

�1 − u���

���
i=1

��−1
�i − 1�ni−1����

��� − i�
� + ut+1�k,1. �14�

Since 1−ut�0.3�1, qk�t� is obtained to be

qk�t� � �1 − ut−1�
�k − 1�nk−1�t − 1�

t − 2
+ �k,1ut �15�

within the leading order. Considering that nk�t�� tk−2.4 in Eq.
�12� and ut is constant, we obtain qk�t���t−1�k−1.4 / �t−2� for
large k and t, with a weak dependence on t. Thus the winning
probability by the k-frequent bidder is simply given as

qk�T� � k−1.4 �16�

in the limit t→�. This result is confirmed by the empirical
data in Fig. 6.

Our analysis explicitly shows that the winning strategy is
to bid at the last moment as the first attempt rather than
incremental bidding from the start. This result is consistent
with the empirical finding by Roth and Ockenfels �17� in
eBay. According to them, the bidders who have won the most
items tend to wait till the last minute to submit bids, albeit
there is some probability of bids not being successfully trans-
mitted. As evidence, they studied 240 eBay auctions and
found that 89 bids were submitted in the last minute and 29
in the last ten seconds. Our result supports these empirical
results.

In conclusion, we have analyzed the statistical properties
of emerging patterns created by a large number of agents
based on the empirical data collected from eBay.com
and auction.co.kr. It is likely that the number of bidders
and the winning probability decay roughly in the form
of nk�t�� tk−2.4 and qk�t��k−1.4, respectively, with bid
frequency k.
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